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0  INTRODUCTION

Research into the dynamic behaviour of structures 
is present in mechanical and civil engineering. 
Structures of various purposes are exposed to variable 
influences. These influences can be common [1], 
which are variable only in time, and influences of 
moving loads, which are variable in time and space [2] 
and [3]. The action of these influences on structures is 
reflected in the occurrence of dynamic displacements, 
velocities, and accelerations of the structure.

In mechanical engineering, this problem is 
present, above all, in the field of crane engineering. 
One of the representatives of crane machines, which 
are the subject of this paper, is the portal-rotating 
crane. These are crane machines with a boom that is 
connected to the portal and that has the possibility of a 
360° rotation. These cranes are interesting for dynamic 
analysis due to their high carrying capacities and the 
fact that they have a small base in proportion to their 
height. In portal-rotating cranes, there are influences 
that are variable in time. Load swing contributes 
significantly to the dynamic loading of cranes. The 
importance of the problem of load swing is considered 
and confirmed in papers [1] and [4]. Furthermore, the 
importance of this problem is defined in standards [5]. 

The first papers considered planar dynamic 
models, and later papers published specifically in 

the field of dynamics of portal cranes mostly treated 
planar dynamic models [6] and [7]. The authors of this 
paper found a small number of papers with dynamic 
spatial models which dealt with the problems of the 
dynamic behaviour of portal-rotating cranes [8]. 
Therefore, the search was directed, in a wider sense, 
to the group of rotating cranes. First, a group of 
dynamic models that deal with the problems of the 
dynamic behaviour of rotating cranes was considered 
[9] to [11]. Next, a group of dynamic models that deal 
with the problems of the control of rotating cranes 
was reviewed [12] and [13].

In almost all the above-mentioned papers [6] to 
[13], the authors modelled portal-rotating cranes as 
direct or discrete-continuous models. Vasiljević et al. 
show [14] that more accurate results are obtained by 
the application of consistent masses.

The papers mostly provide an investigation of the 
dynamic models of only booms of portal cranes, but 
few of them investigate dynamic models which take 
into account the carrying structure.

In accordance with this fact, this paper should 
contribute to the knowledge of the dynamic behaviour 
of the carrying structure of the portal crane excited 
by the motion of the crane and the load swing. 
The solution to this problem requires appropriate 
modelling of the boom and the carrying structure. 
The approach to modelling of the dynamic model of 
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the portal crane is such that the whole portal crane 
is divided into two subsystems, i.e. the carrying 
structure and the boom. The relationship between 
the carrying structure and the boom is simplified by 
reducing the influence of load and the dead weight of 
the boom to the corresponding points of the portal. 
The carrying structure of the portal crane is modelled 
as a spatial linear beam. In reality, spatial linear beams 
are systems with continuously distributed masses, 
whereas the spatial model of the carrying structure 
is more complex. For these reasons, the continuously 
distributed mass is replaced with the consistent mass. 
Hence, the consistent mass matrix of the system 
is formulated on the basis of the same interpolation 
functions that are used for the derivation of stiffness 
matrices. The spatial linear beam is modelled by 
means of a space girder element, with two node points 
and six unknowns in each node.  

For the adopted dynamic model of the portal-
rotating crane, modal analysis of oscillation was 
conducted in the first step, and it forms the basis for a 
good understanding of the dynamic characteristics of 
the carrying structure. In the second step, the dynamic 
response of the portal-rotating crane to excitation was 
determined. 

1  PROBLEM SETTING

Oscillation results from the elasticity of mechanisms 
and the carrying structure due to the action of inertial 
forces. The shorter the time of action of those forces, 
the more unfavourable the oscillations.

The first main problem in the investigation of the 
dynamic behaviour of portal cranes is the definition 
of excitation. The structure, i.e. the base of the crane 
considered, can perform only rectilinear motion from 
point to point. The kinematic values of the motion of 
the portal crane are the speed of motion, acceleration 
and the distance passed. The trapeze velocity profile is 
most frequently used for the calculation of mechanisms 
for the motion of cranes. Accordingly, in this paper, it 
is assumed that the crane moves along its track with 
the trapeze velocity profile over the course of one 
cycle (Fig. 1). From Fig. 1, it is seen that the motion 
of the structure consists of three phases. In phase 0 to 
1 (time ta), the structure accelerates with the constant 
acceleration aa so that the velocity linearly increases, 
and at the end of the first phase, it reaches the velocity 
vu. The second phase, 1 to 2, is the phase of uniform 
motion of the structure during the time tu, which is 
characterized by the constant velocity vu. In phases 2 
to 3 (time td), the structure constantly decelerates with 
the deceleration ad until it stops. The distance passed 

by the structure is determined based on the profile of 
velocities (Fig. 1). The presented profile of velocities 
will be used for obtaining the dynamic response of the 
carrying structure excited by the motion of the crane 
and the load swing. 

Fig. 1.  Kinematic diagrams of motion of the crane

The second main problem in the investigation 
of the dynamic behaviour of portal-rotating cranes is 
the adoption of the appropriate model. Formation of 
the portal crane model is approached in such a way 
that the influence of loads and the boom is reduced 
to the corresponding points of the carrying structure 
of the crane. An analogous approach was applied in 
the investigation of the dynamic behaviour of the 
reloading bridge. It is shown in [15].

2  DYNAMIC MODEL OF THE BOOM 

2.1  Model Description

The boom is a constituent part of the portal-rotating 
crane. The subsystem of the boom consists of the 
carrying structure and the rope system. The carrying 
structure of the boom is connected to the platform by 
joints. 

In the system of the portal crane, the boom 
is observed, by idealization, as an independent 
subsystem. Accordingly, Fig. 2 presents a dynamic 
equivalent model of the portal crane boom.

The model was formed for the needs of 
determination of dynamic loads. The boom is observed 
as an independent subsystem which oscillates. A 
dynamic equivalent model is formed in such a way 
that it both keeps the main dynamic characteristics 
of the boom and that the defined problem could be 
mathematically solved. 

From Fig. 2 it is seen that the subsystem of the 
boom with a load is represented with two lumped 
masses, two lightweight bars, and a circular disc. 
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Discretization of the carrying structure of the boom 
was performed on a lightweight bar with a reduced 
mass on the tip. In other words, the carrying structure 
of the boom is represented by a lightweight bar with 
the length Lb and the mass m1, which is reduced to 
the tip of the boom. The rope system of the boom is 
represented by a non-elastic lightweight bar with the 
length Lr and the mass m2, which allows load swing. It 
means that the tip of the boom, i.e. the mass m1 and the 
mass m2, are joined by the non-elastic lightweight bar 
with the length Lr. The rotating column is represented 
by a circular disc with the axial moment of inertia J 
and the moment of rotation T. The distance between 
the boom joint and the column axis is r. 

Fig. 2.  Dynamic model of the boom

Based on the recommendations in [15], the 
reduced mass m1 can be determined according to the 
following relation: 

	 m =  mb1

1

4

1

3








 , 	 (1)

where mb is the boom mass.

2.2  Mathematical Formulation 

The Lagrange equations of the second kind will be 
used for the setting of the mathematical formulation of 
the formed dynamic model of the boom. The equations 
of motion of the boom elements are set based on the 
dynamic equivalent model presented in Fig. 2.

The dynamic equations of motion of the system 
read:

	 

θ ω θ ϕt t =
L
x tl

r
( ) + ( ) − ( )2 1

sin cos , 	 (2a)

	  ψ ω ψ ϕt t =
L

x t
r

( ) + ( ) − ( )2 1
sin sin , 	 (2b)

	 J t Tϕ ( )= , 	 (2c)

where θ is the angle of oscillation of load in the 
longitudinal direction, ψ is the angle of oscillation 
of load in the side (lateral) direction, φ is the angle 
of rotation of the column, i.e. the boom, x is the 
rectilinear motion of the boom, and ω is the circular 
frequency of load oscillation.

2.2.1  Load Oscillation

The laws of non-attenuated oscillations of the load as 
a function of time along the generalized coordinates 
θ and ψ due to the crane acceleration given by the 
diagram according to Fig. 1 will be determined from 
Eqs. (2a) and (2b).

In the first step, the motion of load, i.e. mass m2 
in the longitudinal direction along the generalized 
coordinate θ is observed in such a way that it is taken 
out of the system, Fig. 3.

Fig. 3.  Load oscillation in the longitudinal direction

For determination of the law of load swing, the 
differential equation of relative motion of the particle, 
i.e. mass m2, is defined:

	 m a = F F G Sr px
in

pz
in

2



   

+ + +
2

. 	 (3)

Eq. (3) is projected onto the axes t and n of the 
natural trihedron, which is connected to the mass m2. 
The details of obtaining the law of load oscillation 
in the longitudinal direction are given. As there is 
an analogy between load oscillation in these two 
directions, only the final form will be given for the 
side direction.

The law of load oscillation in the longitudinal 
direction obtains the form:

	 

θ θ θ ϕt g
L

t =
L

x t t
r r

( ) + ( ) − ( ) ( )sin cos cos .
1

	 (4)

In Eq. (4), the relation g / Lr represents the 
quadrant circular frequency of the load ω2. For the 
case of small oscillations, the approximation that the 
angle θ is small can be introduced, so that sinθ ≈ θ and 
cosθ ≈ 1. Furthermore, the replacement a x t= ( )   is 
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introduced. Eq. (4) is linearized so that it obtains the 
following form:

	 θ ω θ ϕt t
L

a t
r

( ) + ( ) ( )2
=-

1
cos . 	 (5)

Eq. (5) is most suitably solved by the method 
of Laplace transformation. In the first step, it is 
determined that: 

	 L s = -   
L

L
a s

sr
( ){ } ( )

+( )












1

2 2ω
ϕcos . 	 (6)

From the kinematic diagrams from Fig. 1, the 
acceleration diagram is particularly suitable for 
solving Eq. (6). This diagram is presented in Fig. 4. It 
is adopted that aa = ad = h and ta = td = τ. For previous 
calculations, it can be adopted that 0.5(ta + td)=3 to 5 s. 

Fig. 4.  Acceleration diagram

Now, according to the diagram of change of 
acceleration in time, Fig. 4, the expression for 
acceleration in the Laplace domain can be represented 
in the following form:

	 a s = h  
s

e e et s t s t s( ) − − +( )1 2 3 4 , 	 (7)

where h is the amplitude of input acceleration and 
ti is the corresponding time step in the acceleration 
diagram.

Eq. (6) obtains the form:

     L s = h  
L

L e e e
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Finally, the law of load oscillation in the 
longitudinal direction is obtained by transforming Eq. 
(8) for θ(s) in the time domain by using the inverse 
Laplace transform.  
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The obtained laws of load oscillation (Eqs. (9) 
and (10)) represent Heaviside (step) functions with a 
linear polynomial.

The load swing contributes the most to the 
instability and overturning of the crane when the 
angle of load oscillation reaches its highest point. This 
case occurs when the impulses of time calculation are 
mutually in phase. In that case, load oscillation caused 
by every step of acceleration is constructively added 
and produces the highest amplitude of load oscillation. 

Eqs. (9) and (10) show that the maximum angle 
of oscillation appears when the following conditions 
are fulfilled: 
•	 each of the cosine members within Eqs. (9) and 

(10) is in phase, 
•	 multiplying the cosine members within Eqs. (9) 

and (10) by the corresponding step of the function 
HeavisideTheta results in obtaining the value 
equal to 1 (it is necessary to have a sufficient time 
of operation, t ≥ t4, in order to achieve acceleration 
according to the diagram). 
The cosine members within Eqs. (9) and (10) are 

in phase when four steps of the acceleration diagram 
are performed by their constructive adding in perfect 
time. In the worst case, the angle of oscillation 
increases four times in relation to the oscillation 
caused by one step of input acceleration. The 
maximum angle of load oscillation in the longitudinal 
and side directions is equal to:

	 θ ψ
max max

.= = h  
g

4 	 (11)

To produce maximum load swing, it is necessary 
to have acceleration steps completely in phase, i.e. it 
is necessary to fulfil two conditions. 

The first condition requires that the time interval 
between the first and the second steps, as well as 
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between the third and the fourth ones should be equal 
to one half of the oscillation period τ:

   t t t n and t t n
2 1 2 4 3

0 5 0 5− = = +( ) − = +( ). , . ,τ τ 	 (12)

where n = 1,2,3, ...
The time delay is necessary because the steps in 

sets have different designations. Therefore, the time 
delay is equivalent to the excitation of the phase delay 
π according to the opposite signs of function, which 
excludes the possibility of the change of phases (and 
brings two functions in phase).

The second condition requires that the time 
interval between the second and the third impulses 
must contain the time delay of the multiple period τ:

	 t t n
3 2
− = τ , 	 (13)

where n = 1, 2, 3, ... 
In other words, this holds because the second and 

the third steps have the same sign so that the change 
of phase by 2π requires that the second and the third 
steps should be in phase. 

2.2.2 Dynamic Loads of the Portal

In accordance with the adopted generalized 
coordinates of oscillation of the dynamic model of the 
boom, the dynamic moment of bending occurs in two 
directions: 
•	 in the longitudinal direction, and
•	 in the side (lateral) direction.

The dynamic moment of bending in the 
longitudinal direction reads, Fig. 2:
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The dynamic moment of bending in the side 
direction reads, Fig. 2:

	

M m g L L

m L L L
dyn,s r r

r b r

=
2

2

2

2

+( ) +

−( )




ψ ψ ψ

ψ ψ α ψ

cos sin

sin sin cos . 	 (15)

3  FINITE ELEMENT MODEL OF THE STRUCTURE

3.1  Model Description

The whole portal-rotating crane is divided into two 
subsystems: the moving structure, and the boom. The 

relationship between the structure and the boom is 
simplified in such a way that the influence of load and 
the dead weight of the boom is reduced to the points 
of the upper and lower supports of the boom.

The type Η carrying structure of the considered 
portal crane is shown in Fig. 5.

Fig. 5.  Carrying structure (portal) of type ″Η″ 

Fig. 6.  Finite element model of the type Η structure
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The carrying structure is a rigid spatial frame. 
Its base has dimensions L×B. The main structural 
parts of the carrying structure are the legs, the slanted 
columns, and the lower and the upper beams. The legs 
are identical (height H) and stand at the same level. 
The slanted columns are identical (length C) and they 
are connected to the legs as well as to the upper and 
lower beams. The distance between the upper and 
the lower beams is equal to H0. The upper beam has 
the function of the upper support of the boom, and it 
is made of a circular ring with the diameter D. The 
lower beam has the function of the lower support of 
the boom, and it is made of a type H frame. 

The finite element model of the structure of the 
considered portal crane is shown in Fig. 6.

Taking into account that the boom rotates around 
its axis, it can be concluded that the assumed planar 
model is not sufficient for describing the dynamic 
behaviour of the considered portal-rotating crane. The 
spatial model of the portal crane, to which dynamic 
load is reduced, is formed in accordance with the 
spatial dynamic model of the boom.

Discretization of the carrying structure of the 
crane was performed on 18 finite beam elements 
connected by nodes. The whole system has 82 degrees 
of freedom of motion. The legs were modelled as 
one finite element with the characteristics A1, Ix1, 
Iy1, Iz1. The slanted columns were modelled as one 
finite element with the characteristics A5, Ix5, Iy5, Iz5. 
The upper beam (the circular ring with the diameter 
D) was divided into four finite elements with the 
characteristics A9, Ix9, Iy9, Iz9. The lower beam (the 
type H frame) was divided into six finite elements 
with the characteristics A13, Ix13, Iy13, Iz13. The 
supporting structure rests on four elastic supports with 
the stiffness k.

The main mechanical characteristics of the 
carrying structure, i.e. of all finite elements of the 
formed spatial model are the module of elasticity E, 
the slipping module G, and the density ρ.

The dynamic moments, Eqs. (14) and (15), are 
reduced to the combination of horizontal dynamic 
forces Pl(t) and Ps(t) in the nodes of finite elements 
of the upper beam and the central node of the lower 
beam. The position of these forces relative to the 
longitudinal direction (the axis X) is defined by the 
angle φ, which represents the angle of boom rotation.

The dynamic forces Pl(t) and 4×Pl(t)/4 make 
a combination of forces that opposes the dynamic 
moment of overturning in the longitudinal direction 
Mdyn,l of the platform, i.e. the rotating part of the 
crane:
	 M P t Hdyn l l,

( ) .= ⋅
0 	 (16)

The dynamic forces Ps(t) and 4×Ps(t)/4 make 
a combination of forces which opposes the dynamic 
moment of overturning in the side direction Mdyn,s of 
the platform:
	 M P t Hdyn s s,

( ) .= ⋅
0

	 (17)

The vertical static force Pm1 of the load mass m1 
is reduced to the central node of the lower beam (the 
type H frame). The vertical static force Pm2 of the 
reduced boom mass m2 is also reduced to the central 
node of the lower beam. The total vertical static force 
Pm that acts in the central node of the lower support of 
the boom is equal to the sum of the force of the load 
mass and the force of the reduced boom mass:

	 P P Pm m m= +
1 2

. 	 (18)

The characteristic nodes of the structure model 
for obtaining dynamic response of the structure to 
excitation are the nodes at the point of elastic supports 
(points of wheel-rail contact).

3.2  Mathematical Formulation

In accordance with the formed mathematical model of 
the portal crane, the differential equation of dynamic 
equilibrium, i.e. forced oscillations of the carrying 
structure reads:

	 M U K U P(t)[ ]{ }+ [ ]{ } { } = , 	 (19)

where [M] is the mass matrix of the system, [K] is 
the stiffness matrix of the system, {Ü} the vector 
of acceleration of generalized coordinates of the 
carrying structure, {U} the vector of displacement of 
generalized coordinates of the structure, and {P(t)} 
the vector of external load of the structure nodes.

Eq. (19) is used for studying the dynamic response 
of the structure due to the motion of the crane. It can 
be decomposed to the equilibrium conditions of active 
and inertial forces in the direction of unknown and 
known displacements so that it gains the form:
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= .	(20)

As the displacements and accelerations of the 
supports in horizontal directions are equal to zero  
(Uk = 0 and Ük = 0), Eq. (20) obtains the form:

	 M U K U P tuu u uu u u[ ]{ }+ [ ]{ } = ( ){ } . 	 (21)

Natural frequencies of the structure are obtained 
by solving the algebraic equation: 

	 det K Muu uu−( ) =ωst
2

0. 	 (22)
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In the direction of unknown displacements, the 
mass submatrix of the whole system is equal to the 
matrix of the carrying structure of the portal crane: 

	 M = Muu uu[ ] ×82 82
. 	 (23)

In the direction of unknown displacements, the 
stiffness submatrix of the whole system includes the 
matrix of the structure and the stiffness matrix of 
elastic supports:

	 K K kuu uu= [ ] + [ ]× ×82 82 16 16
. 	 (24)

In the direction of unknown displacements, the 
subvector of external dynamic forces of the whole 
system is equal to the subvector of external dynamic 
forces of the carrying structure of the portal crane:

	 P t = P tu u( ) ( ){ }
×82 1

. 	 (25)

The subvector of external dynamic forces Pu(t) 
can be expressed in the following form: 

P (t)u
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,	 (26)

where:

	

P t P t P t

P t P t P t
x l s

y l s

( ) = ( ) + ( )
( ) = − ( ) + ( )

cos sin ,

sin cos .

ϕ ϕ

ϕ ϕ

 and

	 (27)

4  NUMERICAL RESULTS AND DISCUSSION

For determination of numerical values of parameters 
influencing the dynamic behaviour of the carrying 
structure of the type H portal crane and the formation of 
appropriate conclusions, the initial data were defined 
based on the solutions derived and manufacturers’ 
catalogues: vc = 0.6 m/s; mt = 10000 kg; ms = 9200 kg; 
r = 1 m; Lb = 30 m; H = 6 m; H0 = 3.675 m;  
An = 31500×10–6 m2, ln = 6 m, Iyn = 3.117×10–3 m4,  
Izn = 1.391×10–3 m4, Ixn = 2.776×10–3 m4 (n = 1 to 4);  
An = 31500×10–6 m2, ln = 4.243 m, Iyn = 3.117×10–3 m4, 
Izn = 1.391×10–3 m4, Ixn = 2.776×10–3 m4 (n = 5 to 8); 
An = 26500×10–6 m2, ln = 3 m, Iyn = 1.303×10–3 m4, 
Izn = 1.066×10–3 m4, Ixn = 1.630×10–3 m4 (n = 9 to 12); 
An = 25200×10–6 m2, ln = 3 m, Iyn = 1.115×10–3 m4, 
Izn = 1.119×10–3 m4, Ixn = 1.611×10–3 m4 (n = 13 to 18); 

E = 2.1×1011 N⁄m2; G = 0.8×1011 N⁄m2; ρ = 7850 kg⁄m3; 
k = 107 N/m; g = 9.81 m/s2. 

4.1 Excitation 

The motion of the crane along the tracks is described 
by the diagram of velocity vc(t), Fig. 7.

Fig. 7.  Time diagram of the crane velocity vc(t)

The change of angle of load oscillation in the 
longitudinal direction θ according to Eq. (9) is 
presented in Fig. 8. The maximum angle of load 
oscillation is 0.0815 rad. 

Fig. 8.  Angle of load oscillation in the longitudinal direction

Fig. 9.  Angle of load oscillation in the longitudinal direction for 
different speeds of motion of the crane 
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Fig. 9, based on Eq. (9), presents the angle of 
load oscillation in the longitudinal direction for two 
different speeds of the crane. 

The speed vc1 is the nominal speed of the 
crane, whereas the speed vc2 represents the extreme 
performance of the portal crane. Fig. 9 shows that the 
angle of load oscillation increases with the increase in 
the speed of the motion of the portal. 

The change of the angle of load oscillation in the 
lateral direction ψ is completely the same.

The change of the dynamic bending moment in 
the longitudinal and side directions (θ, ψ) according 
to Eqs. (14) and (15) is presented in Figs. 10 and 11. 

Fig. 10.  Dynamic bending moment in the longitudinal direction

Fig. 11.  Dynamic bending moment in the side direction 

Detailed analysis of excitation in the portal crane 
is shown in [16].

4.2 Response of the Carrying Structure to Excitation 

4.2.1 Modal Analysis

Table 1 presents the values of the first two frequencies 
of oscillation of the carrying structure of the portal-
rotating crane, Eq. (22). 

The values of natural frequencies represent the 
first and most important element of estimation of 

dynamic stability of cranes in the first phase of the 
design of new solutions [14]. The crane has good 
dynamic behaviour if its first frequency of oscillation 
is high. According to this aspect, the carrying structure 
of the considered portal crane has favourable dynamic 
stability (f1 = 2.65 Hz). 

Table 1.  Frequencies

Mode no. Period Tst [s] Circ. freq. ωst [rad/s] Frequency fst [Hz]
1 0.378  16.63 2.65
2 0.344  18.78 2.99

The verification of the mathematical model of 
the carrying structure (Fig. 6) was done by creating 
an FE model in the programme package SAP2000® 
[17]. Using the modal analysis in SAP2000, the 
assumed first 12 frequencies of the carrying structure 
were determined. The first two frequencies are  
f = (2.66; 3.01) Hz. By comparing the values of 
frequencies obtained through the mathematical model 
with the finite element approach and in a purely 
numerical way (FEM software SAP2000), coinciding 
well between the results of the first two frequencies 
and the relative deviations Δ = (0.38; 0.66) % is 
observed. Other frequencies also coincide well. Thus, 
for example, for the following four frequencies the 
relative deviation is up to 2.5 %, which is very good 
for the spatial model. 

4.2.2 Dynamic Displacements

The evaluation of the quality of new solutions of 
cranes is given based on the maximum values of 
dynamic displacements.

Eq. (21) for investigating the dynamic behaviour 
of the portal-rotating crane was solved by means of 
the direct, step-by-step integration method. In the 
Mathematica® program, the original module is written 
based on the Newmark integration method [18]. The 
time interval of integration was chosen to be Δt = 0.01. 
Dynamic displacements for all degrees of freedom 
of the model were obtained, but only characteristic 
displacements are presented here. 

The dynamic response of the portal to excitation 
is, before all, contained in the dynamic displacement 
of elastic supports of the model for different positions 
of the boom relative to the direction of motion of the 
crane. Figs. 12 through 16 present the comparative 
change of dynamic displacements of nodes 1 to 4 for 
the boom positions relative to the rectilinear motion of 
the portal φ = 0°, 45°, 90°, 135°, and 180°. 
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Fig. 12.  Dynamic displacements of nodes 1 to 4; φ = 0°

Fig. 13.  Dynamic displacements of nodes 1 to 4; φ = 45°

Fig. 14. Dynamic displacements of nodes 1 to 4; φ = 90°

Fig. 15. Dynamic displacements of nodes 1 to 4; φ = 135°

Fig. 16.  Dynamic displacements of nodes 1 to 4; φ = 180°

As the carrying structure is symmetric on one 
side, and as the dynamic moment is much higher in 
the longitudinal direction than in the lateral one, on 
the other side, dynamic displacements of nodes 1 
and 2, i.e. 3 and 4 for the angle of the boom 0° and 
180° almost coincide. For the angle of the boom 0°, 
displacements of nodes 1 and 2 are positive, while for 
the angle of the boom 180° displacements of nodes 
3 and 4 are positive. Analogously, displacements 
of nodes 1 and 3, i.e. 2 and 4 for the angle of the 
boom 90° almost coincide. Displacements of nodes 
1 and 3 are positive. For the angle of the boom 45°, 
displacement of node 1 stands out because it is 
positive. Analogously, for the angle 135° the positive 
displacement of node 3 stands out. 

Based on the analysis of displacements of elastic 
supports, Figs. 12 through 16, it was shown that 
the elastic support - node 1 has the largest positive 
displacement for the value of the angle of boom 
rotation of φ = 45°. The maximum displacement of 
node 1 is 78.93 mm. In this case, lifting of that leg of 
the portal crane most often occurs in practice. 

Therefore, the carrying structure of the considered 
portal crane is most sensitive to the boom position of 
45°. Accordingly, this position is most relevant for 
describing the dynamic state of the carrying structure.  

In accordance with the parameters included in 
the mathematical model of the considered carrying 
structure of the portal crane, the expected value of 
maximum dynamic displacement was obtained.  

5  CONCLUSIONS

Analysis of the dynamic behaviour of portal cranes 
of large carrying capacities is necessary because it 
provides quality bases for their optimal design. The 
research conducted allows thorough consideration of 
the parameters influencing the dynamic behaviour of 
portal cranes.
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A combined approach, which combines equations 
of analytical mechanics and the finite element method, 
was developed. In accordance with that, dynamic 
spatial models of the boom and the structure of the 
portal crane were formed and solved. It was established 
that the influence of load swing is critical in portal 
cranes. It was shown that speed and acceleration/
deceleration of the crane influence the dynamic 
response of the structure. For the nominal value of the 
crane speed of 0.6 m/s, the obtained maximum angle 
of oscillation of load is 0.0815 rad/s. The stability of 
the portal crane excited by the motion of the crane 
and the load swing was investigated. The dynamic 
response of the structure to excitation is presented 
through dynamic displacements of elastic supports. 
The boom position at which maximum displacements 
of elastic supports occur was established. The critical 
elastic support, i.e. the leg that may be lifted, was 
defined for this position of the boom. The maximum 
dynamic displacement of the critical elastic support of 
78.93 mm was obtained.

This paper leaves some space for the continuation 
of the investigation of parameters influencing the 
dynamic behaviour of the carrying structure in portal-
rotating cranes and the optimization of such types of 
structures. Further work on the problems considered 
should lead to the improvement of the created models, 
which will include a larger number of parameters. 
Furthermore, this paper presents a quality basis for 
research into the dynamic behaviour of other types of 
portal rotating cranes (e.g. type X).

6  NOMENCLATURE

vc	 speeds of the moving crane [m/s]
a x t= ( ) 	acceleration of the moving crane [m/s2]

τ	 time of acceleration (deceleration) of the crane [s]
m1	 reduced mass of the boom [kg]
m2	 load mass [kg]
mb	 boom mass [kg]
g	 gravitational constant [m/s2]
Lb	 boom length [m]
Lr	 rope length [m]
r	 distance between the boom joint and the column axis 

[m]
θ	 angle of load oscillation in the longitudinal direction 

[rad]
ψ	 angle of load oscillation in the lateral direction [rad]
φ	 angle of column (boom) rotation [°]
x	 rectilinear motion of the crane [m]
ω	 circular frequency of the load [rad/s]
T	 moment of rotation [Nm]
[M]	 structural mass matrix [kg]

[K]	 structural stiffness matrix [N/m]
{P(t)}	 external force vector [N]
{U}	displacement vector [m]
{Ü}	acceleration vector [m/s2]
[Muu]	 mass submatrix of the structure in the direction of 

unknown displacements [kg]
[Kuu]	 stiffness submatrix of the structure in the direction 

of unknown displacements [kg]
[k]	 stiffness matrix of elastic supports [N/m]
k	 stiffness of elastic supports [N/m]
{Pu(t)}	 external subvector of forces in the direction of 

unknown displacements [N]
{Uu}	 displacement vector in the direction of unknown 

displacements [m]
{Üu}	 acceleration vector in the direction of unknown 

displacements [m/s2]
L	 length of the portal base [m]
B	 width of the portal base [m]
H	 height of the leg [m]
H0	 distance between the upper and the lower supports of 

the boom [m]
ln	 length of the finite element [m]
An	 cross-sectional area[m2]
Ixn	 moment of inertia of cross section the x axis [m4]
Iyn	 moment of inertia of cross-section the y axis [m4]
Izn	 moment of inertia of cross-section the z axis  [m4]
ρ	 mass density of material [kg/m3]
E	 Young’s modulus [N/m2]
G	 slipping module [N/m2]
ωst	 circular frequency of structure [rad/s]
fst 	 frequency of structure  [Hz]
Δt	 time interval of integration [s]
p	 total number of time steps [-]
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8  APPENDIX

8.1 Equations (2a) and (2b)

8.1.1 Equations (2a)

The differential equation of relative motion of the mass m2 

in the longitudinal direction reads:   
	 m a = F F G Sr px

in
pz
in

2



   

+ + +
2

. 	 (A1)

Intensity of inertial forces:
	

�
��F = m x tpx

in
2 ( )cos ,ϕ 	 (A2)

	
�

��F = m z tpz
in

2 ( ). 	 (A3)

Eq. (A1) is projected onto the axes t and n of the 
natural trihedron:

      

m L t G t m x t t
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r2 2 2
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cos cos sin

cos .. 	 (A5)

For z = 0  Eqs. (A4) and (A5) obtain the form:

	 m L t G t m x t tr2 2 2


θ θ ϕ θ( ) = − ( ) − ( ) ( )sin cos cos , 	 (A6)

	 m L t G t m x t tr2 2 2


θ θ ϕ θ( ) = − ( ) − ( ) ( )cos cos sin . 	 (A7)

From Eq. (A6) is determined by the law of oscillation 
of cargo in the longitudinal direction:

	 

θ θ ϕ θt g
L

t
L

x t t
r r

( ) + ( ) = − ( ) ( )sin cos cos .
1 	 (A8)

The approximation sinθ ≈ θ and cosθ ≈ 1 is introduced: 

	 

θ θ ϕt g
L

t
L

x t
r r

( ) + ( ) = − ( )1
cos , 	 (A9)

where g/Lr represents the quadrant circular frequency of the 
load ω2.

The replacement a x t= ( )  is introduced:

	 θ ω θ ϕt t
L

a t
r

( ) + ( ) = − ( )2 1
cos . 	 (A10)

Laplace transformation:

	 L s s = -   
L

L a s
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θ ω ϕ( ){ } +( ) ( ){ }2 2 1
cos , 	 (A11)
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The expression for acceleration in the Laplace domain 
can be represented in the following form:

	 a s = h
s

e e et s t s t s( ) − − +( )1 2 3 4 . 	 (A13)

Eq. (A12) obtains the form:

       L s = h  
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Finally, the law of load oscillation in the longitudinal 
direction is obtained by transforming the Eq. (A14) in 
the time domain by using the inverse Laplace transform 
(Mathematica® program used):
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8.1.2 Equations (2b)

The differential equation of relative motion of the mass m2 
in the side (lateral) direction reads:

	 m a = F F G Sr py
in

pz
in
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. 	 (A16)

Intensity of inertial forces:
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Further, the Eq. (A16) solved by analogue Eq. (A1). 
The law of load oscillation in the side direction reads: 
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8.2  Equations (24)

Eq. (24) reads:
	 K K kuu uu=   +  × ×82 82 16 16

. 	 (A20)

In order to execute Eq. (24), the stiffness matrix of 
elastic supports [k]16×16 is, by adding zero rows and zero 
columns, extended to the matrix with dimensions 82×82, 
except for 16 degrees of freedom of four nodes:     

82 82

1,1 1,1 1,16 1,16 1,17 1,82

16,1 16,1 16,16 16,16 16,17 16,82
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8.3 FE model in SAP2000® software 

The FE model of the structure of the portal crane is shown in Fig. A1. Model is created in FE package SAP2000®. The first 2 
mode shapes of the structure are shown in Figs. A1 and A2. 

Fig. A1.  FE model of the structure of type ″Η″ Fig. A2.  1st mode, f1=2.66 Hz Fig. A3.  2nd mode, f2= 3.01 Hz


