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0  INTRODUCTION

Spiral bevel and hypoid gear drives are widely 
employed as transmission elements in vehicles, 
aircrafts, ships, and other gear reducers. There are 
currently two main methods of producing spiral 
bevel [1] and hypoid gears [2] in the production 
environment: the single indexing method referred to 
as “face milling” [3], and the continuous indexing 
method referred to as “face hobbing” [4]. In both 
face milling and face hobbing, the gear may be cut 
using either a generating method or a non-generating 
(formate) method [4]. However, the pinion of a pair of 
mating hypoid gears is always cut using the generating 
method to satisfy the required contact characteristics. 
The non-generating method offers higher productivity 
than the generating method because the generating roll 
is eliminated in the former method. The manufacturing 
of face-milled spiral bevel and hypoid gear sets can be 
accomplished by using the five-cut process [5] or by 
using the duplex helical method or completing process 
[6]. The five-cut process consists of five independent 
operations: two operations to finish the gear, and three 
operations to finish the pinion [5].

Generalized theory and application of bevel and 
hypoid gears generated by the five-cut process have 

been comprehensively presented by several gear 
scientists [7] to [9]. The generating method and the 
formate method of the five-cut process for face-milled 
spiral bevel and hypoid gears have been described 
in detail in [10] and [11]. Litvin et al. developed the 
principle and the calculation processes for the five-
cut process independently in a manner that is different 
from Gleason’s technology described in [12] and [13]. 
Astoul et al. [14] presented a new design method of 
spiral bevel gears based on an optimization process 
to reduce their quasi-static transmission error. Cao 
et al. [15] proposed a new method to design pinion 
machine tool-settings for spiral bevel gears by 
controlling contact path and transmission errors 
based on the satisfaction of contact the condition of 
three given control points on the tooth surface. Su et 
al. [16] proposed a new approach to designing and 
implementing a seventh-order polynomial function 
of transmission error for spiral bevel gears in order to 
reduce the running vibration and noise of gear drive 
and improve the loaded distribution of the tooth.

Computerised design, manufacturing and 
simulation of meshing, and contact stress analysis 
of spiral bevel and hypoid gears are the subjects of 
research performed by many scientists [17] and [18]. 
Lin et al. [19] developed a numerical tooth contact 
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analysis technique for simulating the single flank 
test of the gear geometry data measured on a gear 
measuring centre. Fan developed a new generalized 
tooth surface generation algorithm and a tooth contact 
analysis (TCA) approach [3], and presented a new 
generic model of generating spiral bevel and hypoid 
gears, this model is applicable to both face-milling 
and face-hobbing processes based on the universal 
motion concept (UMC) [20]. Simon [21] presented 
a new method for computer-aided tooth contact 
analysis in mismatched spiral bevel gears. In addition, 
Tamizharasan and Senthil Kumar [22] proposed an 
attempt to minimize flank wear of uncoated carbide 
inserts while machining AISI 1045 steel by finite 
element analysis, this simulation method can provide 
a reference for the finite element simulation of spiral 
bevel and hypoid gears.

The principle and machining character of the 
duplex helical method are evidently different from that 
of the five-cut process. The cutters used for the duplex 
helical method have alternate (inside and outside) 
blades. The head cutter is mounted on the cradle that 
has a helical motion with respect to the gear blank; the 
work spindle is mounted on the sliding base that have 
an infeed motion with the rotation of the cradle. When 
a single cutter is used in one operation, both sides of 
the tooth slot are finished from a solid blank during 
machining. The advantages of using this method are 
as follow [6]: (1) the higher machining efficiency, (2) 
the assurance of uniform gears and, therefore, greater 
accuracy, since the size of the teeth is not dependent 
upon the manual controls of the operator, (3) the 
reduction of spoilage by manual mistake, and (4) the 
smoother bending of the bottom and sides of the teeth.

The duplex helical method was invented several 
decades earlier by Gleason [5], although only some 
formulas and calculating instructions for the duplex 
helical method for hypoid gears have been published. 
However, as Gleason’s technology is confidential, 
the public has little knowledge of its principle and 
method in detail thus far. To the best knowledge of 
the authors of this paper, Gonzalez-Perez et al. dealt 
with conversion of the specific machine-tool settings 
of a given hypoid generator to the neutral machine-
tool settings and adjustment the contact pattern by 
considering parabolic profiles on the blades of the 
head-cutter [23]. Fong proposed a mathematical 
model of a universal hypoid generator and applied 
it to simulate virtually all primary spiral bevel and 
hypoid cutting methods, including the duplex helical 
method, the supplemental kinematic flank correction 
motions, such as modified generating roll ratio, helical 

motion, and cutter tilt were included in the proposed 
mathematical model [24]. 

In this paper, the authors present a new method 
that is used to accurately calculate basic machine-tool 
settings for formate hypoid gears. The new method 
aims to: (i) present the generalized theory of the 
duplex helical method in detail, (ii) obtain the desired 
meshing quality for the duplex helical method by 
using precise calculation.

1  CALCULATION OF BASIC MACHINE-TOOL SETTINGS  
FOR GENERATING GEAR

The coordinate system Sm{Xm, Ym, Zm} is rigidly 
connected to the cutting machine (Fig. 1). The 
top, bottom (A-A) and right (B-B) of Fig. 1 are the 
machine front view, the machine bottom view and 
the side view (the projection of the head cutter). 
The cradle rotates about the Ym axis; the p axis and 
g axis are projections of gear and pinion axes in the 
XmOmYm plane, respectively. The points M, M1 and O0 
are the reference points of the tooth surface and the 
projection of M on the cutting edge and the centre of 
the head cutter, respectively. O2 is the cross point of 
the gear, and Om is the machine centre. The process 
for calculation of the machine-tool settings of the 
duplex helical method is the same as that of the five-
cut process, details of which can be found in [10].
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Fig. 1.  Coordinate system applied for gear generation

The unit vectors of the Ym axis, g axis, and p axis 
can be represented in the coordinate system Sm by the 
following equations:

 e = [ ]0 1 0 ,  (1)



Strojniški vestnik - Journal of Mechanical Engineering 61(2015)9, 523-532

525Computerised Design and Simulation of Meshing and Contact of Formate Hypoid Gears Generated with a Duplex Helical Method  

 g = −[ ]cos sin ,γ γm m2 2
0  (2)

 p = − −( ) − −( ) cos sin .Σ Σγ γm m2 2
0  (3)

The unit normal n0, the unit vector t0 and the 
position vector a0 of a point on the outside blade 
edge of the gear to the head cutter-generating surface 
(drive or convex side) can be defined in the coordinate 
system Sm by the following equations:

n
0 21 02 21 02 21
= − − −[ ]cos sin cos cos sin ,α β α β α (4)

  t
0 21 02 21 02 21
= − −[ ]sin sin sin cos cos ,α β α β α  (5)

 a t
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


.  (6)

Here, u is a profile parameter. The position vector 
of point M1 on the blade edge can be represented by 
a0(sG1) when u is equal to sG1 as denoted in Fig. 1.

2  CALCULATION OF BASIC MACHINE-TOOL SETTINGS  
FOR GENERATING PINION

2.1  Calculation of Pinion Curvature Parameters Based on 
Gear Tooth Surfaces

To facilitate the description of this paper, the following 
definitions are made: Σ2 is the gear tooth surface. Σ1 
is the pinion tooth surface. Σg is the gear head-cutter 
surface or the generating tooth surface of the gear. 
Σp is the pinion head-cutter surface or the generating 
tooth surface of the pinion. M1 is the reference point 
of the drive side. M2 is the reference point of the coast 
side. The pinion is the driving wheel and left hand, 
gear is the driven wheel and right hand. The driving 
side is the convex side of gear, the concave side of 
pinion, the inside blades of the gear head-cutter and 
the outside blades of the pinion head-cutter. The coast 
side is the concave side of the gear, the convex side of 
the pinion, the outside blades of the gear head-cutter 
and the inside blades of the pinion head-cutter.

The formate-cut gear tooth surface is a copy of 
the surface of the head-cutter, which is a surface of 
revolution. Therefore, the vectors a0(sG1), t0, n0 of 
generating gear are the same as the vectors of the gear 
tooth surface.

A rotation angle θ1 of the gear about the g-axis is 
necessary for tangency at M1 of the gear and pinion 
tooth surfaces Σ2 and Σ1. The position vector of the 
reference point (M1) r1dr(θ1), the unit normal n1dr(θ1)  

and the unit vector t1dr(θ1) in the pinion tooth surface 
can be represented as:

 r e a
1 1 1 1dr E( ) ( ),θ θ= +  (7)

 a a R g
1 1 0 1 1
( ) , ,θ θ= ( ) ⋅ [ ]sG  (8)

 n n R g
1 1 0 1dr θ θ( ) = ⋅ [ ], ,  (9)

 t t R g
1 1 0 1dr θ θ( ) = ⋅ [ ], .  (10=

Here, R [g, θ1] is a transformation matrix that 
denotes the rotation angle θ1 about the vector g. Unit 
vector e is given in Eq. (1).

The vectors a1(θ1), e, g, p and are determined in 
the coordinate system S2{t1dr×n1dr, t1dr, n1dr} by the 
following equations:

 a a M
2 1 1 1 2
θ θ( ) = ( ) ⋅ m ,  (11)

 e e M
2 2
= ⋅ m ,  (12)

 g g M
2 2
= ⋅ m ,  (13)

 p p M
2 2
= ⋅ m.  (14)

Here, matrix M2m represents the coordinate 
transformation from Sm to S2.

The meshing equation for hypoid gears can be 
represented as:

 f dr12 1 12 1 1
0θ θ( ) = ( ) ⋅ =v n .  (15)

Here, the relative velocity v12 of the gear and 
pinion tooth surfaces Σ2 and Σ1 at M1 can be obtained 
from the abovementioned vectors. The parameter θ1

*   
can be obtained by solving Eq. (15). The related 
parameters can be obtained by inserting the value of 
θ
1

*  into Eqs. (7) to (11).
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Fig. 2.  The principal directions on the tangent plane

Fig. 2 shows the principal directions on the 
tangent plane at the reference point. The so-called first 
principal direction denotes the direction of maximum 
curvature of tooth surface; the second principal 
direction denotes the direction of minimum curvature 
of the tooth surface. In general, the two directions 
are perpendicular to each other. The first or second 
principal curvature or torsion is the curvature or 
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torsion in the corresponding first or second principal 
direction.

The first principal curvature A2 in the gear tooth 
surface is represented as:

 A
Rn

2

1

1
= .  (16)

Here, Rn1 denotes the radius of curvature of the inside 
blade of the gear head-cutter. The first principal 
torsion B2 and the second principal curvature C2 of the 
gear tooth surface are equal to 0.

According to the Baxter method [25], the induced 
normal curvatures ΔA, ΔC, and torsion ΔC of the two 
conjugate tooth surfaces (Σ2 and Σ1) at M1 can be 
represented as:

 θ θ θv v= ( )1* ,  (17)

 ∆ ∆C C= ( )θ
1

*
,  (18)

 ∆ ∆A C v= tan ,
2θ  (19)

 ∆ ∆B C v= − tan .θ  (20)

Here, the θv is the direction angle of the contact 
line that is formed between the tooth surfaces Σ2 
and Σ1, θv and ΔC can be obtained from the relative 
angular velocity ω12, the relative velocity v12, and the 
relative acceleration a12 of the gear and pinion tooth 
surfaces Σ2 and Σ1 at M1.

The first principal curvature A0, the first principal 
torsion B0, and the second principal curvature C0 of 
the pinion tooth surface (drive side) at M1 for the two 
principal directions of the gear tooth surface (Fig. 2) 
can be represented as:

 
A A A
B B
C C

0 2

0

0

= −
= −
= −









∆
∆
∆

.  (21)

Based on the generalised Euler and Bertrand 
formulas [13], the curvature parameters of the pinion 
tooth surface (drive side), along the two principal 
directions of the pinion tooth surface, can be 
represented as:

     A A Cdr1 0

2

0 0

2
2= − +cos sin cos sin .∆ ∆ ∆ ∆B  (22)

    C C Adr1 0

2

0 0

2
2= + +cos sin cos sin ,∆ ∆ ∆ ∆B  (23)

 B B A Cdr1 0

2 2

0 0
= −( ) + −( )cos sin sin cos .∆ ∆ ∆ ∆  (24)

Here, Δ is the angle between the first principal 
direction of the gear tooth surface and the pinion 
tooth surface on the tangent plane (Fig. 2). u1dr can be 
represented as:

 u t n t
1 1 1 1dr dr dr dr= ×( ) +sin cos .∆ ∆  (25)

In the same way, all of the related parameters and 
vectors (including the curvature parameters A1co, B1co, 
C1co) of the coast side of the pinion tooth surface can 
be obtained.

2.2  Calculation of Pinion Curvature Parameters Based on 
Pinion-Generating Surfaces

The configuration in Fig. 3 is the same as that in Fig. 
1. The coordinate system Sm{Xm, Ym, Zm} is rigidly 
connected to the cutting machine (Fig. 3). The top (A-
A), bottom and middle of Fig. 3 are the machine front 
view, top view and side view (projection of the head 
cutter), respectively. The cradle rotates about the G 
axis. The p axis is the projection of the pinion spindle 
in the XmOmYm plane. The points Om, O0 and O1 are 
the machine centre, the centre of the head cutter, and 
the cross point of the pinion, respectively.
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Fig. 3.  Coordinate system applied for pinion generation

The manufacturing coordinate system of the gears 
and pinions and the installation coordinate system of 
the hypoid gear set are represented in the coordinate 
system Sm. Taking backlash and other factors into 
account, for tangency at the reference point M2 of the 
gear and pinion tooth surfaces Σ2 and Σ1, the position 
vector r2 of the reference point, the unit normal n2 and 
the unit vector u2 of the coast side of the pinion tooth 
surface at the reference point M2 can be represented 
as:

 r r R p
2 1 2
= ⋅ [ ]co , ,θ  (26)

 n n R p
2 1 2
= ⋅ [ ]co , ,θ  (27)

 u u R p
2 1 2
= ⋅ [ ]co , .θ  (28)
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Here, the matrix R [p, θ2] is a transformation 
matrix that denotes the rotation angle θ2 (known 
parameter) about the vector p.

The pinion cradle spindle G does not always 
coincide with the Ym axis (Fig. 3), and it can be 
represented in the coordinate system Sm as:

 G G= ( )α γG m1 1
, .  (29)

The position vector of the reference point M1 
and the unit vector of the blank offset direction of the 
generating gear and the pinion can be represented in 
the coordinate system Sm as:

 a r p ep p m dr p m pX E X E
1 1 1 1

, ,( ) = + +  (30)

 e ep p G m= ( )α γ
1 1
, .  (31)

The relative velocity vp1 of the generating gear 
and pinion tooth surfaces Σp and Σ1 at M1 can be 
obtained using the vectors G, ap1, p, r1dr . This can be 
represented as:

 v vp p G m p m l aX E H R
1 1 1 1 1 1
= ( )α γ, , , , , .  (32)

Here, αG1, γm1, Xp, Em1, Hl, Ra1, are unknown 
parameters.

The meshing equation for the generating gear and 
pinion tooth surfaces at M1 may be represented in the 
coordinate system Sm as:

f f X E H Rp p G m p m l a p dr1 1 1 1 1 1 1 1
0= ( ) = ⋅ =α γ, , , , , .v n  (33)

Based on Eq. (33), Ra1 can be obtained using the 
following equation:

 R f X E Ha p G m p m l1 1 1 1 1
= ( )α γ, , , , .  (34)

To perform tangency at M1 or M2 of the pinion 
tooth surface Σ1 and the pinion head-cutter surface Σp, 
a rotation angle θ3 of the pinion about the p axis and a 
rotation angle θ

3 1
Ra  of generating gear about the G 

axis are necessary (Fig. 3). The position vector from 
the reference point to the crossing point r4, the 
position vector from the reference point to the machine 
centre a4, the unit normal n4 and the unit vector u4 of 
the coast side of the pinion tooth surface at the 
reference point M2 can be represented as:

 r r R p
4 2 3
= ⋅ [ ], ,θ  (35)

 n n R p
4 2 3
= ⋅ [ ], ,θ  (36)

 u u R p
4 2 3
= ⋅ [ ], ,θ  (37)

 a r p e
4 4 1
= + +X Ep m p .  (38)

Here, matrix R [p, θ3] is a transformation matrix that 
denotes the rotation angle θ3 (unknown parameter) 
about the vector p.

Based on Eqs. (33) and (34), θ
3

*  can be obtained 
by solving the meshing equation for the coast sides of 
the generating gear and pinion tooth surfaces at M2. 
The angle θ

3

*  can be obtained using the following 
equation:

 θ θ α γ
3 3 1 1 1

* *
, , , , .= ( )G m p m lX E H  (39)

Given a rotation angle θ
3 1

* Ra  of the pinion-
generating surface about the G-axis, the position 
vector a6 and the unit normal n6 can be represented as:
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3

1

4

3

1

α γ

θ θ

G m p m l

l
a a

X E H

H
R R

, , , ,

, ,
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( ) =

= + ⋅
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


  (40)

       n n R G
6 1 1 1 4
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1
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θ

G m p m l
a

X E H
R

, , , , , .

*

( ) = ⋅








  (41)

The unit vector of the pinion head-cutter axis can 
be obtained using the vectors a6, n6, ap1, n1, and can 
be represented as:

 c c= ( )α γG m p m l n nX E H r r
1 1 1 1 2
, , , , , , .  (42)

The unit vector of the first principal directions of 
the pinion-generating surface at M1 can be represented 
as:

 i c n
c n1

1

1

=
×
×

dr

dr

.  (43)
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in the coordinate system Sm
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As in Eqs. (11) to (14), the parameters and vectors 
of the gear and pinion tooth surfaces are replaced by 
the parameters and vectors of the pinion-generating 
surface and the pinion tooth surface. Thus, the vectors 
a3, e3, G3and p3 are obtained in the coordinate system 
S1 {i1, n1×i1, n1} from the vectors ap1, ep, G, p. Relative 
angular velocity ωp1, relative velocity vp1, relative 
acceleration ap1 of generating gear and pinion can be 
obtained from the abovementioned vectors.

The first principal curvature of the pinion-
generating surface are represented as:

 A
rpdr
n

=
1

1

.  (44)

The first principal torsion Bpdr and the second 
principal curvature Cpdr of the pinion-generating 
surface are equal to 0. As in Eqs. (17) to (21), the 
curvature parameters of the pinion tooth surface, 
along the principal directions of the pinion-generating 
surface can be obtained.

The angle Δ1 that is formed between the first 
principal directions of the pinion-generating surface 
and the pinion tooth surface on the tangent plane can 
be represented as:

 sin .∆
1 1 1
= ⋅u i  (45)

As in Eqs. (22) to (24), the curvature parameters 
A'1dr , B'1dr , C'1dr of the pinion tooth surface, along the 
principal directions of the pinion tooth surface, can 
be obtained using the generalised Euler and Bertrand 
formulas.

In the same way, all of the related parameters 
and vectors (including the curvature parameters 
A'1co , B'1co , C'1co) of the coast side of the pinion tooth 
surface can be obtained.

2.3  Determination of Basic Machine-Tool Settings for 
Generating the Pinion

The theoretical outside and inside blade angles for the 
pinion can be represented as: (see Fig. 4)

 sin ,αb dr1 1
= − ⋅c n  (46)

 sin .αb2 6
= − ⋅c n  (47)

Theoretically, the curvature parameters of the 
pinion tooth surfaces along the principal directions 
of the pinion tooth surface should be the same as that 
determined by the two abovementioned methods; the 
theoretical outside and inside blade angles for the 
pinion should also be equal to the actual blade angles 
of the head-cutter for the generating pinion. Therefore, 
the seven equations can be written as follows:

 

f A A f A A
B B
C C
B B
C

b dr co b dr co

dr dr

dr dr

co co

2

1 1

2

1 1

1 1

1 1

1 1

' '

'

'

'

+ = +
=
=
=

11 1

1 11

2 12

co co

b

b

C'

.

=
=
=
















α α
α α

 (48)

Here, fb denotes the tooth-bearing length 
unbalancing factor. The seven unknown parameters 
(αG1, γm1, Xp, Em1, Hl, rn1, rn2) can be obtained by 
solving Eq. (48).

The position vector of the pinion head-cutter 
generating surface at the blade tip midpoint P can be 
represented as:

 r c r rt fm drh= + +( )1 1 2
0 5. .  (49)

Here, hfm1 denotes the pinion mean dedendum in 
the hypoid gear dimensions.

The position vector of the pinion head-cutter 
centre O0 can be represented as:

 s n r c p e= + + − −r H X En dr dr p m p1 1 1 1 1
,  (50)

 H rt n dr dr1 1 1 1
= ⋅ − −( )c r n r .  (51)

Here, H1 denotes the projection distance of M1 on 
the pinion head-cutter axis.

A rotation angle θ4 of the pinion-generating 
surface about the G axis is necessary for meshing the 
contact of the pinion-generating surface and the tooth 
surface at P. The value of θ

4

*  can be obtained by 
solving the meshing equation.

The root angle of the pinion δr can be represented 
as:

 sin .
*δ θr pm= ⋅ ( )p n
4

 (52)

Here, n pm θ
4

*( )  denotes the unit normal vector 
after a rotation angle of the pinion-generating surface 
about the G axis θ

4

* .
Generally, δr is not equal to the root angle δf1 of 

the hypoid gears’ blank dimensions. Therefore, the 
resulting new mean dedendum bm1 of the pinion is 
different from the mean dedendum hfm1 of the hypoid 
gears’ blank dimensions. Using the modified mean 
dedendum bm1, the vectors rt, s and H1 should be 
recalculated.

The outside and inside cutter point radii for the 
pinion can be obtained as follows:

 r r Hcp
n

b
b1

1

1

1 1
= −
cos

tan ,
α

α  (53)
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 r r Hcp
n

b
b2

2

2

2 2
= −
cos

tan .
α

α  (54)

After a rotation angle θ
4

*  of the pinion-generating 
surface about the G axis, the position vector of the 
pinion head-cutter centre and the unit vector of the 
pinion head-cutter axis c1 can be redefined as:

 s s R G Gx lH= ⋅   +, ,
* *θ θ
4 4

 (55)

 c c R G
1 4
= ⋅  , .

*θ  (56)

The rest of the basic machine settings for the 
pinion can be obtained as follow:

 Xb x1
= − ⋅s G,  (57)

 Hp x p= ⋅ ×( )s e G ,  (58)

 Vp x p= − ⋅s e ,  (59)

 sin .I
1
= ×c G  (60)

3  NUMERICAL EXAMPLE

In this section, a hypoid gear design software based 
on the abovementioned calculation strategy for basic 
machine-tool settings was developed; the software 
development flow chart is shown in Fig. 5. 

Fig. 5.  Spiral bevel and hypoid gear design  
software development flow chart

The theoretical analysis is performed based 
on a hypoid gear set generated by using the duplex 
helical method. The design parameters for the face-
milled hypoid gear set are listed in Table 1. The basic 
machine settings are listed in Table 2.

Table 1.  Design data

Design features Pinion Gear
Number of teeth 7 43
Module [mm] 6.861 
Face width [mm] 43.73 40.00 
Pinion offset [mm] 25.4 
Shaft angle [°] 90
Mean spiral angle [°] 45 33.75
Hand of spiral LH RH
Cutter radius [mm] 114.3543 114.3

Table 2.  Basic machine settings for the duplex helical method

Applied settings Pinion Gear
Radial distance [mm] 114.2545 117.4921 
Tilt angle [°] 15.7363 0.0000
Swivel angle [°] -31.6295 0.0000°
Blank offset [mm] 25.0224 0.0000 
Machine root angle [°] -9.0996 70.2509
Machine centre to cross point [mm] 0.3431 9.6518
Sliding base [mm] 23.8256 0.0000 
Ratio of roll 5.9651 0.0000
Cradle angle [°] 66.8700 70.9771
Helical motion velocity coeff [mm/rad] 11.5478 0.0000 

a) 

b) 
Fig. 6.  Tooth bearings for the hypoid gear drive 7×43;  

a) drive side, and b) coast side

Figs. 6 and 7 show the tooth bearings and the 
transmission error functions on the drive and coast 
side by the duplex helical method for the hypoid gear 
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drive 7×43 (number of pinion teeth×number of gear 
teeth), respectively. In Fig. 6, the red point is the first 
contact point or reference point. It is obsevered that 
a continuous and negative function is obtained for 
transmission errors, with a maximum level on the 
drive side for the method of approximately 15.5″ 
(0.004306°), and on the coast side of approximately 
15.9″ (0.004417°).

a) 

b) 
Fig. 7.  Function of transmission errors for the hypoid gear drive 

7×43; a) drive side, and b) coast side

Fig. 8.  Finite element model for the hypoid gear drive 7×43

The load history, especially the transfer of load 
between neighbouring gear pairs, is very helpful for 
understanding the gear mesh characteristics. Fig. 8 
shows a finite element mesh; five teeth of the gear are 
used to save costs. Fig. 9 show the evolution of contact 
stresses of the pinion and gear by the method for the 
hypoid gear drive. The torque and the rotational speed 

applied to the pinion are 500 Nm and 1000 r/min, 
respectively.

Fig. 9.  Evolution of contact stresses for the hypoid gear drive 
7×43

a) 

b) 
Fig. 10.  Tooth bearings on the hypoid gear test machine for the 

hypoid gear drive 7×43; a) drive side, and b) coast side

The analysis of the comparison of contact stress 
evolution is as follows:
(1)  There is higher contact stress due to impact in the 

initial phase; with the smoothing of the rotational 
speed, contact stress is gradually stabilizing in 
Fig. 9.

(2)  The maximum gear tooth contact stress for the 
hypoid gear drive is about 300 MPa to 400 MPa; 
the maximum pinion tooth contact stress is about 
150 MPa to 200 MPa after 4.5 ms. There is no 
problem of the appearance of areas of severe 
contact stress and edge contact throughout the 
process. 
To verify the effectiveness of the generalized 

theory of the duplex helical method, the cutting and 
the rolling test experiments are done. Fig. 10 shows the 
tooth bearings on the hypoid gear test machine for the 
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hypoid gear drive 7×43 by the duplex helical method. 
The results of the rolling test and the results of TCA in 
Fig. 6 are carried out under light load. The shape and 
location of the tooth bearings in Fig. 10 are basically 
consistent with those in Fig. 6. The experiment results 
achieve the desired effect. Finally, all of the results 
proved the correctness of the generalized theory of the 
duplex helical method described in this paper.

4  CONCLUSIONS

The duplex helical method is an advanced and primary 
manufacturing method of face-milled spiral bevel 
and hypoid gears. It is a completing process in which 
the concave and convex tooth surfaces are generated 
simultaneously under a single set of machine settings, 
and it is diffcult to obtain a set of optimal machine 
settings that can ensure both sides of TCA with good 
characteristics. To slove the problem, some valid 
conclusions are obtained through this investigation:
(1) A general calculation method of the basic machine 

settings for all spiral bevel and hypoid cutting 
methods, including face-milling and face-
hobbing, is proposed.

(2) Three reference points (M1, M2, P) are used 
to calculate basic machine-tool settings for 
formating hypoid gears manufactured by the 
duplex helical method; they can accurately 
control the position and movement relationships 
between the generating gear and pinion.

(3) The TCA and rolling test experiment results of 
the hypoid gear set manufactured by the duplex 
helical method show that the new methodology 
for calculating the basic machine settings 
achieves the desired effect. Both sides of TCA 
results have good characteristics.

5  NOMENCLATURE

Σ shaft angle [°]
E pinion offset (mm)
γm2 machine root angle of gear [°]
XG machine centre to back of gear [mm]
H horizontal setting of gear head-cutter [mm]
V vertical setting of gear head-cutter (mm)
q2 cradle angle of gear [°]
Sr2 radial distance of gear [mm]
α21 inside blade pressure angle (drive side or convex 

side) for gear [°]
α outside blade pressure angle (drive side or 

concave side) for pinion [°]
α12 inside blade pressure angle (coast side or convex 

side) for pinion [°]

β02 spiral angle of the gear generating surface [°]
rcG1 cutter point radius for the convex side of the gear 

[mm]
ΔA the first induced normal curvature of two 

conjugate tooth surfaces (Σ2 and Σ1) at M1
ΔB the first induced normal torsion of two conjugate 

tooth surfaces (Σ2 and Σ1) at M1
ΔC the second induced normal curvature of two 

conjugate tooth surfaces  (Σ2 and Σ1) at M1
αG1 pressure angle of drive side of pinion-generating 

surface [°]
Hp horizontal setting for pinion head-cutter [mm]
Vp vertical setting for pinion head-cutter [mm]
Em1 blank offset for the pinion [mm]
Xp machine centre to back for pinion [mm]
Xb1 sliding base for pinion [mm]
γn1 machine root angle for pinion [°]
Sr1 radial distance for pinion head-cutter [mm]
q1 cradle angle for pinion [°]
I1 tilt angle for pinion head-cutter [°]
J1 swivel angle for pinion head-cutter [°]
Ra1 ratio-of-roll of pinion and generating gear
Hl helical motion velocity coefficient represents a 

displacement of the pinion blank along the axis of 
the cradle for a rotational angle of 1 radian of the 
cradle [mm/rad]

rn1 curvature radius of the outside blade of the pinion 
head-cutter (drive side or concave side) [mm]

rn2 curvature radius of the inside blade of the pinion 
head-cutter (coast side or convex side) [mm]

Subscripts
1 pinion
2 gear
G generating surface of gear
p genarating surface of pinion
dr drive side
co coast side
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