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0  INTRODUCTION AND BACKGROUND

As the price of wind power drops, wind turbines are 
playing an increasingly important role in the global 
power supply. In recent decades, wind turbine systems 
have been mainly established in North Europe, which 
is not earthquake-prone (or merely subject to less 
violent earthquakes), and thus seismic impact has not 
been focussed on in the specifications for wind turbine 
systems [1]. However, increasing numbers of wind 
turbine systems are being constructed in earthquake-
prone regions; therefore, it is necessary to analyse 
the dynamic response characteristics of wind turbine 
systems to earthquakes, and to consider the impact of 
seismic load in further engineering designs. 

There are some relevant studies regarding wind 
turbines. For example, Teng et al. [2] used empirical 
mode decomposition on the pitting fault detection 
of a wind turbine gearbox. Potočar et al. [3] used 
plasma actuators to control separation flow over a 
wind turbine blade. However, there are limited studies 
on wind turbines under seismic impact. The Risø 
National Laboratory of Denmark [4] analysed the 
seismic load on wind turbines by using the first-order 
natural vibration frequency. In 2002, Bazeos et al. [5] 
improved the model established by his predecessors 
and created a wind turbine tower model. The tower 
body was modelled to be of three sections, with the 
size gradually increasing from the top to the bottom; 
each section had the same size, with a progressive 
transition between adjoining sections. Bazeos et al. 
used the time-history method to analyse the dynamic 

seismic load, and then considered the impact of soil-
structure interaction, and finally concluded that the 
soil-structure interaction had an obvious impact on the 
overall system. In 2003, Lavassas et al. [6] proposed 
another wind turbine finite element model, in which 
the tower body was a truncated cone shell with a pile 
base at the bottom; in this model, the authors simulated 
the impact of soil-structure interaction by setting a 
contact element between the foundation and the soil 
body. The common point of the two models above 
was to model the tower body and the foundation, but 
not the blade and cabin; therefore, it was difficult to 
use them for the refined analysis and design of the 
wind turbine tower system. Murtagh et al. [7] and 
[8] proposed a shear transfer-based blade and tower 
coupling finite element model, having clarified the 
coupling mechanism of the blade and tower body and 
used the time-history method to analyse the dynamic 
wind load on the structure. Nevertheless, the authors 
did not model the foundation, nor considered the 
effect of soil-structure interaction. Witcher [9] studied 
the seismic load and applied the seismic analysis 
method for the bridge and building structures to wind 
turbines, but he did not consider the soil-structure 
interaction. Kang et al. [10] used a nonlinear spring 
to simulate the soil-structure interaction and analysed 
the reliability of offshore wind turbine bases, but the 
applied load was static. Harte et al. [11] studied the 
wind turbine response to wind-induced buffeting and 
considered the soil-structure interaction in the model, 
but he did not carry out a seismic analysis. Lombardi 
et al. [12] conducted a series of experiments on the 
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soil-structure interaction of wind turbines, in which 
only the natural vibration frequency of the structure 
was considered; however, no consideration was given 
to the wind load borne by the wind turbines, nor was 
any seismic analysis carried out. It is easy to conclude 
that to date there are few studies on modelling blade-
tower-foundation coupled with a multi-body system of 
wind turbines, particularly by using the time-history 
method to analyse the dynamic seismic load based on 
the coupled model.

In consideration of the above, this paper uses 
the multi-body system dynamic theory as a basis 
for studying the dynamic response of wind turbines 
to earthquakes, while taking into account the soil-
structure interaction. According to the basic theory of 
multi-body system dynamics, the wind turbine blade 
and tower system comprises a series of continuous, 
discrete units, while the soil-structure interaction of 
the wind turbine tower system is realized through 
the spring and damping set on the interface between 
the foundation and the soil body. In order to study 
the dynamic characteristics of a wind turbine, the 
time-history method is used to analyse the dynamic 
seismic impact on the wind turbine based on Eurocode 
8, and an analysis model is established to study the 
seismic impact on load-bearing conditions of the wind 
turbine during operation, so as to provide references 
for designing key parts and control strategies of wind 
turbines for earthquake-prone regions. 

1  COORDINATE SYSTEMS

Coordinate systems are critical in structural analysis. 
A proper coordinate system may function to simplify 

calculations; therefore, it is necessary to establish a 
wind turbine coordinate system before establishing 
a structural analysis model. As required for analysis, 
a dynamic coordinate system for a three-blade wind 
turbine can be established, as shown in Fig. 1. Fig 
1a shows the inertia system Z (orthogonal coordinate 
axes z1, z2 and z3), wind turbine base system A 
(orthogonal coordinate axes a1, a2 and a3), tower 
system T (orthogonal coordinate axes t1, t2 and t3), 
tower top system B (orthogonal coordinate axes b1, 
b2 and b3). Fig 1b shows the principal axes system 
C (orthogonal coordinate axes c1, c2 and c3), rotor 
azimuth system E (orthogonal coordinate axes e1, e2 
and e3), hub system G (orthogonal coordinate axes g1, 
g2 and g3), cone angle system I (orthogonal coordinate 
axes i1, i2 and i3), blade pitch system J (orthogonal 
coordinate axes j1, j2 and j3), blade local torsion angle 
system Lj (orthogonal coordinate axes Lj1, Lj2 and 
Lj3), and blade element local torsion angle system N 
(orthogonal coordinate axes n1, n2 and n3) etc. The 
details of the coordinate system J, Lj and N are shown 
in Fig. 1c.

2  DISCRETENESS MODEL

Suppose the wind turbine blade and tower system 
comprises a flexible cantilever with evenly and 
continuously distributed mass and rigidity, as shown 
in Fig. 2. Deformation of the continuous blade and 
tower system is expressed with a series of linearly 
overlapped normalized vibration modes; so that the 
freedom of the blade and tower is reduced from infinity 
to N (N is the supposed number of modes selected for 
calculation). Then the horizontal deformation u(z,t) of 

a)    b)    c) 

Fig. 1.  Coordinate systems; a) tower coordinate systems  b) drivetrain coordinate systems  c) detail coordinate system of blade
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the flexible cantilever, at any time and any place, is a 
series of linearly overlapped normalized modes ϕa(z), 
which associate with the generalized coordinates qa(t) 
as follows:

	 u z t z q ta a
a

N

, ,( ) = ( ) ( )
=
∑φ
1

	 (1)

where ϕa(z) is the ath mode of the cantilever and a 
function of the cantilever longitudinal distance z; the 
generalized coordinate qa(t) associating with the mode 
a is a function of time, and it is commonly the free 
end deformation of the cantilever corresponding to the 
mode.

Fig. 2.  Discreteness model

By using the Lagrange equation of a conservative 
and constant system, the kinetic equation of N freedom 
systems can be expressed as:
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where the generalized mass mij and the generalized 
rigidity kij can be defined by using the kinetic energy 
T and potential V as: 
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When the cantilever vibrates at a specific inherent 
frequency ωa, suppose a = m, we can obtain:

	 q t
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where Qa is the deformation of the cantilever free-end 
in the free mode a. By applying qa(t) in the equation 
Cb(t)=Cm,bqm(t), and applying the result obtained from 
the foregoing equation in Eq. (5), we can obtain: 
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which can be transformed to be a matrix as follows:

	 − [ ]+ [ ]( ){ } = { }ω 2 M K C 0 , 	 (7)

where the generalized mass matrix [M] and the 
generalized rigidity matrix [K] are N×N order 
matrixes; the coefficient vector {C} is an N×1 order 
vector. By analysing the characteristic values of the 
matrix equation, we can obtain the characteristic value 
ω2a and the characteristic vector {C}a. 

2.1  Tower Modelling 

The tower is simulated to be an inverted cantilever 
whose free end is fixed with a point mass MTop, 
representing the total mass of the base plate, the cabin, 
the hub and the blade. The generalized mass of the 
tower can be expressed as:

	 m M h h h dhij Top T i j

H
= + ( ) ( ) ( )∫ µ φ φ

0
, 	 (8)

where μT(h) is the mass distribution line density of the 
tower.

The tower potential comprises VBeam associating 
with distribution rigidity of the beam and VGravity 
associating with gravity.

	 V V VBeam Gravity= + , 	 (9)

where the potential component associating with the 
distribution rigidity of the cantilever can be expressed 
as:
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where EIT(h) is the distribution rigidity of the tower 
and H is the height of the tower. 

The potential component associating with gravity can be expressed as:
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where the minus sign indicates that gravity will reduce 
the generalized rigidity of the tower; the first item 
in the bracket is associated with gravity of the tower 
mass, and the second item is associated with gravity 
of the tower distribution mass, with the impact of 
the tower deformation on the gravitational potential 
considered. 

The generalized rigidity of the tower can be 
expressed as:
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2.2 Soil-Structure Interaction Modelling 

The interaction between the soil and the foundation 
is an interactive force on the contact surface, which 
is caused by different material properties of the soil 
body and the structure (mainly the elastic modulus). 
In civil engineering, that the soil-structure interaction 
impacts the dynamic response of structures is a 
generally known phenomenon. For wind turbine 
towers established on soft soil (Fig. 3), the soil-
structure interaction is considered to be one of the key 
factors in dynamic analysis, and a more critical factor 
for wind turbine tower systems in earthquake-prone 
regions.  

      
Fig. 3.  Wind turbine system	         Fig. 4.  Dynamic model of  
			           soil-structure interaction

The continuum medium model (analytical 
method), the discrete model and the finite element 
model can be used to study complex soil-structure 

interactions. However, the continuum medium 
model is too complex, while the finite element 
model used to simulate soil-structure interactions is 
overly time-consuming and is thus disadvantageous 
for calculation. Therefore, to comprehend the most 
essential characteristics of soil-structure interaction 
in wind turbine tower systems, one simple and 
effective approach is to set a spring and damping on 
the interface between the foundation and the soil body 
(Fig. 4).

For a three-dimensional soil-structure interaction 
model, the two horizontal displacements couple with 
the rotary movement. However, the coupling item can 
be neglected as it is of a relatively small value [13]; 
this is particularly the case for wind turbine tower 
systems based in shallow soil (Fig. 2). Therefore, all 
dynamic components are considered to not be subject 
to mutual coupling. For a rigid round foundation, the 
rigidity and damping coefficient can be determined 
based on the properties of the surrounding soil body 
and the foundation size [14] to [16], which can be 
expressed as: 
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where kx and ky are horizontal rigidity coefficients; 
kz is the vertical rigidity coefficient; kα and kβ are 
the bending rigidity coefficients; kγ is the bending 
coefficient about the vertical axis. Similarly, ci (i = x, 
y, z, α ,β ,γ ) is the corresponding damping coefficient. 
Rs is the round foundation radius; Gs, μs and ρs are the 
shear modulus, the Poisson’s ratio and the density of 
the soil body, respectively. 
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2.3 Blade Modelling

Each rotor blade is simulated to be a rotary cantilever 
that has a point mass MTip fixed at the free end and 
rotating about an axis perpendicular to the rotor 
plane at the angular velocity Ω. Suppose the flexible 
part of each blade moves independently flap-wise 
(perpendicular to the wing-type string) and span-wise 
(parallel with the wing-type string). Meanwhile, blade 
deformation can be expressed as deformation towards 
the in-plane direction (parallel with the rotor rotating 
plane) and the out-of-plane direction (perpendicular 
to the rotor rotating plane). The relationship between 
the flap-wise-span-wise and in-plane-out-of-plane 
coordinate systems is shown in Fig. 5.

Fig. 5.  Relationship between coordinate systems

In the rotor rotation system, the dynamic energy 
of the blade is consistent with the dynamic energy of 
the tower. The generalized mass of the blade can be 
expressed as:

	 m M r r r drij Tip B i

R R

j
H= + ( ) ( ) ( )
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where μB(r) is the blade distribution line density, R 
is the rotor radius, and RH is the hub radius. When 
the gravity is neglected, the potential of the blade 
comprises component VBeam associating with the 
blade distribution rigidity and component VRotation 
associating with centrifugal force produced by 
blade rotation. 

	 V V VBeam Rotation= + , 	 (16)

The blade potential component associating 
with the distribution rigidity of the cantilever can be 
expressed as: 
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where EIB(h) is the flap-wise or span-wise blade 
distribution rigidity. 

The potential component produced by rotor 
rotation can be expressed as: 
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The first item in the bracket is the potential 
component associating with the mass of the blade-
tip braking part; the second item is the potential 
component associating with the blade distribution 
mass. The positive sum of the centrifugal potential 
value of the two items is the generalized rigidity to 
be increased of the blade by the centrifugal force, i.e. 
centrifugal rigidity. 

Through simplification, the generalized rigidity 
of the blade can be expressed as:
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3  DYNAMIC MODEL AND SOLUTION

Suppose the wind turbine is a first order linear multi-
body system with N freedoms; the motion of the 
wind turbine system can be described by using N 
generalized coordinates qi(i = 1, 2, …, N), or by using 
N generalized velocities ur(r = 1, 2, …, N). The latter 
are N independent scalars selected arbitrarily from the 
module values of the rigid body angular velocities or 
the particle velocities comprising the system, and can 
be expressed as the linear combination of generalized 
coordinate differential coefficients qi  (i = 1, 2, …, 15). 
For the cabin, it is simplified as a rigid model for 
calculation. 

	 u Y q Z r Nr ri i
i

N

r= + =
=
∑ � �
1

1 2, , , , ,	 (20)

where Yri and Zr are the functions of the generalized 
coordinate qi and time t; if ur is an independent 
variable, the only solution qi  to Eq. (20) can be 
obtained, and we obtain: 
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After the generalized velocity is determined, the 
absolute angular velocity E Ni q q tω , ,( )  and absolute 
linear velocity E Nv q q ti

, ,( )  of the Nith rigid body in 
the wind turbine system corresponding to the inertial 
coordinate system E can be only expressed as a linear 
combination of ur.
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where E N
r
i q tω ,( )  and E Nv q tr

i ,( )  are the rth angular 
velocity vector and the rth linear velocity vector, 
respectively, of the Nith rigid body in the inertia 
coordinate system E. Based on time derivation, we 
can obtain the angular acceleration E Ni q q q tε  , , ,( )   
and the acceleration E Na q q q ti

 , , ,( )  of the Nith rigid 
body in the inertial coordinate system E. 

After the partial velocity and angular velocity 
of each rigid body, as well as the corresponding 
generalized active force F and the generalized inertia 
force F* are determined, the Kane kinetic equation can 
be expressed as: 

	 F F r Nr r+ = =( )∗ 0 1 2, , , , , 	 (24)

Suppose the wind turbine system comprises w 
rigid bodies and for each rigid body Ni, the active force 
is applied on the centroid Xi; the generalized active 
force of the wind turbine system can be expressed as:
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The corresponding generalized inertia force can 
be expressed as:
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Substitute Eq. (25) and Eq. (26) into the Kane 
kinetic equation (Eq. ((24)), and we can obtain the 
kinetic equation of the wind turbine system, expressed 
in matrix as:

	 C q t q f q q t, , , ,( ) { }+ ( ){ } = { }  0 	 (28)

where [C(q,t)] is the system acceleration coefficient 
matrix, and f q q t, ,( ){ }  is the vectors relating to the 
system displacement and the velocity. To obtain a 
solution at each time step, the fourth-order Adams–
Bashforth prediction-correction algorithm is first 
used at each time step to determine the value of the 
lower-order item, which constitutes the right item of 
the equation; then the Gauss elimination method is 
used to obtain the system freedom acceleration. The 
acceleration obtained through these calculations is 
then used to correct the estimated value and promote 
precision. Through several iterations, the fourth-order 
Adams-Bashforth prediction-correction algorithm 
is used to determine the acceleration and the final 
solution at the time step. As the prediction-correction 
algorithm is not spontaneous, solutions at the first four 
time steps shall be determined by using the fourth-
order Runge-Kutta method. 

4  EXCITATION EARTHQUAKE LOAD

In this paper, the seismic load acts on the base of 
the wind turbine tower system in the form of an 
acceleration process, while acceleration is generated 
based on the acceleration response spectrum designed 
in the structural specifications. In engineering 
design, Eurocode 8 is widely applied throughout the 
world. To be universal, this paper obtains the seismic 
acceleration process based on Eurocode 8, according 
to which the designed acceleration response spectrum 
of a seismic load can be expressed [17] as shown in 
Fig. 6. The calculation formula is shown as follows:
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, 	 (29)

where Se(T) is the elastic response spectrum; T is 
the vibration period; TB and TC are the periodical 
constant range limits of the acceleration spectrum; TD 
is the start period constant value of the displacement 
response spectrum; ag is the designed ground 
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acceleration of A-type sites; S is the soil-associated 
coefficient; η is the damping correction coefficient, 
according Eurocode 8,  η ξ= + ≥10 5 0 55/ ( ) .  , 
η = 1 and damping rate ξ = 5 in this paper. Fig. 7 is the 
Acceleration process of an earthquake according Fig. 
6.

Fig. 6.  Earthquake spectrum according Eurocode 8

Fig. 7.  Acceleration process of an earthquake

5  EXAMPLE

5.1  Seismic Impact on Wind Turbine Performance

To take into account the seismic impact on a working 
wind turbine, seismic analyses of the wind turbine are 
carried out through the establishment of a theoretical 
model. As most winds in the natural world prevail 
as irregular turbulent winds, if turbulent winds are 
adopted in the seismic analyses, the significance of a 
seismic impact can hardly be identified. 

Table 1.  Dynamic motion comparison

Deformation 
[m]

Deformation 
velocity [m·s-1]

Deformation 
acceleration [m·s-2]

Blade 
tip

Model 3.98 10.72 35.27
Bladed 4.17 11.92 37.05

Tower 
top

Model 0.61 1.26 2.47
Bladed 0.69 1.45 2.63

Therefore, to better clarify impact of seismic 
excitation on the wind turbine, a steady wind at the 
speed of 11m/s is used in the case described in this 

paper. To validate the correctness of the model, the 
calculation results are compared with GH Bladed 
[18]. It can be seen from the comparison that the 
calculations using this model are correct, as shown in 
Table 1. 

Fig. 8.  Seismic impact on the performances of wind turbines; a) 
generator torque comparison, b) wind turbine speed comparison, 

and c) wind turbine power comparison

Fig. 8 shows the torque, speed and power of the 
wind turbine. In the figures, the part in red indicates 
normal generation without considering seismic impact, 
and the part in blue indicates normal generation under 
seismic impact. It can be seen from the three figures 
that upon application of seismic excitation at the 
20th second, the torque, speed and power of the wind 
turbine are disturbed to different degrees. In Fig. 8a, 
the disturbance to the wind turbine torque is relatively 
great, about 6.01% as calculated, mainly due to minor 
changes of the incoming wind velocity relative to the 
blade element upon occurrence of a seismic shock, 
resulting in a change of the aerodynamic torque; 
in Fig. 8b, disturbance to the wind turbine speed is 
relatively small, about 1% as calculated, mainly due to 
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short seismic excitation and inertia of the rotor; in Fig. 
8c, disturbance to the wind turbine power is mainly 
caused by joint action of the wind turbine speed and 
torque. In general, the seismic shock has no significant 
impact on wind turbine operation, provided the wind 
turbine structure is not damaged; whether the structure 
will be damaged mainly depends on the load caused 
by the earthquake. 

5.2  Seismic Impact on Load-Bearing Conditions

Generally, the load on the tower base, spindle and 
blade root of a wind turbine is the most representative 
in the load calculation. Therefore, to study the seismic 
impact on the major load on a wind turbine, three 

corresponding load groups are described, i.e. the 
load on the tower base, load on the spindle and load 
on the blade root (in the seismic propagation order). 
Similarly, in the figures, the part in red indicates 
normal generation without considering seismic impact, 
and the part in blue indicates normal generation under 
seismic impact. Fig. 9 shows the load on the tower 
base; Fig. 9a is the tower base bending moment Mx, 
with the maximum load fluctuation caused by the 
seismic shock reaching 188%; Fig. 9b is the tower 
base bending moment My, with the maximum load 
fluctuation caused by the seismic shock reaching 
108%; Fig. 9c is the tower base bending moment Mz, 
with the maximum load fluctuation caused by the 
seismic shock reaching 45%; Fig. 9d is load Fx on 

Fig. 9.  Seismic impact on load-bearing conditions of the tower base; comparison of: a) foundation bending moment Mx,  
b) foundation bending moment My, c) foundation bending moment Mz, d) load Fx acting on the base, e) load Fy acting on the base,  

f) load Fz acting on the base



Strojniški vestnik - Journal of Mechanical Engineering 60(2014)10, 638-648

646 Jin, X. – Liu, H. – Ju, W.B.

the tower base, with the maximum load fluctuation 
caused by the seismic shock reaching 233%; Fig. 
9e is load Fy on the tower base, with the maximum 
load fluctuation caused by the seismic shock reaching 
500%; Fig. 9f is the tower base bending moment 
Mz, with the maximum load fluctuation caused by 
the seismic shock reaching 2.41%. Generally, as the 
seismic shock first arrives at the tower base, it causes 
great fluctuation of load on the tower base.

Fig. 10 shows the load on the spindle hub; Fig. 
10a is the bending moment Mx, with the maximum 
load fluctuation caused by the seismic shock reaching 
6.1%; Fig. 10b is My, with the maximum load 
fluctuation caused by the seismic shock reaching 
66.7%; Fig. 10c is the tower base bending moment 

Mz, with the maximum load fluctuation caused by the 
seismic shock reaching 30%; Fig. 10d is load Fx on 
the tower base, with the maximum load fluctuation 
caused by earthquakes reaching 36%; Fig. 10e is 
load Fy on the tower base, with the maximum load 
fluctuation caused by the seismic shock reaching 
150%; Fig. 10f is the tower base bending moment 
Mz, with the maximum load fluctuation caused by the 
seismic shock reaching 20%. Generally, as the seismic 
shock first arrives at the tower base, it causes great 
fluctuation of load on the tower base. The results show 
that as the tower is a flexible fine long piece, loads 
caused by seismic excitation will be reduced in the 
amount and magnitude when arriving at the spindle 
after passing the tower. 

Fig. 10.  Seismic impact on load to be borne by the hub; comparison of: a) hub bending moment Mx , b) hub bending moment My , c) hub 
bending moment Mz , d) load Fx acting on the hub, e) load Fy acting on the hub, f) load Fz acting on the hub
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Fig. 11 shows the load on the blade root, 
specifically the flap-wise, edge-wise and span-wise 
moments and loads, respectively. It can be seen 
from the figures that, due to seismic impact, load 
fluctuations only occur in a) and e), but the load in 
other figures is not subject to significant impacts, 
mainly because the blade is a flexible fine long piece, 
just as the tower, which reduces the seismic impact.

6  CONCLUSION

According to the multi-body dynamic theory this paper 
proposes a multi-body-system dynamic model based 
on blade-cabin-tower-foundation coupled multi-body 
system dynamic model with soil-structure interaction 
considered to study the load-bearing conditions of 

wind turbines subject to seismic impact. Based on 
the basic theory of multi-body system dynamics, the 
wind turbine blade and tower system comprise a series 
discrete continuous units, while the soil-structure 
interaction of the tower system is realized via the 
spring and damping set on the interface between the 
foundation and the soil body; the cabin is simplified 
as a rigid model.

Analyses show that a sudden earthquake 
occurring during normal operation of a wind turbine 
will disturb the wind turbine performance to some 
extent, but the generating performance will not 
fluctuate greatly, provided that the wind turbine 
structure is not damaged; if the wind turbine structure 
is damaged, the disturbance intensity will depend on 
the load caused by the seismic shock. Through the 

Fig. 11. Seismic impact on blade root load; a) blade flap-wise moment comparison, b) blade edge-wise moment comparison, c) blade span-
wise moment comparison, e) blade flap-wise force comparison, d) blade edge-wise force comparison, f) blade span-wise force comparison 
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three typical load groups selected for the wind turbine, 
it can be seen that load on the tower base suffers 
the greatest fluctuation when it is the nearest to the 
foundation, which presents higher requirements for 
the tower base design; the seismic excitation transmits 
through the tower and then reaches the top of the 
tower, so the load fluctuation at the spindle reduces 
greatly; when it reaches the blade, the load fluctuation 
reduces more significantly as the blade is of a flexible 
structure. Generally, the seismic shock exerts the 
most significant impact on the tower base, but much 
less significant impact on the upper part, which is an 
advantage of the flexible structure. Therefore, when 
designing wind turbines for earthquake-prone regions, 
flexible structures should be considered for vibration 
relief.
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