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0  INTRODUCTION

In manufacturing processes such as solidification, 
metal forming, welding and powder metallurgy, 
heat transfer phenomena are involved. For a suitable 
design and/or analysis of one of these processes, 
it is necessary to know the thermal properties of 
the materials. For example, in the heat treatment 
process designs, it is necessary to know the thermal 
conductivity and the heat capacity, since the thermal 
cycles that develop during the process will produce 
a microstructural change, which will affect the 
mechanical properties and mechanical behaviour.

Micro-alloyed steels or high-strength low-alloy 
steels are a special type of structural steels that obtain 
their outstanding final mechanical properties by 
thermomechanical treatments and accelerated cooling. 
However, to achieve a final shape or final component, 
such as in the field installation of pipelines, these 
steels are subjected to several welding thermal cycles, 
and then they can suffer several microstructural 

changes in the welding zone. Due to the experienced 
thermal cycles, the base material microstructure can be 
partially or completely modified to produce a fusion 
zone (FZ) or weld metal (WM), and a heat-affected 
zone (HAZ), which leads the welding zone to present 
different mechanical properties, toughness, and 
susceptibility to hydrogen-induced cracking (HIC) [1] 
to [3]. Moreover, mathematical modelling has become 
a powerful tool to analyse the effect of thermal cycles 
on the microstructure, mechanical properties, and 
mechanical behaviour of welded products [4], where it 
is necessary to know or estimate the thermal properties 
such as the thermal conductivity and the heat capacity. 
Usually, the thermal conductivity is determined 
at steady state by using the guarded-comparative-
longitudinal heat-flow technique in heating and the 
heat capacity is determined at a high heating rate by 
using differential scanning calorimetry. 

Artificial neural networks (ANNs) have been 
used to solve many problems, in the social and 
economic sciences as well as health sciences. In 
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Highlights
•	 The design of two artificial neural networks was proposed to determine the thermal properties as a function of the chemical 

composition and temperature of metallic materials.
•	 The thermal conductivity and heat capacity of metallic materials can be estimated as a function of temperature.
•	 The high temperatures reached in the coarse-grained heat-affected zone induced grain growth, which together with the high 

cooling rate (69 K/s), favoured the formation of bainite.
•	 There is no great difference in micro-hardness in the welding zone.
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metallurgy, ANNs have been used to model the 
transition temperature from ductile to brittle in steel 
[5]; the determination of static recrystallization of 
hot-deformed steels [6]; the determination of residual 
stress [7]; the correlation of processing parameters 
and properties [8]; the microstructural determinations 
[9]; predicting the behaviour of corrosion-fatigue 
[10]; modelling toughness of micro-alloyed steels 
[11]; predict migration energies of vacancies [12]; 
the prediction of the grain boundary energy [13], and 
the prediction of steel surface roughness [14]. In the 
welding process, ANNs have been used to predict 
the welding-induced angular distortion [15]; the 
occurrence in solidification cracking [16]; to calculate 
output parameters of friction-stir welding [17]; to 
predict the hardness of HAZ for in-service welded 
pipelines [18].

An ANN is a structure composed of nodes or 
neurons interconnected and arranged in layers to 
which weight factors are assigned . Each node in each 
layer is connected to other nodes in other layers by 
applying the sum of the weights in a transfer function. 
The basic architecture of an ANN is composed of 
three types of layers: input layer, hidden layer and 
output layer, although an ANN can have more than 
one hidden layer.

To build an ANN, a database is first required, 
which is divided into two parts: one for the training 
step and the other for the testing step. The training 
step consists of feeding the ANN with information 
from both the independent and dependent variables, 
i.e. the input neuron and output neuron signals. Each 
input is weighted and transformed by a transfer 
function. With the implementation of a learning rule, 
the weights of the input neurons are adjusted and the 
process is repeated until a minimum error is obtained 
between output neurons and the actual values, so it is 
said that the ANN has been trained. In the testing step, 
the ANN is fed with input neurons, but not with output 
neurons. If the results obtained with the ANN are 
similar to those actual values, it is said that the ANN 
has been successfully tested.

Because artificial neural networks have been able 
to estimate the thermal properties of different systems 
[19] to [21], it was proposed to use them to estimate 
the thermal conductivity and the heat capacity of an 
experimental micro-alloyed steel as a function of 
temperature, and apply them to the thermal analysis 
of the HAZ. It was decided to design two ANNs, one 
to estimate the thermal conductivity and the other 
to estimate the heat capacity. The input neurons 
in both ANNs were the chemical composition and 

temperature, and the output neurons were the thermal 
conductivity and the heat capacity.

1  METHODOLOGY

1.1  Database

The estimation of thermal conductivity is a function 
of temperature and phases, and these in turn are a 
function of temperature and chemical composition, 
which means that a composition of functions exists:

	 k k T= ( ), ,φ 	 (1)

	 φ φ µ= ( )T , , 	 (2)

where k is the thermal conductivity, T is the 
temperature, ϕ are the phases and μ is the chemical 
composition. From this, we can see that the thermal 
conductivity is a function of the temperature and 
chemical composition:

	 k k T= ( ), .µ 	 (3)

We can deduce that when the thermal conductivity 
is determined as a function of the temperature and 
chemical composition, implicitly the contributions of 
each phase to the property are considered. The same 
analysis can be made for the heat capacity.

Table 1.  Minimum and maximum values of chemical composition, 
the temperature and the thermal conductivity values

Variable Minimum Maximum
%Fe 16.2 100
%C 0.00 1.70
%Mn 0.00 6.00
%Ni 0.00 63.0
%Mo 0.00 4.80
%V 0.00 3.00
%Cr 0.00 30.4
%Cu 0.00 0.64
%Al 0.00 4.50
%Nb 0.00 3.00
%Si 0.00 3.50
%W 0.00 18.5
%Ti 0.00 1.40
%Co 0.00 46.6
Temperature [K] 273 1473
Thermal conductivity [W/(m K)] 10.9 80.2

In research, these properties are used for 
thermal analysis in unstable state during heating 
and cooling; however, the relative amount of phases 
during heating to a given temperature, may differ in 
the relative amount of phases during cooling at the 
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same temperature [22], i.e., the thermal properties 
would be different. It can be concluded that the 
thermal properties are also a function of the heating 
and cooling rate, but because there are no studies 
or data regarding this function, it might be assumed 
that this function has no influence in the system. 
Therefore, one search was conducted in the literature 
to build two databases for metallic materials: one 
for the thermal conductivity, and the other for the 
heat capacity, both as a function of the chemical 
composition and temperature. A careful examination 
was conducted in order to attain sufficient information 
to ensure that the chemical composition of the micro-
alloyed steel under study was within the limits of the 
compositions of the collected metallic materials. The 
collected information for the thermal conductivity and 
the heat capacity database was conducted by using 
395 metallic materials for the former and 176 metallic 
materials for the latter. Tables 1 and 2 represent the 
summary for the thermal conductivity and the heat 
capacity, respectively. In Fig. 1, the behaviour of these 
two properties for certain selected metallic materials 
(in this case, steels) are presented. Regarding the 
thermal conductivity, a greater effect of the chemical 
composition is observed at low temperatures, being 
larger for steels with higher contents of alloying 
elements. Moreover, in relation to the heat capacity, 
the alloying elements can decrease this property 
at temperatures between 900 K and 1100 K. This 
temperature range corresponds to the transformation 
zone to form austenite; therefore, increasing the 
heat capacity may be referred to the latent heat of 
transformation [23].

Table 2.  Minimum and maximum values of chemical composition, 
the temperature and the heat capacity values

Variable Minimum Maximum
%Fe 21.0 100
%C 0.00 1.70
%Mn 0.00 13.0
%Ni 0.00 60.0
%Mo 0.00 3.60
%Cr 0.00 29.0
%Cu 0.00 0.64
%Al 0.00 4.50
%Nb 0.00 0.90
%Si 0.00 2.00
%W 0.00 18.5
%Ti 0.00 0.60
Temperature [K] 293 1273
Heat capacity [W/(m K)] 402 960

Fig. 1. Thermal properties as a function of temperature for some 
steels; a) thermal conductivity, b) heat capacity

1.2  Design of the ANNs 

The ANNs were developed as generalizations of 
mathematical models of biological neuron systems. 
The basic unit of an ANN is an elementary processor 
called a neuron or node, which has the ability to 
count a weighted sum of its inputs (Eq. (4)), and then 
apply a transfer function to obtain a signal which is 
transmitted to another neuron:

	 net w x bj ij ii

n( ) = +
=∑ 1

, 	 (4)

where (net)j is the weighted sum of the jth neuron for 
all the n input neurons, wij is the weight between the 
neurons of the previous layer and the neurons of the 
computing layer, b is the bias and xi is the signal from 
the i-input neuron. 

A transfer function is a function that processes the 
weighted sum and gives the output signal of the jth 
neuron. In this work, the sigmoid function was used as 
a transfer function:

	 f net
ej net j

( ) =
+

−( )
1

1

. 	 (5)

Through a learning algorithm, the ANNs 
parameters are adjusted to minimize the mean square 
error function (E) (Eq. (6)) between the actual outputs 
and estimate outputs:
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   E actual ouput estimated output= −( )∑1
2

2

_ _ . 	 (6)
Once the error is computed, the weights are 

updated one-by-one through a back-propagation with 
a momentum-learning algorithm by Eq. (7):

	 ∆ ( ) = − ∂
∂

+ ∆ −( )w i E
w

w iij
ij

ijγ α 1 , 	 (7)

where Δwij(i) and Δwij(i–1) are the new and old 
changes in the weight of the i connection, and γ and 
α are known as the learning rate and the momentum 
respectively. In this equation, the function of the 
momentum is to accelerate the learning rate [14].

In this paper, the design of two ANNs of the 
multilayer perceptron with a back propagation and 
momentum learning rule and sigmoid transfer function 
was proposed. This approach has given good results in 
predictions based in ANN [9] and [24]. The first ANN 
was designed to estimate the thermal conductivity, 
and the second to estimate the heat capacity. In the 
first, a total of 15 input neurons were used (14 for the 
chemical composition and 1 for temperature); in the 
second ANN, a total of 13 input neurons were used (12 
for chemical composition and 1 for temperature). All 
these neurons, both input and output were normalized 
by using Eq. (8):

	 x x x
x xN =
−
−
min

max min

, 	 (8)

where xN is the normalized value of the x neuron, 
whose maximum and minimum values are xmax and 
xmin respectively. 

Each of the neurons of the input layer corresponds 
to an input variable (chemical composition and 
temperature), and each neuron of the output layer 
corresponds to each output variable (heat capacity or 
thermal conductivity). Both ANNs were trained with a 
single hidden layer and different numbers of neurons 
in this layer. Fig. 2 shows the general architecture of 
the ANNs.

chemical composition 
and temperature

Hidden layers

thermal conductivity
or heat capacity

Fig. 2.  Architecture of the ANNs to estimate thermal conductivity 
and heat capacity

Each database was divided into two parts. The 
first one (80 % of the information) was used for 
the training step, and the second one (20 % of the 
information) was used for the testing step.

1.3  Materials and Experimental Procedure

We worked with an experimental micro-alloyed steel 
designated as B2 (yield strength: 788 MPa), which 
was processed by a thermomechanical process for 11-
mm thick producing plates. The chemical composition 
of the steel is: 0.03%C, 0.24%Si, 1.03%Mn, 0.42%Cr, 
0.17%Mo, 1.30%Ni, 0.02%Nb and 0.02%Ti. In order 
to obtain the carbon equivalent, the Ito-Besseyo for 
low-C ranges steels was used:

	

Pcm = + +
+ +

+

+ + + + ( )

%
% % % %C

% % %
% .

C
Si Mn Cu r

Ni Mo V
B

30 20

60 15 10
5 	 (9)

For this steel, the carbon equivalent is 0.15, 
which indicates that it does not have a tendency to 
form martensite during the cooling cycle; therefore, 
preheating was not performed.

In order to determine the effect of thermal cycles 
produced by welding on microstructure and micro-
hardness in this experimental micro-alloyed steel, on 
a plate of 110 mm × 110 mm × 11 mm, with the gas 
tungsten arc welding (GTAW) process, an arc was 
created to simulate a one-pass welding without filler 
material, which means that a real weld was not made. 
To ensure the high quality of welding, the welding 
torch was adapted to a plasma cutting device as shown 
schematically in Fig. 3. As a result of this adjustment, 
the welding speed and the distance between the 
electrode and the plate were settled, keeping them 
constant. Table 3 shows the parameters used for 
welding in a single pass. After welding, the plate was 
left to cool down to room temperature.

z

x

Plasma 
cutting
device

Welding
torch

Sample

Electrode

Fig. 3.  Adaptation of the welding torch to plasma cutting device

To determine the effect of thermal cycles 
developed during the welding process on the 
microstructure, a metallographic preparation of 
welding was performed. This preparation consisted 
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of obtaining a sample in the transverse direction, in 
an area away from the boundaries of the beginning 
and end of the welding zone. To obtain the sample a 
diamond wheel cutting machine was used (Buehler 
Isomet 1000), with a controlled low speed to avoid 
any microstructural changes. 

To reveal the microstructure using light 
microscopy, grinding, polishing, and etching were 
performed. The sequence of etching was a) 2 % 
nital  during 5 s, b) 2% picral during 3 s and c) 1 % 
metabisulfite during 20 s. The average grain size in 
the HAZ was measured by the linear intercept method 
(ASTM E112). Finally, in accordance with ASTM 
384, micro-hardness tests were performed using 
a Shimadzu Microhardness tester, model HMV-2. 
The profile of Vickers micro-hardness (HV 0.1) was 
measured in the welding zone from the FZ to the BM. 
The measurements were made with a separation of 
approximately 2.5 footprints.

Table 3.  Welding parameters used

Current [A] 200 
Welding velocity [cm/min] 18
Current type Direct current electrode negative
Electrode Tungsten with 2 % Rhodium
Electrode tip shape pointed
Electrode diameter [mm] 3.18
Distance between plate and 
electrode [mm]

1.00

1.4  Determination of the Thermal Cycles

It is known that the mechanical properties are 
functions of the microstructure, and this is a function 
of the experimental thermal cycles. For this reason, 
the proposed method by Poorhaydari et al. [25] was 
used to determine the thermal cycles developed during 
welding, since the experimental determination is a 
complicated task. The method consists of applying 
a weight factor to Rosenthal’s analytical solutions 
for thin and thick plates, since most of the welds 
exhibit an intermediate behaviour between these two 
categories. This weight factor is determined by:

	 F
W W

W W
Thick plate

Thin plate Thick plate

=
−( )
−( )

−

− −

exp

, 	 (10)

where, Wexp is the thickness of the experimentally 
determined HAZ; WThin-plate and WThick-plate are the 
thicknesses of the HAZ which are determined from 
Rosenthal’s solutions for thin plate and thick plates, 

respectively. The weight factor, F, varies from 0 to 1. 
Values near 0 indicate that the problem is approaching 
a thick plate, and conversely, when F takes values 
close to 1, the problem is approaching a thin plate.  
WThin-plate and WThick-plate are determined, knowing that 
in the boundaries between the FZ and the HAZ, and 
between the HAZ and the BM, the peak temperatures 
reached during the welding process are known, and 
which correspond to the melting temperature and the 
critical temperature Ac1, respectively. Poorhaydari 
showed that the important parameters such as peak 
temperature and the cooling time between 1073 K 
and 773 K (commonly known as t8/5) can be estimated 
by weighting the solutions of thick plates and thin 
plates; that these parameters can be used to correlate 
microstructure studies and modelling and simulation.

2  RESULTS AND ANALYSIS

After several ANNs with different neurons in the 
hidden layer were trained, the best fits between the 
actual and the estimated thermal properties were 
obtained with 8 neurons. The results of this step for 
the two ANNs are shown in Fig. 4. 

Fig. 4.  Results of the training step;  
a) thermal conductivity, b) heat capacity 

In this figure, the actual thermal conductivity 
and the actual heat capacity are compared with those 
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estimated with the ANNs. In the case of the thermal 
conductivity, it can be seen that with values higher 
than 60 W/(m K), an underestimation occurs for this 
property, but below this value most of the estimated 
values are close to actual values. For the case of heat 
capacity, it is observed that at values greater than 
800 J/(kg K), there are both underestimation and 
overestimation of the data.

To determine the efficiency of the ANNs, the 
linear correlation coefficients were calculated, which 
are 0.94 for the thermal conductivity and 0.95 for 
the heat capacity. With these, it is considered that the 
ANNs have been trained.

Fig. 5.  Comparison of actual and estimated thermal conductivity 
by using the ANN, for two different steels; a) 0.06%C, 0.4%Mn; b) 

0.13%C, 0.25%Mn, 0.14%Ni, 12.95%Cr

Once the ANNs have been trained, the thermal 
properties of the metallic materials that were not 
used in the training step were estimated in the testing 
step, but their actual thermal properties are already 
known. In Fig. 5, the actual and the estimated thermal 
conductivity by using the ANN are compared for two 
steels with different thermal behaviour as a function 
of temperature. In this figure, it can be seen that the 
ANN was able to estimate the thermal conductivity 
for both a non-alloy steel (Fig. 5a) and an alloyed steel 
(Fig. 5b). For the alloyed steel (i.e. ferritic stainless 
steel), the conductivity is not a strong function of 
temperature, which could be due to the fact that the 

ferritic phase is presented in all this temperature 
range.  As in the case of the thermal conductivity, Fig. 
6 compares the actual and the estimated heat capacity 
by using the respective ANN for two different steels 
that have different thermal behaviour as a function of 
temperature. As can be seen in Fig. 1b, heat capacity, 
depending on the steel, may or may not present a 
maximum around 900 K and 1100 K, which (as 
already mentioned), it may be due to the latent heat; 
however, the ANN is able to estimate this behaviour 
(Fig. 6a). As can be observed from Fig. 6, a good 
approximation between the actual and the estimated 
heat capacity is obtained. With these results, it is 
considered that the ANNs have been tested.

Fig. 6.  Comparison of actual and estimated heat capacity by using 
the ANN, for two different steels; a) 0.08%C, 0.05%Mn, 0.002Ni, b) 

0.059%C, 0.46%Mn, 0.17%Ni, 0.28%Mo, 0.52%Cr

Once the ANNs were trained and tested, the 
thermal properties of the micro-alloyed steel under 
study were estimated. The chemical composition of 
the micro-alloyed steel and the range of temperatures 
between 298 K and 1473 K, for the thermal 
conductivity, and the range of temperatures between 
298 K and 1273 K for the heat capacity, were used 
as input neurons to estimate these thermal properties. 
Fig. 7 presents the results of the estimated thermal 
conductivity and the estimated heat capacity. From 
Fig. 7a, a maximum value of thermal conductivity 
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about 46 W/(m K) at room temperature is observed, 
with a tendency to decrease with the temperature 
until a stable value of approximately of 30 W/(m K) 
at 1073 K. Regarding the heat capacity (Fig. 7b), a 
high dependence on this property with temperature 
can be seen, reaching a maximum of 800 J/(kg K) 
at 1073 K; after this temperature, a decrease in this 
property is observed, until a minimum value of 402 
J/(kg K) at 1273 K. With these results, it can be seen 
that this steel has thermal properties similar to that of 
an alloyed steel.

Fig. 8 presents the microstructures produced by 
the effect of the welding thermal cycles. The BM, 
the subzones of the HAZ: inter-critical heat effected 
zone (ICHAZ), recrystallization heat-affected 
zone (RCHAZ), coarse grained heat-affected zone 
(CGHAZ), partially melted heat-affected zone 
(PMHAZ), and the FZ can be seen. In the BM, 
microstructural changes are not observed, because 
the peak temperature reached in this zone was lower 
than the transformation critical temperature Ac1. 
The microstructure in this zone is composed mainly 
of acicular ferrite (AF) and quasi-polygonal ferrite 
(QPF), in addition to the presence of precipitates, 
which appear as dark particles on etchings with picral. 
The peak temperatures attained at the ICHAZ were 
between Ac1 and Ac3; thus, a fraction of the ferrite 
of the original microstructure was transformed to 
austenite during heating; during the cooling cycle, the 

      

      
Fig. 8.  Microstructures of the welding zone: a) BM, b) ICHAZ, c) RCHAZ, d) CGHAZ, e) PMHAZ and f) FZ

Fig. 7.  Estimated thermal properties for the experimental micro-
alloyed steel; a) thermal conductivity, and b) heat capacity, by 

using the two ANNs

austenite transformed to ferrite. Additionally, in this 
subzone it can be seen a refining ferrite grain size, 
untransformed QPF and growth and agglomeration of 
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precipitates. The RCHAZ reached a peak temperature 
above Ac3 but lesser than 1473 K; thus, all the original 
microstructure transformed to austenite during 
heating, resulting in the final refined microstructure 
of polygonal ferrite (PF) grains. In the CGHAZ, a 
grain coarsening with a microstructure of AF, QPF, 
grain boundary ferrite (GBF) and bainite (B) can be 
seen. In the PMHAZ, epitaxial grains and columnar 
grains that grew in the direction of the heat extraction 
are observed, in which these grains are composed of a 
mixture of AF, GBF and B. In the FZ, AF, GBF and B  
can be seen.

From Fig. 9, it can be seen that the micro-
hardness increases in the HAZ from the BM to FZ. 
In the case of the RCHAZ, this increment is due to 
the grain refinement, but for the case of the CGHAZ, 
the increase in micro-hardness is mainly due to the 
formation of bainite, since in this subzone the grain is 
over 20 times higher.
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Fig. 9.  Microhardness profile measured in the welding zone

Once the thermal properties of the experimental 
micro-alloyed steel were obtained, these were used to 
determine the peak temperatures and thermal cycles 
experimented in the HAZ, by solving the Rosenthal’s 
equations and the method proposed by Poorhaydari 
et al. [25]. Fig. 10 shows the peak temperatures 
determined in the HAZ and BM, and its relationship 
with the grain size. It is noted that in the CGHAZ, a 
grain size between 30 µm and 115 µm was obtained; 
in the RCHAZ a grain size between 5 µm and 20 
µm. From this same figure, it can be seen that the 
grain grew rapidly in the CGHAZ. According to the 
carbonitride dissolution temperature (Eq. (11) [26]), 
which for this steel is 1273 K, this rapid growth is due 
to the dissolution of these precipitates [27] and [28].

	 log . .Nb C N
T

[ ] +













 = −

12

14
2 26

6770
	 (11)

The temperature reached at the BM is less than 
993 K, and for this, it did not cause microstructural 

changes; thus, the micro-hardness was not affected. 
In the same Fig. 10, the CGHAZ corresponded to 
peak temperatures between 1473 K and 1807 K; such 
temperatures cause a coarsening and dissolution of 
precipitates; grain growth was thus promoted. 

From the thermal analysis, the cooling rates 
experimented in the CGHAZ and RCHAZ were of 69 
K/s and 45 K/s, respectively. Thermal analysis showed 
that the high temperatures reached in the CGHAZ 
(between 1473 K and 1807 K) induced grain growth, 
which together with the high cooling rate (69 K/s), 
favoured the bainite formation. Furthermore, the peak 
temperatures reached in the RCHAZ (between 996 
K and 1473 K), promoted the recrystallization with a 
grain size between 5 µm and 20 µm; this together with 
the lower cooling rate (45 K/s) inhibited the formation 
of bainite.

Fig. 10.  Determined peak temperatures and grain size

3  CONCLUSIONS

Two ANNs were designed, trained and tested to 
estimate the thermal conductivity and the heat 
capacity of metallic materials as a function of 
chemical composition and temperature. The linear 
correlation coefficients obtained from the comparison 
between the actual and the estimated values are 0.94 
and 0.95 for the thermal conductivity and the heat 
capacity, respectively.

By testing the ANNs, it was observed that these 
are able to estimate the thermal properties of any 
ferrous material that is within the boundaries of 
the chemical composition and temperature of the 
database. 

Once the ANNs were tested, they were used to 
predict the thermal properties of an experimental 
micro-alloyed steel, and these properties were used 
to estimate the thermal cycles experimented in the 
HAZ of this same steel. It was observed that the 
microstructural features and the micro-hardness of 
the HAZ are functions of the experimented thermal 
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cycles. The microstructure in the HAZ changes from 
acicular ferrite, polygonal ferrite, grain boundary 
ferrite and bainite in the CGHAZ to polygonal ferrite 
in the RCHAZ. Additionally, in the HAZ and FZ, 
martensite was inhibited. Due to these microstructures 
that are functions of the thermal cycle, the CGHAZ 
showed the hardest zone, although there is no great 
difference of micro-hardness in the welding zone.
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