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In this article an improved neural network model is presented that allows us to predict the 

scattered S-N curves. The model is capable of predicting the S-N curve in its high-cycle and very-high-

cycle fatigue domains by considering also the increased scatter of the fatigue-life data below the knee 

point of the S-N curve. The scatter of the fatigue-life data for an arbitrary amplitude-stress level is 

modelled with a two-parametric Weibull’s probability density function, the parameters of which are 

varied as a function of the amplitude-stress level. The parameters of the S-N curve trend and its scatter 

distribution are not fixed, but depend on the parameters of the production process via a serial-hybrid 

neural network. The article presents the theoretical background and the application in the case of real 

experimental fatigue data for 51CrV4 spring steel manufactured with two different manufacturing 

technologies and two different heat treatments. 

Keywords: 51CrV4 steel, conventional manufacturing technology, electro-slag remelting, S-

N curve, serial hybrid neural network 

 

Highlights: 

• A model for predicting S-N curves and their scatter for 51CrV4 steel was built.  

• The model is capable of predicting the S-N curves in the transition zone between high-cycle and very high-
cycle fatigue domains.  

• The scatter of S-N curves is described by Weibull probability density function. 

• The model is based on a serial hybrid neural network. 

 
0 INTRODUCTION 

 

To evaluate structural reliability of 

dynamically loaded components it is necessary to 

know the scatter of the loading spectra as well as 

the scatter of the fatigue-life durability curve of 

the structural material ([1] to [7]). Structures that 

are made from spring steels are typically 

subjected to a large number of load cycles. For 

this reason, a S-N fatigue-life curve is normally 

used to predict the fatigue life of such structures. 

In the past it was presumed that a fatigue-life 

limit Sa;FL exists at a certain number of load-

cycles-to-failure NFL, e.g., for structural steels the 

fatigue-life limit should occur between 2·10
6
 [8] 

and 10
8
 [9] load-cycles-to-failure – see Fig. 1. 

However, it turned out that for most metallic 

structural materials there is no fatigue-life limit 

[10]. What exists in practice is a so-called 

Haibach’s knee point, below which the slope of 

the S-N curve is reduced. This part of the S-N 

curve is usually referred to as a very-high-cycle 

domain. Haibach [11] proposed a model for the 

S-N curve in which the slope below its knee-point 

is 2k-1, if its slope in the high-cycle domain is k – 

see Fig. 1. 

 

Fig. 1. A S-N fatigue-life curve 
 

Additionally many other researchers have 

shown that the slope of the S-N curve in the very-

high-cycle domain is reduced ([12] to [14]). What 

is common to all these cases is that, not only the 

slope, but also the scatter of the experimental 

fatigue-life data, is significantly changed (i.e. 

increased) below the knee point of the S-N curve 

– see Fig. 2. 
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Fig. 2. Scatter of the S-N curve in the high-cycle and 
very-high-cycle fatigue domains 

 

It was further shown ([13], [14])  that the 

slope of the fatigue-life curve in the very-high-

cycle domain is much smaller than the one 

proposed by Haibach. In order to make reliable 

predictions of the structure’s fatigue life in the 

high-cycle and very-high-cycle domains one must 

be able to model the variable trend as well as the 

variable scatter of the number of load-cycles-to-

failure for these two domains of the S-N curve. 

The shape of the S-N curve in the vast 

neighbourhood of the knee point between the 

high-cycle and very-high-cycle fatigue domains 

of the S-N curve is similar to the shape of the 

Coffin-Manson curve [15] in the neighbourhood 

of the transition between the low-cycle elastic-

plastic domain and the high-cycle elastic domain 

of the fatigue-life curve. For this reason it is 

possible to model the S-N curve in the high-cycle 

and the very-high-cycle domains with a similar 

form: 

       0,,,;)( >⋅+⋅= +−− dcbaNcNaS dbb
a      (1) 

Sa represents the amplitude stress, N is the 

number of load-cycles-to-failure and a, b, c, d are 

parameters dependent on the material. We have 

shown before [16] that it is possible to model the 

fatigue-life curve of such a shape together with its 

scatter by applying a Weibull’s two-parametric 

probability density function (PDF) to describe the 

scatter of the number of load-cycles-to-failure for 

an arbitrary amplitude-stress level: 
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In that study we have presumed that the 

Weibull’s scale parameter η (which represents the 

number of load-cycles-to-failure at a 0.632 

probability of rupture) was dependent on the 

amplitude-strain level εa via Coffin-Manson 

equation and that the Weibull’s shape parameter β 

was constant [16]. However, there is a huge 

difference between the scatter of the ε-N curve 

and the scatter around the knee point between the 

high-cycle and very-high-cycle domains of the S-

N curve. While the width of the scatter band of 

the ε-N curve is constant below and above its 

knee point, this is not the case for the knee point 

between the high-cycle and very-high-cycle 

domains of the S-N curve. In the latter case, the 

width of the scatter band of the S-N curve in the 

very-high-cycle domain is much larger than in the 

high-cycle domain – see Fig. 2. For this reason it 

is not possible to describe the scatter of such 

durability curve using a two-parametric Weibull 

PDF from Equation (2) with a constant shape 

parameter β. On the contrary, to model the S-N 

curve around the knee point between the high-

cycle and very-high-cycle fatigue domains the 

Weibull’s shape parameter β should also depend 

on the amplitude-stress level Sa.  

The objective was to build a model for 

predicting the S-N curves and their scatter for a 

specific spring steel. Since the material’s 

characteristics depend on the manufacturing 

technology and the heat treatment of such steels, 

these influential factors should be considered 

when modelling the corresponding S-N curves. 

The S-N curves can vary a great deal between 

differently produced and/or heat-treated steels, 

even for similar operating conditions. That is why 

we decided to apply a serial hybrid neural 

networks to build the model that is able to predict 

the S-N curve and its scatter as a function of the 

manufacturing technology and the heat treatment. 

A similar approach was successfully applied 

before, for modelling the dependence of the S-N 

and ε-N curves on the operating conditions ([17], 
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[18]). In the scientific literature there exist a 

number of articles on the application of neural 

networks for modelling and predicting durability 

curves. However, most of them are based on 

either multi-layer perceptrons or basis functions. 

With such an approach it is difficult to embed 

into a neural network an analytical model that is 

capable for predicting trend and scatter of the 

durability curve. Since the approach from 

Klemenc et al. [18] was proved to be successful 

we modified it in such a way that a new model is 

capable of predicting the S-N curve in its high-

cycle and very-high-cycle fatigue domains by 

considering also the increased scatter of the 

fatigue-life data below the knee point of the S-N 

curve. The manufacturing technology and the 

heat treatment were the inputs to the neural 

network and the parameters of the S-N curve and 

its scatter were its outputs. 

Such a comprehensive model of the S-N 

curves with a capability of considering the 

increased scatter in the transition between the 

high-cycle and very-high-cycle domains has not 

been presented in the literature yet. A further 

innovation was to combine this model with the 

neural network in order to model the relationship 

between the parameters of the S-N curve and the 

applied manufacturing technology. The theory is 

explained in detail in Section 1, experimental data 

are presented in section 2 and the results are 

presented and discussed in section 3. 

 

1 THEORETICAL BACKGROUND 
 

1.1 Variable-scatter model for the S-N curve 
To model the S-N curves and their scatter 

for a 51CrV4 spring steel a similar statistical 

model as used in [16] was applied. Following this 

approach, the scatter of the number of load-

cycles-to-failure N for an arbitrary amplitude-

stress level Sa was described using a two-

parametric Weibull’s PDF – see equation (2) in 

section 1. The trend of the S-N curve in the 

neighbourhood of the knee-point was linked 

directly to the Weibull’s scale parameter η: 

0,,,;)()( )( >⋅+⋅= +−− dcbaScSaS db
a

b
aa ηη       

                                                                           (3) 

with the Weibull’s shape parameter β that is now 

dependent on the loading level Sa: 

[ ]
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With this equation the shape parameter β 

changes continuously and smoothly from the 

value of f at very low amplitude-stress levels to 

the value of (f·g) at high amplitude-stress levels. 

The transition gradient between the two limit 

values depends on the parameter h, with the 

steepest gradient occurring at the amplitude-stress 

value SKP. When combined with the scale 

parameter η from equation (3) a small scatter is 

obtained at high amplitude-stress levels and an 

increased scatter is obtained at the lower 

amplitude-stress levels that correspond to the 

very-high-cycle fatigue domain. 

To avoid illogical shape of the durability 

curves around the knee point Sa=SKP two limit 

conditions are defined: 

1. The parameter g should never exceed the 

following value of glim: 
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2. The parameter h should never exceed the 

following value of hlim: 
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The two conditions in equations (5) and 

(6) limit the transition gradient between the small 

and large values of the shape parameter β relative 

to the trend-curve slope ratio (b+d)/b. The knee-

point stress SKP is calculated as a cross-section of 

the two asymptotes of equation (3) – see Fig. 2: 

                             b
KPKP aS η⋅=                        (7) 
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In this way the S-N curve and its scatter in 

the neighbourhood of the knee point between the 

high-cycle and very-high-cycle fatigue domains is 

modelled with seven parameters: a, b, c, d, f, g 

and h. These parameters can be estimated using a 

numerical optimisation process. 
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1.2 Serial hybrid multilayer perceptron 
Since the material characteristics of the 

spring steel are dependent on the manufacturing 

technology and the heat treatment, they are also 

reflected in the trend and scatter of the 

corresponding S-N curve. This means that the 

parameters, a, b, c, d, f, g and h from subsection 

1.1 are not constant, but they differ according to 

the applied production process. To model this 

relationship, the serial hybrid multilayer 

perceptron (SHMP) neural network according to 

Agarwal [19] was applied. 

The multilayer perceptron (MP) is linked 

in series with the analytical model of the S-N 

curve and its scatter from equations (3) and (4) – 

see also Fig. 3 ([20], [21]). This means that the 

MP is applied first for modelling the dependence 

of the parameters a, b, c, d, f, g and h on the 

manufacturing technology and the heat treatment. 

Then the analytical model is used only for 

modelling the S-N curve and its scatter after the 

seven parameters are predicted by the MP. 

The result of each fatigue-life test was the 

number-of-cycles-to-failure Nl for the given 

amplitude-stress level Sa;l, the manufacturing 

technology and the heat treatment. Therefore the 

data points for training and/or testing the SHMP 

have the following form: { }nlNS llal ,...,1),,( ; =x . 

The vector of the input independent variables x 

represents the parameters of the applied 

production process. The l-th amplitude-stress 

level Sa;l is the independent variable of the 

analytical model from subsection 1.1 and Fig. 3. 

The l-th number-of-cycles-to-failure Nl is the 

SHMP’s dependent variable and n is the total 

number of sample points. Having this in mind, 

equations (2) to (4) are changed as follows: 
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Fig. 3. Topology of the applied serial hybrid multilayer perceptron 
 

The output of neuron zj is equal to the 

weighted sum of Mi outputs zi from the preceding 

layer, modified by an activation function φj: 
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wij are the synaptic weights and Θj is the 

threshold of the neuron. In our case the activation 

function was a tanh() function for the hidden 

neurons and a linear function for the output 

neurons. The tanh() activation function was used 

instead of the more commonly used sigmoid 

function, because it turned out that a convergence 

of a training process was much better with the 

tanh() than with the sigmoid function in the 

studied case. The inputs xi to the MP model were 

the components of the condition vector x. The 

output neurons zk are applied for calculating the 

parameters a, b, c, d, f, g and h. The relations 

between these parameters and the neural outputs 

zk must fulfill the restraints from equations (3) 

and (4) and ensure the robustness of the model: 
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These restraints were extensively tested in 

a preliminary study involving two different spring 

steels, a cold-drawn structural steel and two 

complex-phase steels. 

The cost function for the SHMP model 

was a maximum-likelihood function EML 

according to Pascual and Meeker [22]. Using this 

cost function the failed specimens as well as run-

outs are considered for estimating the S-N curve 

and its scatter. For the fatigue failure a fatigue-

failure identifier δl is set to 1 and for the run-outs 

it is set to 0 in the EML cost function: 
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To calculate the error ( )
ML

e l  for each 

sample l, the parameters a, b, c, d, f, g and h are 

predicted first by the MP for the input vector xi. 

From these parameters and the value of Sa;l the 

Weibull’s scale parameter 
;pred l

η  is calculated 

with equation (9) using the Newton-Raphson 

method. The shape parameter 
;pred l

β  is calculated 

with equation (10). 

The training of the SHMP model was 

carried out numerically with an error back-

propagation algorithm and an epoch-based 

training. The gradients of the cost function EML 

for the synaptic weights wij were calculated as the 

sum of the gradients of the individual samples: 

1
/ ( ) /

n

ML ij ML ijl
E w e l w

=
∂ ∂ = ∂ ∂∑ . In every iteration 

of the training process the synaptic weights were 

adapted as follows [23]: 

 

( )

( ) ( 1) ( 1)ML
ij ij ij

ij t

E
w t t w t

w
θ α

∂
∆ = − + ⋅ + ⋅∆ −

∂
  (14) 

The training process proceeds until the 

modelled S-N curves with their scatter agree with 

the experimental results for the different vectors 

xi. The training-rate parameter θij in equation (15) 



Strojniški vestnik - Journal of Mechanical Engineering vol(yyyy)no, p-p 

 

Klemenc, J. – Podgornik, B. 6 

was added to consider the past gradient changes 

according to the delta-bar-delta rule [21]. 

The sample gradients wijleML ∂∂ )(  were 

calculated as follows ([21], [22]): 

                     ijML zwijle ⋅∆=∂∂ )(                (15) 

∆j is the error of the neuron j in the next 

layer to which the neuron i sends its signal. The 

next layer of neurons is either a hidden or an 

output layer. To calculate the errors ∆j in the 

output layer of the MP the partial derivatives 

kML zle ∂∂ )(  for the output neurons zk must be 

calculated for each sample ),,,( ; lllal NS δx : 
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For reasons of clarity, the marking of the 

dependence on the vector x is omitted in 

equations (16.a) and (16.b) and the corresponding 

partial derivatives are listed in the appendix. 

 

1.3 Selecting the optimal SHMP model 
The SHMP model should represent the 

experimental data { }nlNS lllal ,...,1;),,,( ; =δx  in 

the best possible way, but if the SHMP topology 

is too complex a data over-fit can occur. So the 

complexity should sometimes be sacrificed to 

avoid the over-fitting of the SHMP model. In our 

study we decided to choose the optimal topology 

of the SHMP model using the Akaike information 

criterion (AIC) [23]: 

                    2 2 ln( )
w ML

AIC n E= ⋅ + ⋅              (17) 

nw is the number of synaptic weights in the 

MP and EML is the final value of the cost function. 

The smaller the value of the AIC criterion, the 

better the SHMP topology. In addition to the 

original form of the AIC criterion, we also 

applied its modification with a second-order 

correction for small samples [24]: 
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2 EXPERIMENTAL DATA 
 

Cylindrical specimens according to the 

ASTM E 606-92 standard [25] were prepared by 

Institute of Metals and Technology. They were 

cut from 51CrV4 steel bars in the rolling direction 

and manufactured by turning. In the middle the 

specimens were polished to an average roughness 

Ra of 0.2 µm – see Fig. 4. The steel bars were 

produced by two manufacturing routes. The 

reference series was prepared by a conventional 

manufacturing technology, i.e. continuous casting 

and hot rolling. The alternative series was first 

continuously cast, then electro-slag remelted 

(ESR) in order to obtain more uniform 

microstructure and finally hot rolled. 

 

Fig. 4. Cylindrical specimen used for the fatigue 
experiments 

 
Cylindrical test specimens from both 

series were subjected to two different heat 

treatment procedures. The first heat treatment of 

the specimens consisted of heating to 870 °C, 

soaking for 10 minutes, which was followed by 

quenching in N2 gas at 5 bar and a fast cooling 

rate of 7.5 °C/s until 60 °C. The second heat 

treatment of the specimens was performed at the 

same austenitizing temperature of 870 °C but a 

slower cooling rate of 2.7 °C/s was obtained by 

reducing N2 gas pressure to 1.05 bar. In both 
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cases the specimens were finally tempered at 475 

°C for 1 h.  

Therefore four different groups of 

specimens were obtained: two different 

manufacturing technology routes combined with 

two different heat treatments. Altogether 101 

specimens were manufactured with at least 23 

specimens in each group [26]. 

The fatigue-life experiments were carried 

out at the universal dynamic servo-hydraulic test 

stand Instron 8802. A Dynacell load sensor was 

used for force measurements and the experiments 

were load-controlled. The axial loading of the 

cylindrical specimens was fully reversed (R = -1). 

The experiments were carried out at a room 

temperature of 21 °C at different amplitude-stress 

levels (500 – 780 MPa) until the fatigue failure 

occurred. The testing frequency was 30 Hz. If the 

number of loading cycles exceeded 1 million 

without the fatigue failure the experiment run was 

terminated in order to reduce the experimental 

time and cost, since it follows from the literature 

that the fatigue failure between 1 million and 2 

millions of loading cycles is highly unlikely for 

these kind of high-strength steels [12]. The 

experimental results are presented in Fig. 5. 

 
Fig. 5. Experimental fatigue-life data for 51CrV4 steel (abbreviations: conv.=conventional manufacturing 

technology, ESR=electro-slag remelting, FCR= fast cooling rate, SCR=slow cooling rate) 
 

3 RESULTS AND DISCUSSION 

 
3.1 Defining the SHMP topologies and pre-

processing the data 
There are two independent parameters that 

represent the input for the SHMP (a binary 

variable indicating the manufacturing technology 

and a real-valued variable indicating the cooling 

rate after the warming-up phase), so the number 

of neurons in the SHMP input layer was two. The 

seven parameters a, b, c, d, f, g and h were 

predicted by the SHMP. Therefore, there were 

seven neurons in the output layer of the SHMP. 

All the SHMPs had one hidden layer and four 

different topologies consisting of 2 (NN_1), 3 

(NN_2), 6 (NN_3) or 9 (NN_4) neurons in the 

hidden layer. 

The training set was composed of all the 

n=101 samples in Fig. 5. Many training processes 

were carried out with different initial values of 

the synaptic weights and training-rate parameters. 

A number of iterations were limited to 2,000,000 

for each training process. The details on the 

training processes are listed in Table 1 for the 

best achieved cost functions. Variations of the 

cost-functions EML during these training processes 

are presented in Fig. 6. 

 

3.2 Prediction results 
We can see from Table 1 that the NN_4 

topology with the largest number of neurons in 

the hidden layer resulted in the lowest value of 

the EML cost function that was achieved before 1 

million of training iterations with no further 

reduction in the cost-function – see Fig. 6. 

However, this result is misleading, 

because the NN_4 topology had almost as much 

synaptic weights as there was the number of 

training samples. That is why this topology may 

be improper, since it is prone to data over-fitting. 
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Fig. 6. A cost-function history during the training 
process 

 
From the viewpoint of the AIC and AICc,BA 

criteria, the best topology was NN_1, with two 

neurons in the hidden layer. The good score in the 

two AIC criteria was only due to its small number 

of synaptic weights, because its cost function was 

the highest. This implies that its fit of the S-N 

curves to the experimental data is not the best – 

see Fig. 7 and Fig. 8 for a comparison of the 

modelled S-N curves. 

To assess the prediction quality of the 

SHMP models the S-N curves with their scatter 

were additionally estimated on a case-by-case 

basis. The seven parameters a, b, c, d, f, g and h 

for each of the four S-N curves were estimated 

using the real-valued genetic algorithm ([27], 

[28]). The S-N curves, which were estimated 

using the genetic algorithm, are presented with a 

black color in Fig. 7 and Fig. 8. 

Table 1: Summary of the applied SHMP topologies and their training processes 

SHMP topology NN_1 NN_2 NN_3 NN_4 

Basic data about the SHMP topologies and their training processes 

No. of input neurons 2 2 2 2 

No. of output neurons 7 7 7 7 

Act. function of output neurons linear linear linear linear 

No. of hidden layers and neurons 1 lay., 2 neur. 1 lay., 3 neur. 1 lay., 6 neur. 1 lay., 9 neur. 

Act. function of hidden neurons tanh tanh tanh tanh 

Initial value of the parameter η 10
-8

 10
-8

 10
-8

 10
-8

 

Value of the parameter α 10
-2

 10
-2

 10
-2

 10
-2

 

Initial (final) value of the param. κ 5·10
-12

 10
-11

 10
-11

 5·10
-12

 

Initial (final) value of the param.γ 0.995 0.99 0.99 0.995 

Value of the parameter ξ 0.7 0.7 0.7 0.7 

No. of train. Samples per epoch 101 101 101 101 

Iteration no. for the minimum CF 2000000 2000000 2000000 786200 

Cost function values and the AIC criteria values for the trained SHMP 

Smallest value of the CF EML 901,53 901,39 897,41 896,71 

Number of synaptic weights nw 27 37 67 97 

AIC criterion 955,5311 975,3921 1031,407 1090,708 

AICc,BA criterion 976,2434 1020,027 1307,528 7428,041 

 

It can be concluded from Table 1, Fig. 7 

and Fig. 8 that the best fit to the fatigue-life data 

is achieved with the NN_3 and NN_4 topologies. 

This means that the most appropriate topology 

was NN_3 with less neurons in the hidden layer, 

because the discrepancy in the cost functions for 

the topologies is almost insignificant. Due to the 

relatively small number of training data the NN_3 

topology has better generalisation ability and is 

less prone to the data-overfitting. Besides, it 

resulted in the lower values of the two AIC and 

criteria when compared to the NN_4 topology. 
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Fig. 7. Modelled S-N curves for the SHMP topologies NN_1 and NN_2 
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Fig. 8. Modelled S-N curves for the SHMP topologies NN_3 and NN_4 
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By comparing the S-N curves modelled 

with the SHMP and the genetic algorithm, it can 

be concluded that the modelled S-N curves do not 

differ a lot for the NN_3 and NN_4 topologies. 

This means that the SHMP topologies NN_3 and 

NN_4 were successfully applied for modelling 

the fatigue-life data of the 51CrV4 steel. The only 

exception is the S-N curve model for the data set 

that corresponds to the ESR manufacturing 

combined with the fast cooling rate during 

quenching. In this case the transition zone 

between the high-cycle- and very-high-cycle-

fatigue domains is very broad in both directions 

(Sa and N). This is very difficult to model with a 

SHMP, given the fact that the same transition 

zone is much narrower for the other three data 

sets. For this reason it was extremely difficult to 

build a good S-N curve model, even if we try to 

do it individually with the genetic algorithm. 

From the presented results it can be 

concluded that the introduced SHMP model is 

capable of modelling the S-N curve and its scatter 

well, also in the neighbourhood of a knee point 

between the high-cycle- and very-high-cycle-

fatigue domains. Of course, since there is always 

a problem with a relatively small number of 

experimental fatigue-life data one should always 

try to find the simplest possible SHMP model that 

still enables fairly good predictions of the S-N 

curves and their scatter. The applied SMHP is 

general, which means that it can be applied for 

modelling the S-N curves and their scatter for 

arbitrary (metallic) materials, if the appropriate 

experimental data are available and the fatigue-

life data-sets have approximately equal size for 

different manufacturing technologies. 

 

4 CONCLUSION 

 
In this article a procedure is presented for 

predicting the S-N curves and their scatter for 

51CrV4 spring steel on the basis of experimental 

fatigue-life data that was obtained for different 

manufacturing technologies and heat treatments. 

The procedure is based on the application of a 

multilayer perceptron neural network, into which 

an analytical shape of the bi-linear S-N log-log 

curve was incorporated with the Weibull PDF 

describing its scatter. The results presented in the 

article were obtained for four combinations of the 

manufacturing technologies and quenching 

cooling rates. Different SHMP topologies were 

applied and each of them was trained with 101 

experimentally obtained samples. 

The results presented in the article show 

that it is possible to simultaneously estimate the 

parameters of the S-N curves and their scatter on 

the basis of the experimental data for different 

combinations of manufacturing technologies and 

heat treatments. The selection of a suitable SHMP 

topology should be made very carefully. It is 

almost always possible to obtain a good fit to the 

training data, if complex SHMP topologies with 

large numbers of neurons in the hidden layer are 

applied. On the other hand, such topologies can 

over-fit the data, especially if the number of 

synaptic weights in the SHMP model is 

comparable or larger than the number of data 

points in the training set. For this reason two 

variations of the Akaike information criterion 

(AIC) were applied in the research to select the 

proper SHMP topology. It turned out that the AIC 

criterion alone was not enough to estimate the 

most appropriate SHMP topology. So, when 

choosing the optimal SHMP model, one should 

make a trade-off between the simplicity of the 

SHMP model and its ability to generalise (but not 

over-fit) the experimental data. A general rule-of-

thumb would be that there should be at least a few 

times more data points in the training set than 

there are synaptic weights in the SHMP model. 
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