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An engine rubber mount (EM) is a mechanical coupling between the engine and the chassis, and its main 

function is to diminish, in the chassis, the amplitude of vibrations caused for the engine operation. Such 

vibrations cause discomfort in vehicle passengers and reduce the EM lifetime. In order to increase the 

comfort of vehicle passengers and the lifetime of the EM, this paper presents an EM optimization by 

means of reducing three main criteria: the EM mass, the displacements transmitted to the chassis, and the 

mechanical stress in the EM rubber core. For carrying out the EM optimization, the Global Optimum 

Determination by Linking and Interchanging Kindred Evaluators (GODLIKE), assisted by artificial 

neural networks (ANN) and finite element method (FEM), was used. Because of the optimization process, 

a reduction greater than 10 % was achieved in the 3 criteria in comparison with a baseline design. The 

frequency responses were compared and showed that, although the optimization was carried out for the 

range of 5 to 30 Hz, the trend of reduced responses continues farther of this range. These results 

increased the comfort of vehicle passengers and the lifetime of the EM, in addition, the loss of mass 

diminishes its production costs. 

  

Keywords: Multi-objective optimization, vehicle engine mount, ANN, FEM, Global 

Optimum Determination 

 

Highlights: 

 An Engine Mounting (EM) was optimized using the integration of optimization algorithms, ANN, and FEM. 

 For the EM optimization, the Global Optimum Determination by Linking and Interchanging Kindred algo-
rithm was used. 

 The optimization is focused on the reduction of EM mass, displacements, and stresses responses under 
mechanical vibration. 

 The engine operation frequencies were obtained by experimental measurements. 

 The errors of ANN model predictions were less than 5%. 

 FEM model was validated by the experimental measurements of natural frequencies. 
 

0 INTRODUCTION 
Nowadays, in the automotive industry 

exists the tendency to downsize the components 

to increase vehicle power capacity, to simplify the 

manufacturing process and reduce production 

costs, among others features. This downsizing is 

only possible if the modifications do not 

compromise passenger comfort or affect the 

performance of the automotive systems. Thus, 

there is a need to find automotive components 

susceptible to improvements and, at same time, 

strategies capable of optimizing new designs. One 

of these automotive parts is the EM which main 

function includes the attenuation of engine 

vibrations, by means of the reduction of stiffness, 

and to support the weight of engine [1, 2]. 

The EM consists of a cylindrical steel 

structure fixed to a rubber core, and it is exposed 

to forced vibrations caused by the engine 

operation [3-5]. The forced vibrations could cause 

failure due to fatigue of the EM rubber core 

limiting the EM lifetime to five or six years at 

most. It should be noted that the damage caused 

by the cyclic load on the steel section of the EM 

parts is minimal [6, 7]. Under these conditions, a 

good design of an EM involves mainly the 

reduction of the displacements transmitted from 

engine to chassis, the increasing of the lifetime 

through the reduction of mechanical stresses and 



Strojniški vestnik - Journal of Mechanical Engineering vol(yyyy)no, p-p 

 

Dávalos, O. – Caldiño-Herrera, U.– Cornejo-Monroy D. – Tenango-Pirin O. – García J.C. – Basurto-Pensado, M.A. 2 

the reduction of weight. This is a complicated 

task due to the interaction of the design variables. 

Heuristic optimization techniques are a good 

option to solve this type of engineering problems. 

Researchers in different engineering fields 

have analyzed these types of problems using 

optimization techniques. Carabaza et al. [8] 

optimized the trajectory of an unmanned aerial 

vehicle using searching algorithms of minimum 

time. Daróczy et al [9] optimized the airfoil 

geometry of an H-rotor employing computational 

fluid dynamics and genetic algorithms. They 

increased the H-rotor power coefficient from 0.40 

to 0.48. Cheng et al. [10] improved a cuckoo 

search algorithm applied to vibration fault 

diagnosis. In other study [11], a soft optimization 

based on differential evolution was applied to 

attenuate the vane-rotor shock interaction in high-

pressure turbines. They achieved attenuation 

above 60% without stage-efficiency abatement. 

Rai and Barman [12] applied simulated annealing 

and real coded genetic algorithms to optimize the 

design of a spur gear. They obtained reductions of 

14.1% and 16.6% of material by using the 

simulated annealing algorithm and the real coded 

genetic algorithm, respectively. In [13] the non 

dominated sorting genetic algorithm was used to 

improve the efficiency and the output power of a 

piston compressed air engine. They obtained, as 

an optimized result, an efficiency of 31.17% 

when the output power was 2 kW. However, for 

the case of multi-objective optimization problems 

GODLIKE has been used to find one common 

optimal solution [14]. 

Regarding to EM optimization, several 

works have employed heuristic techniques. In 

Ahn et al. [15] an optimization of an EM by 

means of an enhanced genetic algorithm with 

simplex method and sequential quadratic 

programming was carried on. The aim of the 

study was to reduce both the notch depth and the 

resonance peaks. Both algorithms converged in 

the presence of selected constraints for the design 

parameters which improved around 30 % the 

forces of transmission to the vehicle due to 

reduction of notch depth and resonance peaks. 

Lee and Kim [16] used a micro genetic algorithm, 

ANN and FEM to reduce the mechanical stresses 

and to increase life cycles of an elastomeric EM. 

They obtained a 24 % reduction of stresses and an 

increment greater than 100% in the fatigue life 

cycles. Also, they compared their results against a 

simple GA showing that micro genetic performs 

better than simple GA. In Zhao et al. [17], a 

topological optimization was performed to reduce 

the weight of an EM, maximizing the natural 

frequencies and increasing the life cycles. They 

obtained a 1.5 x 10
6
 cycles, more than three times 

the initial target. Alvarado et al. [18], used 

memetic genetic programming to optimize an 

engine mount under static load conditions using a 

surrogate method and FEM. They reported a 

reduction of EM weight and stresses. 

In this work, a multi-objective design 

optimization of an EM is proposed using the 

GODLIKE assisted by ANN and FEM. The 

optimization aim was to reduce the mass of the 

EM and to reduce the displacements and stresses 

under mechanical vibrations. Three objective 

functions were defined including a target and a 

penalty factor for each objective function. 

Experimental measurements were accomplished 

to identify the mechanical vibrations frequency 

range of the engine and later this range was used 

as a boundary condition in commercial FEM 

software to perform frequency response 

simulations. ANN was used as a surrogate method 

within GODLIKE to predict rubber core mass, 

displacement and stress responses. The ANN was 

trained with a database generated from a central 

composite design of experiments. Measurement 

of the EM natural frequency was used to validate 

the numerical model, and this was used to 

compute the EM frequency response using FEM. 

This multi-objective optimization is a novel way 

to link three different algorithms -GODLIKE, 

ANN and FEM- to improve its performance and 

reach a fast optimization methodology of EM 

considering stress and displacement responses 

under mechanical vibrations. Using another way 

for the optimization process, the calculation of 

these responses requires a lot of time for the 

numerical computations. However, in this multi-

objective optimization algorithm, to reduce the 

computation time, a surrogated method, like 

ANN, is employed. Thus, the cases of FEM 

computations are reduced according to the size of 

the database used in ANN training. Besides, the 

ANN database was constructed using a design of 

experiments which is helpful to reach 

convergence, further reducing the time of 

optimization. The proposed optimization 

methodology is applied to a specific EM model, 
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however; the methodology can be applied to other 

EM types considering its characteristics. 

 

 

1 METHODS 
 
1.1 Optimization methodology 

This work is focused on the numerical 

optimization of an EM but the manufacturing of 

the optimized EM is out of the scope. The EM 

used in this investigation is located on the front 

right side of a 4-cylinder, 2.4 L Toyota internal 

combustion engine.  One of its sides is attached to 

the chassis and the other side supports the engine. 

The materials of which it is made are steel and 

rubber. The steel portion of the EM includes a 

cylindrical cover, a ring between the cylindrical 

cover and the rubber core, and a metal bushing 

placed between the rubber core and the bolt that 

fixes the engine. The rubber core has two lobe-

shaped holes, one lateral tip at each side and a 

conical-shape around the metal bushing. The 

typical failure of the EM occurs in the rubber 

core. The crack propagation path extends along 

the neck of the lobe and around the conical shape 

as shown in Fig. 1. Most of the times the damage 

in the EM steel parts is negligible. 

 

 
Fig. 1. Failed of the rubber core in an EM 
 

The sequence of the optimization 

methodology is shown in Fig. 2. Firstly, the 

frequencies of the forced vibration caused by the 

engine operation are gotten through experimental 

measurements. These measured frequencies will 

show the range of the EM excitation frequencies 

in which responses will be computed. Then, the 

design parameters are defined based on the EM 

geometry and the optimization requirements 

which are the reduction of three criteria: EM 

mass, displacement response and stress response. 

Afterward, a database is generated using a central 

composite design of experiments and the values 

of stress and displacement to complete the 

database are computed using frequency response 

analysis trough FEM simulations. Once the 

database was generated it was used for the 

training and the validation of an ANN model 

which could accurately predict the rubber core 

mass and both, displacement and stress responses. 

The final part is the application of GODLIKE 

algorithm in the optimization of the design of the 

EM. The detailed description of each part of the 

optimization methodology is presented in the next 

sections. 

 
Fig. 2. Optimization methodology 

 

1.2 Measurement of engine mechanical vibrations 
A triaxial G-Link-200 Microstrain® 

wireless accelerometer was placed over the 

engine block (Fig. 3) to measure the acceleration 

amplitude of engine mechanical vibrations. The 

acquired signal from the accelerometer was 

transmitted to a WSDA®-200-USB Microstrain® 

receiver connected to a personal computer. The 

acceleration measurements were carried out at 

1500, 2000, 2500, 3000 rpm and ralenti 

conditions (around 800-900 rpm). 

The acceleration signal of engine 

mechanical vibration in the time domain was 
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converted to the frequency domain using the fast 

Fourier transform. The results of measured 

frequencies are presented in Fig. 4. At ralenti, the 

measured engine frequency was 5.7 Hz and 

increased with increasing engine revolutions. The 

maximum frequency was 25.6 Hz at 3000 rpm. 

Based on these findings, the frequency range for 

the FEM computations and optimization was set 

from 5 Hz to 30 Hz. 

 

 
Fig. 3. Mounting of the accelerometer over the 

engine block 

 

 
Fig. 4. Engine mechanical vibration spectrum at ralenti, 
1500, 2000, 2500, and 3000 rpm 

 

1.3 Parameterization 
For the EM optimization, only the part that 

holds the engine was considered since it is where 

failure occurs within the rubber core element. The 

metal parts were considered in the optimization 

process to reduce the total mass of the EM. 

A total of eight geometrical variables were 

selected as design parameters which include the 

outer diameter of the metal ring (V1), the external 

diameter of rubber core (V2), the internal 

diameter of rubber core (V3), the external 

diameter of the cylindrical cover (V4), the 

separation between the internal diameter of 

rubber core and the lateral tip (V5), the internal 

diameter of thickness rubber wall (V6), the 

separation between tips of rubber lobes (V7) and 

the base diameter of a rubber cone (V8) around 

the metal bushing. Fig. 5 illustrates the location of 

the design parameters. 

 

 
Fig. 5. EM design parameters: V1, V2, V3, V4, 

V5, V6, V7 and V8 

 
The lower and upper limits of the design 

variables are presented in Table 1. These limits 

were defined to avoid EM geometry interferences 

and available space to install EM into the engine 

bay. 

Table 1. Design variables bounds 

Variable Lower limit 

(mm) 

Upper limit 

(mm) 

V1 64 68 

V2 60 64 

V3 20 24 

V4 72 76 

V5 1 3 

V6 57 61 

V7 36 40 

V8 34 40 

 

1.4 Database and Frequency response analyses 
To complete the database for ANN training 

and validation, the EM geometrical values of 

Table 1 were used to compute the frequency 
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harmonic response using FEM by means of Ansys 

software. In this way the stress, based on von 

Mises stress theory, and displacements responses 

caused by engine mechanical vibrations were 

computed. Firstly, a load, considered as 

sinusoidal, with a frequency range between 5 and 

30 Hz with a step of 1 Hz was used. To compute 

the EM response to higher harmonics excitation 

the frequency range was extended until 100 Hz. 

The frequency response analysis is based on the 

equation of motion for a mechanical vibration 

which is written as [19]: 

 

,𝑴-*𝒖̈+ + ,𝑪-*𝒖̇+ + ,𝑲-*𝒖+ = *𝒇(𝑡)+ (1) 

 

where 𝑴 is the mass matrix, 𝒖 is the nodal 

displacement vector, 𝑪 is the damping matrix, 𝑲 

is the stiffness matrix and 𝒇(𝑡) is the forcing 

vector or the dynamic load applied to EM. This 

dynamic load is a harmonic function: 

 

𝒇(𝑡) = 𝑭𝑠𝑖𝑛 (𝜔𝑡) (2) 

 
where 𝛚 is the frequency and 𝐅 is the force 

vector.  
 

The FEM computations assumed the 

rubber material as linear elastic to simplify the 

frequency response study. However, this 

assumption is limited to small deformations. For 

this research, to guarantee the validity of the FEM 

computations, experimental validation with the 

EM natural frequencies was implemented. 

The property of materials, rubber, and 

metal, are described in Table 2. 

 

Table 2 Properties of materials 

Property Steel Rubber 

Elastic 

modulus 

(Pa) 

200x10
9 

1.5x10
6
 

Poisson’s 

ratio 

0.29 0.45 

Density 

(kg/m
3
) 

7850 1100 

 

 

The baseline EM model was discretized 

using tetrahedral elements with sizes between 1.2 

and 1.8 mm resulting in 401,613 finite elements 

(Fig. 6). For each node, six degrees of freedom 

were considered. For the rest of the EM models of 

the database, a slight variation in the number of 

elements is expected due to changes of design 

parameters. 

 
Fig. 6. Meshed domain for the EM geometrical 

model  
 

 The total engine weight is distributed and 

applied as a force among the 3 EM that support 

the engine in the engine bay. So, a force of 457.83 

N was calculated using the engine mass of 140 

Kg and then it was applied at the internal face of 

the EM bushing. Furthermore, the harmonic 

response requires to apply a dynamic force, which 

was considered as three times the force applied to 

EM bushing resulting in a final force of 1373.5 N. 

Two displacement restrictions were applied, one 

at the inner face of the bushing of the part bolted 

to chassis, the second one at the external surface 

of the cylindrical cover. No sliding or separation 

was considered for the contact between the EM 

parts. 

The harmonic response analysis was 

performed in a range of 5 to 30 Hz with 

frequency steps of 1 Hz. At each frequency step, 

resultant deformation and stress responses were 

calculated. 

 

1.5 Artificial neural networks 
An ANN works as an interpolator in the 

classification process and static or time-series 

predictions. A type of feed forward ANN, widely 

used in prediction is the multilayer perceptron 

(MLP) which has an architecture of layers 

arranged in input, hidden and output layers. Each 

layer is composed by a defined number of 

neurons which, in the case of input and output 

layers, corresponds to the number of inputs and 

predicted outputs, respectively. In the case of the 

hidden layer, the number of neurons is defined by 

trial and error until it reaches an acceptable 
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reliability prediction. Each layer is linked to the 

next one through weighted connections. To 

establish nonlinear relationships between inputs 

and outputs, transfer functions must be added to 

ANN. A good performance in prediction could be 

found using the hyperbolic tangent function (HT) 

between input and hidden layer, whereas between 

hidden and output layers, a linear function could 

be used [20-23]. The predicted output is 

calculated through: 

𝑦 = 𝑙 (∑(𝑤𝑗
2 ∗ 𝐻𝑇𝑛 + 𝑏2)

𝑛

𝑗=1

) 

(3) 

 

where 𝑙 is the linear function, 𝑤 is the weight 

connection, 𝐻𝑇 is the hyperbolic tangent transfer 

function, 𝑏 is the bias, 𝑛 is the total number of 

hidden neurons. The HT is: 

 

𝐻𝑇𝑛 =
2

1 + 𝑒−2𝑥𝑛
− 1 

(4) 

 

   

where x is defined as: 

 

𝑥𝑛 = ∑ 𝑤𝑖
1

𝑚

𝑖=1

∗ 𝑖𝑛𝑖 + 𝑏𝑗
1 

(5) 

 

   

where 𝑚 is the number of neurons in the input 

layer. The superscripts 1 and 2 indicate inputs to 

the hidden layers and outputs from the hidden 

layers, respectively. Weights and biases 

coefficients are obtained from ANN training 

process and inserted in the above equations to 

calculate the desired output. The adequate 

selection of these coefficients is made by a 

training algorithm. To train, validate and test the 

ANN the database of section 1.4 was used. 

In this work, three ANN models were 

implemented to calculate stress and 

displacements response at a specified frequency 

range and, due to the complex shape, the mass of 

rubber core of the EM. The architecture of all 

three models consists of three layers with eight 

and one neurons at input and output layers, 

respectively. The model to predict the stress 

response area has six neurons in the hidden layer, 

whereas the model for displacements has three 

neurons and for the mass prediction just two 

neurons in the hidden layer. The database to train 

the ANN consists of 80 design combinations 

based on a central composite design of 

experiments and an additional baseline design. 

This design of experiments was implemented to 

avoid duplicated information which difficult the 

ANN learning. The database was constructed by 

FEM simulations of the harmonic response of EM 

subjected to excitation frequencies. All design 

combinations of the database show the same trend 

increasing displacement and stress responses as 

frequency increases. The net was trained using 

the Levenberg-Marquardt algorithm which has 

shown a good prediction performance compared 

with others training algorithms [24]. The transfer 

functions used in these models were HT, between 

input and hidden layer, and linear, between 

hidden and output layer. Due to the use of HT the 

input data were normalized between 0.1 and 0.9 

using the next expression [25]: 

 

𝑛𝑖 = 0.8 (
𝐼𝑛𝑖 − 𝐼𝑛𝑚𝑖𝑛

𝐼𝑛𝑚𝑎𝑥 − 𝐼𝑛𝑚𝑖𝑛
) + 0.1 

(

6) 

Here 𝑛𝑖 is the normalized variable, 𝐼𝑛𝑖 is 

the not normalized variable, and 𝐼𝑛𝑚𝑖𝑛 and 𝐼𝑛𝑚𝑎𝑥 

are the lower and upper range of the design 

variable. 

The performance of the ANN models was 

evaluated using the estimation of both, root mean 

square error, RMSE, and the correlation 

coefficient, R
2
, calculated as follows: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝐴𝑁𝑁 − 𝑦𝐹𝐸𝑀)2𝑇

𝑡=1

𝑇
 

 

 

(

7) 

𝑅2 = 1 −
∑ (𝑦𝐴𝑁𝑁 − 𝑦𝐹𝐸𝑀)2𝑇

𝑡=1

∑ (𝑦𝐹𝐸𝑀 − 𝑦𝑎𝑣𝑒)𝑇
𝑡=1

 
 

(

8) 

 

 

Where 𝑦𝐴𝑁𝑁 is the output predicted by 

ANN, 𝑦𝐹𝐸𝑀 is the output predicted by FEM, 𝑦𝑎𝑣𝑒 

is the average of actual values. From the database, 

80% of data were randomly selected to train the 

net, whereas the rest of the data were used in the 

validation process. To test the ANN models, eight 

additional simulations (10 % of the database) 

were computed to evaluate ANN predictions 

against FEM calculations. 

 

1.6 Optimization 
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The proposed optimization is based on 

GODLIKE algorithm developed by Oldenhuis 

and Vandekerckhove [26].  GODLIKE uses four 

single meta-heuristic algorithms: differential 

evolution (DE), genetic algorithm (GA), particle 

swarm optimization (PSO) and adaptive 

simulated annealing (ASA). In GODLIKE each 

algorithm performs the first approach from an 

initial population. Before starting a second 

approach, a defined number of members of the 

firstly optimized population is randomly selected 

from one algorithm (e.g. DE) and inserted in the 

population of the remaining algorithms (e.g. GA, 

PSO and ASA). The second approach starts until 

all the algorithms have shared members among 

them. This process is repeated until a stop 

condition is met. In this way, the possible poor 

performance of each algorithm is improved due to 

the integration of population members from other 

algorithm approaches. This link between 

algorithms is intended to find the global optimum 

due to the use of populations with fittest 

individuals. The use of this methodology requires 

many objective function evaluations which 

increase the computational cost; however, it is 

offset by the robustness of the algorithm [27]. 

 

1.7 Objective function 
A multi-objective optimization works 

minimizing or maximizing several objective 

functions that satisfy a defined set of constraints 

[28]. The problem can be mathematically written 

as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑓1(𝑋⃗), 𝑓2(𝑋⃗), … 𝑓𝑁(𝑋⃗)} (9) 

  

subject to; 𝑔𝑗(𝑋⃗) ≤ 0, 𝑕𝑘(𝑋⃗) = 0, and 𝑥𝑙𝑏 ≤

𝑥𝑀 ≤ 𝑥𝑢𝑏. Here 𝑓 is the objective function, 𝑋⃗ is a 

vector which contains the design variables 𝑥; 𝑔 

and 𝑕 are the inequality and equality constraint 

functions, respectively. The subscript 𝑁 is the 

total of objective functions; 𝑗, 𝑘 and 𝑀 are the 

amounts of inequalities constraints, equalities 

constraints, and design variables respectively, 

whereas 𝑙𝑏 and 𝑢𝑏 are the lower and upper 

bounds of the corresponding design variable. 

When a multi-objective optimization is 

performed, more than one solution is obtained, 

these feasible solutions lie on the Pareto-optimal 

front [29]. 

In this work, the total mass reduction of 

the EM was calculated by adding the mass of all 

its parts: rubber core, ring, metal cover, and the 

bushing. Due to the complex shape of the rubber 

core, its mass was computed using an ANN 

model, whereas the mass of the rest of the 

components was evaluated as follows: 

 

𝑚𝑟𝑢 = 𝑚𝑟𝑢,𝐴𝑁𝑁  

 

(10) 

𝑚𝑟𝑖 = 𝜋62.8(𝑉1
2 + 𝑉2

2) 
 

(11) 

𝑚𝑚𝑐 = 𝜋62.8(𝑉4
2 + 𝑉1

2) 
 

(12) 

𝑚𝑏𝑢 = 𝜋90.275(𝑉3
4 +. 0102) (13) 

 

Deformations and stresses vary as 

functions of the mechanical vibrations and their 

excitation frequencies. Since the engine works at 

different frequencies, a method was implemented 

to evaluate both, displacement and stress as 

response areas considering a frequency step of 

𝑆 = 1 Hz. The method aims to calculate every 

response area as an area of a trapezoidal shape 

formed between two consecutive frequency steps. 

For this purpose, coordinates of four points must 

be in a plane where frequencies versus response 

(displacement or stresses) are plotted at x-axis 

and y-axis respectively. The coordinates of the 

four points are defined by their position at x-axis 

and y-axis, respectively. For example, in Fig. 7, 

the displacement response area A is formed by 

points 1, 2, 3 and 4. The coordinates of point 1 

and 2 at x-axis are the frequency ω at step 1 and 

frequency ω+1 respectively, whereas at y-axis its 

coordinate is 0. The coordinates of points 3 and 4 

at x-axis are the same as in points 1 and 2 and at 

y-axis, the coordinates correspond to response 

magnitude at ω and ω+1, respectively. Then, the 

four points are connected closing the profile 

forming a trapezoidal area, which evaluates the 

response through two consecutive frequencies.  
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Fig. 7. Definition of coordinates at the response 

area 
 

The response areas for displacement and 

stress are calculated using equations 14 and 15 

respectively: 

 

𝐴𝑑=

𝑑𝜔+1 + 𝑑𝜔

2
𝑠 

 

(14) 

𝐴𝜎=

𝜎𝜔+1 + 𝜎𝜔

2
𝑠 

(15) 

 

where 𝐴𝑑𝜔 and 𝐴𝜎𝜔 are the areas for 

displacement and stress responses, respectively, 

and d and σ are the displacement and stress 

responses obtained at a specific excitation 

frequency, 𝜔. 

For the optimized design of the EM a 

multi objective optimization was raised. Three 

objective functions were selected with a set target 

for each one of them. Penalty factors were added 

to objective functions to define the relevance of 

each variable in the optimization process. 

Objective functions are expressed in 

equations 16, 17 and 18. Equation 16 minimizes 

the expression to evaluate the mass of the EM 

which involves the mass of rubber part, ring, 

metal cover and bushing. Equations 17 and 18 are 

the average of the response areas of displacement 

and stress, respectively, during the excitation 

frequencies range. 

 

𝑚𝑖𝑛 𝑓1 = (
𝑚𝑟𝑢 + 𝑚𝑟𝑖 + 𝑚𝑚𝑐 + 𝑚𝑏𝑢

𝑚𝑡𝑎𝑟
) (𝑃𝑓1) (16) 

 

𝑚𝑖𝑛 𝑓2=  
 𝐴𝑑𝜔

𝑎𝑣𝑔

𝐴𝑑𝜔,𝑡𝑎𝑟
𝑎𝑣𝑔 (𝑃𝑓2) 

(17) 

 

𝑚𝑖𝑛 𝑓3=   
𝐴𝜎𝜔

𝑎𝑣𝑒

𝐴𝜎𝜔,𝑡𝑎𝑟
𝑎𝑣𝑒 (𝑃𝑓3) 

(18) 

 

Here, 𝐴𝑑𝜔
𝑎𝑣𝑔

=
∑ 𝐴𝑑,𝑖

𝑆−1
𝑖=1

𝑆−1
 is the average area 

response of displacement, 𝐴𝜎𝜔
𝑎𝑣𝑔

=
∑ 𝐴𝜎,𝑖

𝑆−1
𝑖=1

𝑆−1
 is the 

area average response of stresses, whereas S is 

the total number of excitation frequencies. The 

subscript 𝑡𝑎𝑟 indicates the targets which were set 

to reach the convergence to optimized values. The 

targets were, 𝑚𝑡𝑎𝑟 = 0.45 𝑘𝑔, 𝐴𝑑,𝑡𝑎𝑟 = 0.0035 

m·Hz and 𝐴𝜎,𝑡𝑎𝑟 = 0.5 MPa·Hz. The penalty 

factors are: 𝑃𝑓1, 𝑃𝑓2 and 𝑃𝑓3 for mass, 

displacement response and stress response, 

respectively. In this work, it was assumed that 

passenger comfort (which is related to the 

displacement) is the main criterion to consider 

followed by the resistance of components and 

finally the mass of the component. Based on these 

assumptions the penalty factors were set as 

follows: 0.15 for mass, 0.60 for displacement and 

0.25 for stresses. 

 

1.8 Validation of FEM model 
The FEM model was validated through the 

measurement of the first natural frequency of the 

EM. The accelerometer utilized was the same 

used in the measurements of engine mechanical 

vibrations. The device was mounted over the EM 

inside the engine bay. The excitation signal was 

provided by an impact hammer. 

The experimental measurement of EM 

first natural frequency is shown in Fig. 8. The 

value of the first natural frequency was 75.015 

Hz. The first three natural frequencies from FEM 

computations are shown in Table 3. The 

comparison of both, experimental and numerical 

first natural frequency shows a good agreement 

between measured and predicted frequencies with 

a difference around 7.5 %. These results 

guarantee the accuracy of FEM model and its 

validity for the optimization of the EM. 

 

 

Table 3 Natural frequencies calculated by FEM 

Natural frequency  Frequency (Hz) 

1st 80.68 

2nd 89.68 

3er 104.98 

 



Strojniški vestnik - Journal of Mechanical Engineering vol(yyyy)no, p-p 

 

Reduction of Stresses and Mass of an Engine Rubber Mount Subject to Mechanical Vibrations 9 

 
Fig. 8. Experimental measurement of the first natural 

frequency  
 

2 RESULTS AND DISCUSSION 

 
The results of the ANN computations are 

presented in Fig. 9. For 𝐴𝜎𝜔
𝑎𝑣𝑔

  training and 

validation, the correlation coefficient was greater 

than 0.98, whereas the cases of 𝐴𝑑𝜔
𝑎𝑣𝑔

 and 𝑚𝑟𝑢 is 

greater than 0.99. To test the ANN models, eight 

additional simulations (10 % of the database) 

were carried out to compare ANN predictions 

against FEM calculations. In the cases of 

displacement response and rubber mass 

computation, the ANN testing predictions have an 

error below 5%, whereas for stress response 

prediction the error is slightly greater than 5 %. 

These results show the capability of the ANN 

models to predict reliably and ensure its use in the 

optimization of the EM. 

The weights and biases to predict stress 

response, displacement response and rubber mass 

are presented in Tables 4, 5 and 6. These 

coefficients were obtained during ANN training 

and correspond to the best fit for the three 

predictions. 

In contrast with other works like [16] and 

[18] that have used similar optimization 

techniques assisted by surrogated methods, this 

research includes experimental measurements 

which guarantee that optimization was performed 

over operating conditions. Furthermore, 

considering displacement as an objective function 

instead of a constraint (as in [16]) allows reducing 

displacement along with the whole range of 

engine frequencies. 

 

 
Fig. 9. Results of ANN predictions for a) 𝐴𝜎𝜔

𝑎𝑣𝑒, b) 𝐴𝑑𝜔
𝑎𝑣𝑒 and c) 𝑚𝑟𝑢 

 

Table 4. ANN coefficients for prediction of area average of stress response 

𝑤1,1
1   

-1.45854 

𝑤1,2
1  

0.96315 

𝑤1,3
1  

-1.82456 

𝑤1,4
1  

-0.49916 

𝑤1,5
1  

-0.45800 

𝑤1,6
1  

5.08531 

𝑤1,7
1  

2.05659 

𝑤1,8
1  

-3.16593 

𝑤2,1
1  

0.98225 

𝑤2,2
1  

2.23806 

𝑤2,3
1  

-1.75895 

𝑤2,4
1  

-1.17739 

𝑤2,5
1  

-2.32274 

𝑤2,6
1  

-1.14974 

𝑤2,7
1  

1.65331 

𝑤2,8
1  

-2.22049 

𝑤3,1
1  

1.39160 

𝑤3,2
1  

-5.58502 

𝑤3,3
1  

-2.39672 

𝑤3,4
1  

-0.12927 

𝑤3,5
1  

-0.05249 

𝑤3,6
1  

1.15514 

𝑤3,7
1  

-0.59857 

𝑤3,8
1  

-1.20014 

𝑤4,1
1  

0.63538 

𝑤4,2
1  

3.30013 

𝑤4,3
1  

-1.19526 

𝑤4,4
1  

-0.09034 

𝑤4,5
1  

-1.41403 

𝑤4,6
1  

-1.35004 

𝑤4,7
1  

-3.69895 

𝑤4,8
1  

-2.78710 

𝑤5,1
1  

-2.83462 

𝑤5,2
1  

-1.74426 

𝑤5,3
1  

1.65473 

𝑤5,4
1  

1.03900 

𝑤5,5
1  

3.66780 

𝑤5,6
1  

-0.30788 

𝑤5,7
1  

-0.69853 

𝑤5,8
1  

2.18040 

𝑤6,1
1  

0.17086 

𝑤6,2
1  

-1.81009 

𝑤6,3
1  

0.84667 

𝑤6,4
1  

0.12948 

𝑤6,5
1  

-2.15127 

𝑤6,6
1  

4.82269 

𝑤6,7
1  

0.90327 

𝑤6,8
1  

-0.18045 
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𝑤1,1
2  

0.03196 

𝑤1,2
2  

-0.07535 

𝑤1,3
2  

0.16155 

𝑤1,4
2  

0.06778 

𝑤1,5
2  

-0.53198 

𝑤1,6
2  

0.12223 

  

𝑏1,1
1  

1.15072 

𝑏2,1
1  

2.51253 

𝑏3,1
1  

0.89235 

𝑏4,1
1  

2.00106 

𝑏5,1
1  

-5.08572 

𝑏6,1
1  

-3.36807 

  

𝑏1,1
2  

  0.33196 

       

 

 

 

 

 

 

 

Table 5. ANN coefficients for prediction of area average of displacement response 

𝑤1,1
1  

-0.11114 

𝑤1,2
1  

-0.06945 

𝑤1,3
1  

6.66939 

𝑤1,4
1  

-0.11978 

𝑤1,5
1  

0.05504 

𝑤1,6
1  

0.22898 

𝑤1,7
1  

0.31355 

𝑤1,8
1  

-0.27377 

𝑤2,1
1  

0.01930 

𝑤2,2
1  

-0.08350 

𝑤2,3
1  

-0.02500 

𝑤2,4
1  

0.04518 

𝑤2,5
1  

0.03851 

𝑤2,6
1  

-0.53731 

𝑤2,7
1  

0.52415 

𝑤2,8
1  

0.18607 

𝑤3,1
1  

0.01093 

𝑤3,2
1  

3.65897 

𝑤3,3
1  

-1.03528 

𝑤3,4
1  

0.72872 

𝑤3,5
1  

0.91272 

𝑤3,6
1  

-0.74952 

𝑤3,7
1  

0.14733 

𝑤3,8
1  

-0.06379 

𝑤1,1
2  

-0.00018 

𝑤1,2
2  

-0.00162 

𝑤1,3
2  

0.00010 

     

𝑏1,1
1  

-2.58080 

𝑏2,1
1  

0.32367 

𝑏3,1
1  

-2.47434 

     

𝑏1,1
2  

0.00464 

       

 

Table 6. ANN coefficients for rubber mass prediction 

𝑤1,1
1  

0.00051 

𝑤1,2
1  

-0.47488 

𝑤1,3
1  

0.21294 

𝑤1,4
1  

0.00173 

𝑤1,5
1  

0.03700 

𝑤1,6
1  

0.31568 

𝑤1,7
1  

-0.11993 

𝑤1,8
1  

-0.12761 

𝑤2,1
1  

1.11450 

𝑤2,2
1  

2.60450 

𝑤2,3
1  

-0.06103 

𝑤2,4
1  

1.59204 

𝑤2,5
1  

0.57664 

𝑤2,6
1  

-0.56463 

𝑤2,7
1  

-0.80459 

𝑤2,8
1  

-1.36578 

𝑤1,1
2  

-0.03618 

𝑤1,2
2  

0.000068 

      

𝑏1,1
1  

0.05320 

𝑏2,1
1  

-0.93912 

      

𝑏1,1
2  

0.05983 

       

 

In Fig. 10 the results of the optimization 

process are presented. Around 25% of the Pareto 

points improve the baseline design. Possible 

candidates were found with a reduced 

displacement, nevertheless, their mass was 

around 0.5 kg which makes them non feasible 

candidates. As the 𝐴𝜎𝜔
𝑎𝑣𝑔

 and 𝐴𝑑𝜔
𝑎𝑣𝑔

 reduce their 

magnitude, more options can be found with a 

lower mass. 

 

Individual results are presented in Table 7. 

For the optimized case a total reduction of 21.5, 

12.46 and 15.3% were obtained for 𝐴𝜎𝜔
𝑎𝑣𝑔

, 

𝐴𝑑𝜔
𝑎𝑣𝑔

and mass respectively, regarding to the base 

line design. These reductions are attributable to 

the application of targets and penalty factors. 

𝐴𝑑𝜔
𝑎𝑣𝑔

 is considered the most important parameter 

and it was set with a penalty factor of 60%, 

however, the magnitude of its reduction was 

lower than others resulting in the hardest 

parameter to optimize. 
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Fig. 10. Pareto points, optimal design found 

and baseline design  
 
 

Table 7. Comparison of optimization results of 𝐴𝜎𝜔
𝑎𝑣𝑔

, 

𝐴𝑎𝑣𝑒,𝑑𝜔 and mass 

 Baseline 

design 

Optimal 

design 

𝐴𝑎𝑣𝑒,𝜎𝜔 

(MPa·Hz) 

0.53042 0.41632 

𝐴𝑎𝑣𝑒,𝑑𝜔 (m·Hz) 0.00385 0.00337 

𝑚𝑎𝑠𝑠 (𝑘𝑔) 0.49148 0.41628 

 

In Table 8 the optimized dimensions of 

EM are presented. The loss of mass is due to the 

reduction of thickness wall of the cylindrical 

cover and the internal diameter of ring. The 

increment of V1 combined with the reduction of 

V2 causes the increment of internal ring wall 

thickness. Due to the increment of the ring wall 

thickness, the movement of the rubber core is 

restricted thereby reducing the displacements. 

The length of V7 increases the strengthening of 

the rubber core thus achieving a reduction of the 

stress response.    

 

Table 8. Magnitudes of the baseline and optimized 
design variables 

Variable (mm) Baseline 

design 

Optimal 

design 

V1 66 67.404 

V2 62 61.683 

V3 22 22.003 

V4 74 72.189 

V5 2 1.683 

V6 59 57.151 

V7 38 39.63 

V8 37 38.736 

With the optimized design variables, a new 

geometrical model, which corresponds to 

optimized EM, was generated. For such 

optimized geometry, new computations of the 

frequency response were performed and 

compared against the baseline design. In Fig. 11 

stress and displacements are plotted against the 

typical (5-30 Hz) and extended (30-100 Hz) 

excitation frequency of the internal combustion 

engine. The improvement of the optimized EM is 

outstanding due to the difference in stress and 

displacement responses between baseline and the 

optimal design. For the case of the baseline 

design, the difference between the computed 

amplitude of displacement response for the initial 

(5 Hz) and the last (30 Hz) frequencies was 

0.0896 x10
-3

 m. While for the case of optimized 

design such difference was reduced to 0.06839 

x10
-3

 m. Also, the stress response amplitude had a 

reduction of 35.9% between the baseline design 

case and the optimized case. These results are 

significant when a vehicle is accelerating between 

this frequency range because, in the case of 

displacements, a smaller movement will be 

transmitted to vehicle chassis affecting passenger 

comfort, whereas, in the case of stresses, its 

amplitude is minor, reducing the effects of fatigue 

in the EM. Extending the frequency excitation 

range, the difference between displacement and 

stress responses (Fig. 11) for the case of baseline 

and optimized EM is increased. Also, Fig. 11 

shows that the peak which corresponds to the first 

natural frequency is decreased for the case of the 

optimized model. This contributes to reducing the 

amplitude of vibrations of the vehicle chassis in 

case of resonance at that frequency. 

The distribution of stresses at 21 Hz, 2500 

RPM, is presented in Fig. 12. Stresses are 

concentrated in the region near the rubber neck. 

Fig. 12 (a) shows how the magnitude of stresses 

is greater than the optimized EM for which a 

reduction is observed at this zone. Around the 

external surface of the rubber core, the stresses 

are lower than in the center region. A stress line 

extends out from the front of the neck to the back. 

Thereby, if a failure occurs it is expected to be in 

this zone. These findings are consistent with those 

presented in Fig. 1 which shows the cracks of a 

failed EM. 

A comparison of displacements is 

presented in Fig. 13 at 21 Hz equivalent to 2500 

RPM. Maximum displacements are observed in 
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the surface around the bushing and in the cone. In 

the optimized EM, the displacements are reduced 

mainly at the sides of the cone and, in a smaller 

proportion, at the top and bottom. 

 
Fig. 11. Comparison of responses through the frequency range, a) stress, b) displacement 

 

 

 
Fig. 12. Comparison of stress distributions at 21 Hz 
(2500) RPM, a) baseline design, b) optimized design 
 

 
Fig. 13. Comparison of displacement at 21 Hz at 2500 
RPM, a) baseline design, b) optimal design 
  

  
 

3 CONCLUSIONS 
An EM with rubber core was optimized 

using a methodology which includes optimization 

algorithms, ANN and FEM. The optimization is 

focused on the reduction of EM mass, and both 

displacements and stresses responses under the 

excitation of mechanical vibration due to the 

engine operation. The EM mass has a reduction of 

15.3 %, the 𝐴𝜎𝜔
𝑎𝑣𝑔

 and 𝐴𝑑𝜔
𝑎𝑣𝑔

 were reduced by 21.5 

% and 12.46 % respectively. The target values 

added in the objective functions were reached 

leading to the optimization process toward better 

solutions than baseline design. A lower magnitude 

of displacement and stress responses was reached 

increasing the ring wall thickness and the distance 

between lobes in the rubber core, respectively. 

The reduction of the 𝐴𝜎𝜔
𝑎𝑣𝑔

 and 𝐴𝑑𝜔
𝑎𝑣𝑔

 means 

lowering the amplitude of stress and 

displacements levels in the whole frequencies 

range, which in turn, reduces the displacement 

transmitted from engine to chassis and increases 

the lifetime of EM. On the other hand, the mass 

reduction decreases production costs. The results 

from training, testing and validation of the ANN 

assure a high confidence level in the predictions. 

The good definition of ANN models contributes 

to simplify the optimization process like in this 

research. The integration of the optimization 

methodology here presented could be applied for 

many optimization problems in engineering. The 

frequency response computation with the 
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extended frequency range shows that the 

proposed optimization method of averaging both, 

displacement and stress responses, is effective 

because the trend of displacement and stresses 

response improvement remains continual for all 

extended range. 
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