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0  INTRODUCTION

The planetary gear is widely used in all kinds of drive 
transmissions of large electromechanical equipment, 
and it is the most critical part of a drive transmission 
system. A fault in a planetary gear will affect the 
reliability of the equipment, and even causes accidents 
[1]. Therefore, to study planetary gear fault diagnosis 
has great significance. The complex structure of 
planetary gear and the changes of working parameters, 
such as speed and load, will cause the vibration signal 
of planetary gear to be non-stationary, and it also has 
the characteristics of frequency modulation (FM) 
and amplitude modulation (AM) [2]. Therefore, the 
traditional time-domain analysis and frequency-
domain analysis that only have statistical properties 
and global significance are not suitable for processing 
the non-stationary signals; the feature extraction 
method for non-stationary signals and the advanced 
classification method should be studied.

In order to obtain the useful information 
generated by planetary gears, some time-frequency 
analysis methods are proposed. The time-frequency 
analysis method which has the best application effect 
is empirical mode decomposition (EMD) [3] proposed 
by Huang et al. [4]. A series of IMFs with strict 
definitions can be obtained from the original vibration 
signal [5]. However, EMD has a major drawback: 
modal aliasing. To solve this problem, EEMD is 

proposed [6]. The Gaussian white noise is added to the 
original signal to change the extreme points, and an 
IMF set can be obtained by EMD. The Gaussian white 
noise is added multiple times, and a series of IMF 
sets can be obtained. The final IMFs can be obtained 
by the average of a series of IMF sets, and the added 
Gaussian white noise is eliminated according to its 
uniform characteristics. However, due to the added 
Gaussian white noise is eliminated by ensemble 
average; the reconstructed signal of the IMFs still 
contains residual noise. CEEMD is the latest method 
to improve the shortcomings of EMD; it can achieve 
a better decomposition effect which is beneficial 
for extracting the features [7]. A pair of Gaussian 
white noises with opposite symbols are respectively 
added to the original vibration signal, following the 
EMD process is carried out. CEEMD can solve the 
problems of modal aliasing and energy leakage, and 
the problem of reconstruction error is alleviated by 
using complementary pairs of Gaussian white noise.

The collected vibration signal near the planetary 
gear also contains the vibration produced by other 
transmission components. With CEEMD, a large 
part of vibration interference produced by other 
transmission components and the feature information 
produced by planetary gears are divided into different 
IMFs. Only some IMFs associated with the feature 
information generated by planetary gear faults and 
some IMFs do not contain the information that we 
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need. The effective IMFs, including the most relevant, 
feature information for recognizing planetary gears 
should be selected. Next, it is necessary to extract 
the fault feature information. The multi-scale 
algorithm has the advantages of high efficiency, good 
convergence, and high precision, and it can show the 
features of the signals with different scales [8]. The 
fractal dimension is an important parameter in the 
quantitative description of nonlinear behaviour, and it 
mainly includes the Hausdorff dimension, similarity 
dimension and box dimension, etc. Among them, the 
fractal box dimension is widely used [9]. The fractal 
box dimension establishes the relationship with the 
nonlinear problem based on the box-filling idea. For 
the status change of a mechanical transmission system, 
it can be used to describe the statistical self-similarity 
feature of the fractal boundary of the vibration signal. 
Thus, the multi-scale fractal box dimension combining 
multi-scale analysis and fractal box dimension can be 
used to extract the fault feature information.

Fault classification is necessary after extracting 
the fault feature information; some classification 
methods such as support vector machine (SVM), 
ELM, and other neural networks are proposed [10]. 
SVM is a data classification method that is suitable 
for processing small samples, and the nonlinear 
mapping of the date is realized by the kernel function. 
Therefore, the kernel function and its parameters 
are crucial. With the development of optimization 
algorithms, some parameter optimization algorithms 
such as artificial colony bee algorithm and genetic 
algorithm are combined with SVM [11]. However, 
that will increase the complexity and computational 
burden. The neural network has developed into an 
effective classification method in fault diagnosis, but 
the traditional algorithms have several shortcomings, 
such as slow training speed, the fact that they easily 
fall into a local minimum point and sensitive learning 
rate. ELM is a new learning algorithm of the single-
hidden layer feed-forward neural network, its weights 
between the input layer and hidden layer and the 
threshold of hidden neurons are randomly generated, 
and there is no need to adjust them in the training 
process. Only the number of hidden neurons needs to 
be set, and the unique optimal solution can be obtained 
[12]. ELM has the advantages of easy parameter 
selection, fast learning speed, and good generalization 
performance, and it can be applied in the classification 
of planetary gear status.

This paper is structured as follows. In Section 
1, a mathematical model of planetary gear fault 
diagnosis based on a multi-scale fractal box 
dimension of CEEMD and ELM is built. In Section 

2, the experiment equipment of planetary gear fault 
simulation is introduced. In Section 3 and Section 4, 
the vibration signals are processed by the proposed 
method, and its effectiveness and applicability are 
verified. In the last section, many conclusions are 
obtained.

1  MODEL BUILDING

1.1 CEEMD

CEEMD is an improved algorithm based on EMD; a 
pair of Gaussian white noises with opposite symbols 
are added to the original signal, and EMD and the 
ensemble average process are conducted. That 
can eliminate the residual noise contained in the 
reconstructed signal and improve the completeness 
of the decomposition process [13]. CEEMD can be 
expressed as follows:

Step 1: The original vibration signal is x(t), and s 
pairs of Gaussian white noises with opposite symbols 
are added, and a 2s added white noise signal can be 
obtained.
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where ns(t) is the sth added Gaussian white noise. xs+(t) 
is the signal added to the sth Gaussian white noise with 
a positive symbol, and xs–(t) is the signal added to the 
sth Gaussian white noise with a negative symbol.

Step 2: For the signal-added Gaussian white 
noise, EMD [4] is carried out, respectively. 2s sets of 
IMFs are obtained, and they are expressed as follows:
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where E( ) represent EMD process, S is the number of 
the added Gaussian white noise, and I is the number of 
the obtained IMFs.

Step 3: The process of ensemble average is 
processed, and the final IMFs can be obtained; they 
can be expressed as follows:

 IMF
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Step 4: The vibration signal can be expressed as 
follows:
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i

I
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=
∑
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 (4)

where r(t) is the residual signal.
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1.2 Extraction of Effective IMFs

The signal collected by the vibration sensor installed 
near the planetary gear also contains the vibration 
produced by other transmission components, which 
is reduced significantly in the vibration transfer 
process, and they have a certain difference with the 
vibration produced by the monitored planetary gear. 
With CEEMD, a large part of vibration interference 
produced by other transmission components and the 
feature information produced by planetary gear are 
divided into different IMFs. Only some IMFs associate 
with the feature information produced by planetary 
gear faults, and the effective IMFs associating with the 
fault feature information produced by the planetary 
gear should be selected. The shock components 
are generated during the meshing process of the 
planetary gear, and they have different changes when 
different faults of the planetary gear occur, so the fault 
feature information is usually contained in the shock 
components generated during the meshing process. 
Kurtosis is strongly related to the shock components, 
so the effective IMFs associated with feature 
information can be selected by kurtosis. Assuming 
IMFi = (x1, x2, ..., xN), The definition of kurtosis is as 
follows [14]:

 K
x xn

n

N

=

( )

,

−
=
∑ 4

1

4σ
 (5)

where x  is the mean value and σ is the standard 
deviation of the signal.

1.3  Multi-Scale Fractal Box Dimension

The effective IMFs including the fault shock 
components are selected, and their reconstructed signal 
contains the main fault feature information generated 
by planetary gear fault. Next, the fault feature 
extraction and quantization of the reconstructed signal 
should be analysed.

1.3.1 Multi-Scale Analysis

Multi-scale analysis can show the features of the 
signals with different scales. For a time-domain signal 
with length H; x1, x2, ..., xH, it is divided into several 
time series with different lengths according to the 
scale factor τ. The average value of each divided data 
set is then calculated [15]. A new time series { }( )y j

τ  is 
constituted; it is expressed as Eq. (6) and Fig. 1.
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Fig. 1.  Multi-scale process

1.3.2 Fractal Box Dimension

The fractal box dimension can be used to extract 
and quantify the feature information included in the 
signals with different scales. Assuming X is a not 
empty bounded subsets of Rn, and N(X, ε) represents 
the minimum number of the subset that can cover X 
set with the maximum diameter ε. The definition of 
fractal box dimension is expressed as follows [16]:
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Assuming the signal Y y y y OQ= ⊂{ , ,..., }1 2 , O is 
a closed set in the n-dimension Euclid space. Because 
the limitation of Eq. (7) cannot be calculated in 
accordance with the definition, the approximate 
method is used. ε is defined as a baseline, and it is 
gradually enlarged to kε, k Z∈ + . The calculation 
equation is as follows:
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where i = 1, 2, ..., Q/N; N is the sampling data number, 
k = 1, 2, ..., M; M ≤ N.

The grid count is as follows:

 N P k k Nk kε εε ε= + >( ) / ( ) ; .1 1  (9)

A range that has a better linear relationship in the 
figure lg kε – lg Nkε is defined as a non-scaling range, 
and assuming the beginning and ending of this non-
scaling range are k1 and k2, respectively.

 lg lg ; .N a k b k k kkε ε= + ≤ ≤1 2  (10)

The slope of this line is determined by the least 
square method, and it is the fractal box dimension and 
expressed as follows:
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1.3  Extreme Learning Machine

ELM has the advantages of easy parameter selection, 
fast learning speed and good generalization 
performance [17]. The structure of ELM is shown in 
Fig. 2. Where input layer has J neurons, hidden layer 
has H neurons, and output layer has K neurons [18].
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 Fig. 2.  Structure of ELM

The connection weights between the input layer 
and hidden layer and the connection weights between 
hidden layer and output layer are expressed as follows:
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where wjh is the connection weight between the jth 
neuron of the input layer and the hth neuron of the 
hidden layer, and βhk is the connection weight between 
the hth neuron of the hidden layer and the kth neuron of 
the output layer.

Setting the threshold ϕ of the hidden neurons is 
expressed as follows:

 φ φ φ φ= …[ , , , ] .1 2 h
T  (14)

The input matrix xi and output matrix yo of the 
training set with Q samples are expressed as follows:
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The activation function of the hidden neuron 
is g(x), then, the output T of ELM is expressed as 
follows:
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where wi = [wi1, wi2, ..., wiJ]T, xih = [xi1h, xi2h, ...,   xiJh]T.
The Eq. (16) can be expressed as follows:

 H Tβ = ∗ ,  (17)

where T* is the transpose of T, and H is the output 
matrix of the hidden layer of ELM, and its concrete 
form is expressed as follows:
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When the activation function g(x) is infinitely 
differentiable, the parameters of ELM do not need to 
be adjusted. w and ϕ can be randomly selected. The 
connection weight β between hidden layer and output 
layer can be obtained by calculating the least square 
solution of the following equations [19].

 min .
β

β= − ∗H T  (19)

The solution of Eq. (19) is as follows:

 β
∧

+ ∗= H T ,  (20)
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where H+ is the Morre-Penrose generalized inverse 
matrix of the output matrix H.

2  EXPERIMENT INTRODUCTION

The planetary gear fault simulation bench is shown in 
Fig. 3. The planetary gearbox and fixed-axis gearbox 
are commonly used transmission components, and 
they have their respective advantages. Due to the need 
for some special occasions, the planetary gearbox and 
fixed-axis gearbox are often used in combination, 
such as the transmission system of shearer cutting 
part, the transmission system of the wind turbine 
and automotive gear reducer, etc. Thus, the fault 
simulation bench combining a planetary gearbox and 
fixed-axis gearbox is used. The acceleration sensors 
that used to measure the vibration signal generated 
by planetary gear are installed on the shell of the 

planetary gearbox. In this experiment, the sun gear 
faults are simulated; they are normal gear, broken 
gear, gear with tooth root crack and wear gear. Those 
gears are shown in Fig. 4. The parameter setting 
of the experiment process is shown in Table 1, and 
the vibration signals of four types of planetary gear 
statuses are sampled. The collected vibration signal 
is divided into a number of samples for analysis, 
and each sample includes 8400 data points. They are 
used to verify the effectiveness of the proposed fault 
diagnosis method of the planetary gear.

Table 1.  Parameters setting of the experiment process

Motor speed Sampling frequency Load
2400 r/min 4200 Hz 13.5 Nm

3  EXPERIMENT ANALYSIS

The analysis flowchart of the fault diagnosis method 
based on the multi-scale fractal box dimension of 
CEEMD and ELM is proposed and shown in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Original vibration signal
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2s sets of IMFs are obtained

The final IMFs can be calculated by 
ensemble average
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The multi-scale fractal box dimension 
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Fault classification can be achieved 
by ELM

 
 Fig. 5.  Experimental analysis flowchart

The vibration signals of four types of planetary 
gears are collected and shown in Fig. 6. It can be 
seen that the vibration signals have FM and AM 
characteristics, and that is because of the influences 
of complex structure, assembly error, motor, and 
load. The vibration signal of normal gear includes 
more shock components, and there are no obvious 
rules. The gear surface structure and its stiffness are 
changed when the planetary gear fault occurs, and 
the additional shock components are generated in the 
meshing process. Those cause the vibration signals 
of the faulty gear to be more complex. It can be seen 

Fig. 3.  Fault experiment for planetary gear, a) three-phase 
asynchronous motor, b) planetary gearbox, c) acceleration sensors, 

d) fixed-axis gearbox, e) load system, f) acquisition system

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Fig. 4.  Four types of gears, a) normal gear, b) broken gear,  

c) gear with tooth root crack, d) wear gear
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from Fig. 6 that the gear status cannot be recognized 
based on the time-domain signals.

Fig. 6.  Four types of vibration signals

The proposed fault diagnosis method is used to 
process the vibration signal. The vibration signal is 
sampled as a digital signal, which is composed of a 
series of data points. It is decomposed by CEEMD 
according to Eqs. (1) to (4). The number of the added 
Gaussian white noise S is set to 50, the amplitude of 
the added Gaussian white noise ns(t) is set to 0.25 
times the standard deviation of the original signal, 
and EMD process E( ) is defined in [4]. The vibration 
signal of wear gear is selected as an example to 
show the decomposition result of CEEMD, and the 
decomposition result of EEMD is compared. The 
decomposition results of EEMD and CEEMD for 
wear gear are shown in Figs. 7 and 8, respectively. 

The complex signal can be expressed as multiple 
signals with simple characteristics and are easy to 
analyse with CEEMD; 13 IMFs and a residual signal 
is obtained, and the residual signal is called IMF14 
for convenience. They are arranged from high-
frequency to low-frequency. It can be found that the 
decomposition result of CEEMD is superior to that 
of EEMD. For EEMD, it is obvious that there is 
the phenomenon of modal aliasing in IMF6, IMF7, 
and IMF8. Modal aliasing refers to an IMF that 
contains the features with great differences or similar 
features distributed in different IMFs. That causes 
the waveforms of adjacent IMFs exhibit an aliasing 
phenomenon, which affects the extraction of the fault 
features. The quality of the obtained IMFs by CEEMD 
is greatly improved, and the modal aliasing degree is 
further reduced. The decomposition errors of EEMD 
and CEEMD are calculated and shown in Fig. 9. The 
magnitude of the decomposition error of EEMD is 

Fig. 7.  Decomposition results of EEMD for wear gear

Fig 8.  Decomposition result of CEEMD for wear gear

10–4, and it is obviously more than that of CEEMD. 
The magnitude of the decomposition error of CEEMD 
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is only 10–7. CEEMD can better eliminate the residual 
noise generated by the added Gaussian white noise, 
and the decomposition error can be reduced.

Fig. 9.  Decomposition errors of EEMD and CEEMD

The IMFs containing different information can be 
obtained by CEEMD, and the fault feature information 
generated by the planetary gear is only contained in 
some IMFs. The shock components are generated 
during the meshing process of the planetary gear, 
and the fault feature information is usually contained 
in the shock components. Thus, kurtosis is defined 
as selection criteria to select the effective IMFs 
associated with fault feature information. Each IMF 
can be seen as a single digit signal, and the kurtosis of 
each IMF can be calculated according to Eq. (13), and 
it is shown in Fig. 10.
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It can be seen from Fig. 10 that IMF2 has the 
maximum kurtosis; it reaches 4.1825. IMF11 has the 
minimum kurtosis; it reaches 1.9930. In general, more 
shock components are included in the signal when its 

kurtosis is greater than 3. Thus, IMF1, IMF2, IMF3, 
IMF4, IMF5, and IMF8 are selected as the effective 
IMFs. The reconstructed signal of the effective IMFs 
can be obtained, and it includes more shock feature 
information generated by planetary gear faults.

The multi-scale fractal box dimension of the 
reconstructed signal of the effective IMFs should be 
extracted. The reconstructed signal includes 8400 
data points, and the scale factor τ is set to 20. Twenty 
signals containing different scales are obtained from 
the reconstructed signal according to Eq. (6), and their 
fractal box dimensions are calculated according to 
Eqs. (7) to (11). The multi-scale fractal box dimension 
of four types of planetary gears is shown in Fig. 11.

Fig. 11.  Multi-scale fractal box dimension of four types of 
planetary gears

The multi-scale fractal box dimension of four 
types of planetary gears is decreasing with the 
increasing of the multi-scale factor τ. Due to the 
additional shock components being produced when 
planetary gear faults occur, the multi-scale fractal box 
dimension of normal gear is less than that of other 
gears. The fault degree of a broken gear is relatively 
serious, so its multi-scale fractal box dimension is 
relatively large. It also can be found that there are 
the differences of the fractal box dimension under 
different scales for four types of planetary gears, so 
the multi-scale fractal box dimension is an effective 
fault feature. Moreover, next, the planetary gear status 
can be recognized by combining ELM.

The training sample set is built to train ELM, and 
each gear status has 50 training samples. The multi-
scale fractal box dimension of each sample constitutes 
the input matrix in Eq. (15). Because the multi-scale 
factor τ is set to 20, the input matrix has 20 dimensions. 
Because the samples should be divided into four types, 
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the output layer of ELM has four neurons. Meanwhile, 
four types of gear statuses should be labeled: the 
normal gear is labeled by [1 0 0 0], broken gear is 
labeled by [0 1 0 0], the gear with tooth root crack 
is labeled by [0 0 1 0], and the wear gear is labeled 
by [0 0 0 1], and they constitute the output matrix 
in Eq. (15). If the number of hidden neurons and the 
activation function with infinitely differentiable are 
determined, the connection weight w in Eq. (12) and 
the threshold ϕ of the hidden neurons in Eq. (14) can 
be randomly selected. The connection weight β can 
be calculated according to Eqs. (16) to (20), and the 
training process of ELM is completed. The number 
of hidden neurons and the type of activation function 
have a large influence on the application of ELM, 
and in general, the activation function can be selected 
from ‘sig’ function, ‘sin’ function or ‘hardlim’ 
function. To determine the optimal number of hidden 
neurons and the type of activation function, the root 
mean square error (RMSE) can be used to evaluate the 
training performance of ELM. The RMSE of the ELM 
with different hidden neurons and different activation 
functions is shown in Fig. 12. In addition, in order 
to verify the recognition performance of ELM, the 
testing sample set is built. The vibration signals of 
four types of planetary gear statuses are divided into 
the testing samples to be analysed, and each gear 
status has 50 testing samples. The testing samples 
are recognized by the trained ELM, and the overall 
recognition rate of the ELM with different hidden 
neurons and different activation functions is shown in 
Fig. 13.

Fig. 12.  RMSE of the ELM with different hidden neurons and 
different activation functions

For different activation functions, it can be found 
from Fig. 12 that the RMSE has a smaller value when 

the number of hidden neurons is between 30 and 
50. Moreover, when the number of hidden neurons 
reaches a certain level, the RMSE increases with 
the increasing of hidden neurons. The ELM with 44 
hidden neurons and ‘sin’ function has the minimum 
RMSE, and it reaches 0.1230. In addition, it can be 
seen from Fig. 13 that different hidden neurons and 
different activation functions have great influence 
on the recognition performance of ELM. When the 
number of hidden neurons increases to a certain extent, 
the overall recognition rate is gradually decreasing. 
The overall recognition rate has a maximum value 
when the ELM has 44 hidden neurons and ‘sin’ 
function, and it reaches 92.5 %. Therefore, the ELM 
with 44 hidden neurons and ‘sin’ function has the best 
recognition performance, and the detailed recognition 
rate of the ELM for different planetary gear statuses is 
shown in Table 2.

Fig. 13.  Overall recognition rate of the ELM with different hidden 
neurons and different activation functions

Table 2. Detailed recognition rate of the ELM with 44 hidden 
neurons and ‘sin’ function

Normal 
gear

Broken 
gear

Tooth root 
crack

Wear 
gear

Recognition rate [%] 94 100 86 90

The testing samples of four types of planetary 
gear statuses are used to verify the recognition 
performance of ELM. The recognition rate of each 
planetary gear status is obtained by calculating the 
number correctly recognized by ELM when the 
testing samples belong to some planetary gear status 
that is recognized by ELM. The multi-scale fractal 
box dimension of the broken gear is the largest, and 
it has a great difference with other gears; therefore, 
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the broken gear has the best recognition rate, and it 
reaches 100 %. The recognition rate of gear with 
tooth root crack is relatively low, and it reaches 86  %. 
The recognition rates of normal gear and wear gear 
are 94 % and 90  %, respectively. The ELM with 
44 hidden neurons and ‘sin’ function has a better 
recognition rate for different planetary gear statuses. 
The recognition rate can be used to show the ability 
to distinguish different planetary gear statuses, and it 
also can be seen as the credibility of the recognition 
result of ELM. In the practical application process, 
the vibration signal is continuously collected, and it 
also needs to be divided into multiple continuous 
samples for processing. More samples should be 
used to improve the reliability of the results, and the 
final diagnosis result needs to be determined by the 
recognition results of multiple samples. Next, the 
proposed method is applied to industrial experiments.

4  INDUSTRIAL EXPERIMENT APPLICATION

The fault diagnosis system based on the proposed 
method is applied to an industrial experiment in the 
Xutuan coal mine in the Anhui province of China, 
and it is used to monitor the planetary gear of shearer 
cutting parts. Before the establishment of the fault 
diagnosis system, the training samples of different 
planetary gear statuses of shearer cutting parts are 
prepared, and their fault features are extracted to train 
the fault diagnosis system according to the proposed 
method. A fault diagnosis system can be established, 
and it is used to identify the planetary gear faults 
of shearer cutting part. In the practical application 
process for shearer cutting part, the acceleration 
sensor is installed on the shell of the bearing seat of 
the planetary gear, and the data acquisition instrument 
is used to sample the signal of the acceleration sensor. 
The collected signal is transmitted to the PC fault 
diagnosis software, which is compiled with Labview. 
The experiment is shown in Fig. 14, and the data 
acquisition instrument is shown in Fig. 15.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 14.  Diagnosis experiment of planetary gear  

of shearer cutting part

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15.  Data acquisition instrument

The sampling frequency is set to 5000 Hz. 
Because the vibration signal is collected continuously, 
it needs to be divided into multiple samples for 
analysis, and each sample is set to include 10000 
data points. In the process of diagnosis analysis, 50 
samples are set to be analysed each time, and the 
diagnosis result of each sample can be obtained. The 
probabilities belonging to different statuses can be 
counted. The final diagnosis result is the status with 
the maximum probability, and the corresponding 
probability can be regarded as the reliability of the 
final diagnosis result. More samples can improve the 
accuracy and reliability of diagnosis. Next, an example 
of the detected fault in the experiment application is 
selected to illustrate. The vibration signals of normal 
operation and the detected fault, which are obtained 
by the established fault diagnosis system is shown 
in Fig. 16. In addition, their multi-scale fractal box 
dimensions are extracted according to the proposed 
method, and they are shown in Fig. 17.

a) 

b) 
Fig. 16.  The vibration signals of a) normal operation, and b) 

detected fault

It can be seen from the figures that the vibration 
amplitude of the detected fault is larger in comparison 
with the vibration signal of normal operation. The 
shock components are increased, and their amplitude 
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is relatively strong. The multi-scale fractal box 
dimension of the detected fault increases comparing 
with that of normal operation, and it greatly deviates 
from the multi-scale fractal box dimension of normal 
operations. 

 

 

 

 

 

 

 

 

 

 
Fig. 18.  Fault diagnosis software

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Fig. 19.  The diagnosed broken gear

In the established fault diagnosis system, the 
fault diagnosis software is shown in Fig. 18. The final 

diagnosis results, the detected vibration signal, the 
IMFs obtained by CEEMD, the comparison between 
the detected features and the standard features can 
be displayed on the software interface. The number 
of analysis samples is set to 50, and 48 of them are 
diagnosed as broken gear. Thus, the final diagnosis 
result is that the monitored planetary gear is broken, 
and the credibility of the final diagnosis result is 96%. 
The shearer cutting part is repaired after determining 
the diagnosis result, and it is found that the breakage 
happens on the first stage planetary gear of shearer 
cutting part. The diagnosed broken gear is shown in 
Fig. 19. The experiment proves that the proposed fault 
diagnosis method of a planetary gear based on multi-
scale fractal box dimension of CEEMD and ELM can 
accurately recognize the planetary gear status, and it is 
an effective fault diagnosis method.

5  CONCLUSIONS

A fault diagnosis method of planetary gear based on 
multi-scale fractal box dimension of CEEMD and 
ELM is proposed. CEEMD is proposed to improve the 
decomposition effect of EEMD, and a series of high-
quality IMFs which contain more accurate feature 
information can be obtained by CEEMD. The effective 
IMFs associated with the shock feature information 
generated by planetary gear faults are selected by the 
kurtosis criterion, and they are reconstructed. The 
reconstructed signal is processed by the multi-scale 
algorithm, and the feature information contained 
in the signals with different scales is extracted and 
quantified by the fractal box dimension. The multi-
scale fractal box dimension is used as the fault feature 
information, and it is defined as the input of ELM. 
The influence of the number of hidden neurons and 
the type of activation function on the recognition 
performance of ELM is analysed. The testing sample 
set is built and used to verify the recognition effect, 
and the recognition rates of the ELM with different 
hidden neurons and different activation functions 
are calculated and compared. In addition, a fault 
diagnosis system is established based on the proposed 
method, and the industrial experiment application is 
carried out. The experiments show that the proposed 
method based on multi-scale fractal box dimension of 
CEEMD and ELM can be used to recognize planetary 
gear status, and it is an effective fault diagnosis 
method for planetary gears.
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