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0  INTRODUCTION

Energy plays an essential role in the economic growth 
of a nation. Fossil fuels are limited and are becoming 
exhausted day-by-day, so it is necessary to develop 
alternative sources of energy. Among various types 
of renewable sources of energy, solar energy is one of 
the most abundant and clean sources. There are two 
ways of solar energy utilization: active and passive. 
A solar air heater (SAH) is in the category of active 
solar energy utilization. In the solar air heating 
system, the solar collector or absorber plate is the 
main component, which collects the solar radiation 
in the form of heat and transfers it to air flowing 
across it. Due to the lower value of heat capacity and 
low thermal conductivity of air, the convective heat 
transfer coefficient between the absorber plate and the 
air passing through it is low; thus, the major issue is to 
enhance the value of the heat transfer coefficient. One 
of the best techniques for enhancement of heat transfer 
coefficient is to use artificial roughness on the air-
flow side of the absorber plate. The use of roughness 
creates turbulence near the surface of absorber 
plate, which increases the heat transfer coefficient. 

Researchers (Bhushan and Singh [1], Chamoli et al. 
[2], Prasad [3], Gawande et al. [4]) have studied the 
performance enhancement of SAHs by using artificial 
roughness on the absorber plate.

The actual performance of SAH can be evaluated 
by the implementation of both energy and exergy 
analyses. The energy analysis alone does not give 
the direction of the process implementation and 
the information about the quality of various kinds 
of energies involved in the system. It also does not 
indicate the various internal irreversibilities. These 
problems are overcome by using exergy analysis [5] 
to [8]. In view of this, in the present investigation, the 
exergy analysis of roughened SAH has been carried 
out.  

Recently, many researchers have studied the 
thermodynamic analysis of SAH. Kurtbas and 
Durmus [6] performed experiments with five types of 
SAHs with different absorber surface and evaluated 
thermal efficiency, exergy loss and pressure drop 
with a change in the Reynolds number. Ajam et 
al. [7] formulated the exergy efficiency equations 
and implemented MATLAB software for optimum 
performance of the system. Gupta and Kaushik [9] 
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studied the energy performance of SAH, calculating 
the optimal value of performance parameters of a flat-
plate solar air heater for the maximum exergy delivery. 
They also concluded that maximum exergy output is 
obtained at a low mass flow rate when the temperature 
of inlet air is low. Esen [10] conducted experiments 
of a double-flow solar air heater under various 
operating conditions using four types of absorber 
plates and determined the energy and exergy values. 
Saidur et al. [11] studied energy and exergy analyses 
of various solar energy systems and concluded that 
exergy analysis is necessary for examining system 
performance. Panwar et al. [12] reviewed the concept 
of energy and exergy for a solar dryer. Yadav et al. [13] 
evaluated the exergetic efficiency of SAH with arc-
shaped protrusions on absorber plate. Yazdanpanahi 
et al. [14] investigated the exergetic efficiency of a 
solar photovoltaic thermal (PVT) water collector on 
the basis of exergy loss. Hedayatizadeh et al. [15] 
carried out and investigated the exergy loss-based 
efficiency optimisation of a double pass v-corrugated 
plate solar air heater. Sahu and Prasad [16] carried out 
an exergetic analysis of SAH having arc-shaped, wire-
roughened absorber plates. 

ANN is one of the most commonly used soft 
computing techniques available for the analysis of 
thermal systems. It is used for optimization, modelling, 
simulation and estimation to solve complex problems 
that are difficult to solve using other conventional 
techniques. The use of ANN technique saves time 
and provides key information patterns in a multi-
dimensional information domain and, therefore, it 
has been becoming increasingly popular in science 
and engineering sectors. It has wide applications 
in the field of thermal engineering especially for 
the prediction of performance of thermal systems 
including solar energy systems. Many researchers 
have used ANN in recent years [17] to [25]. To 

evaluate the exergetic performance of an SAH from 
the actual experiments takes more time and is costlier. 
In addition to this, the solution of governing equations 
by adopting numerical methods requires huge and 
complex computer codes. To avoid these problems, 
the ANN method is used. The qualities of the ANN 
technique are to identify and classify network activity 
based on limited, incomplete, noisy, dynamic, and 
nonlinear data sources. 

From the above literature review, it is found that 
the ANN technique has been mostly used for thermal 
performance analysis of solar air heaters, but exergetic 
performance analysis of such systems using an ANN 
model has not been done so far. In view of this, in 
the present work, an ANN model has been developed 
to predict the exergetic performance of SAH by 
using actual experimental data and the calculated 
values of parameters. A total of fifty data sets have 
been obtained by conducting experiments on three 
geometries of transverse wire rib roughened solar air 
heaters. An ANN model by taking seven neurons in 
the input layer and five neurons in the output layer 
has been developed. Three different types of training 
functions such as Levenberg-Marquardt (LM), 
scaled conjugate gradient (SCG) and Polak-Ribiére 
conjugate gradient (CGP) have been used to obtain the 
best network for the prediction of output data. Seven 
neurons in the hidden layer with LM learning function 
are obtained as an optimal topology. Statistical error 
analysis has been performed for the predicted values 
of exergy performance.

1  MATERIALS AND METHODS

1.1  Experimental System and Data Collection 

The experiments have been conducted at Jamshedpur, 
at latitude and longitude of 22.77° N and 86.14° E. In 

1.	 Entrance section
2.	 Test section
3.	 Exit section
4.	 Diverging section
5.	 Digital thermometer
6.	 Thermocouples
7.	 Temperature display unit
8.	 GI pipe
9.	 Orifice plate
10.	 U-tube manometer
11.	 Valve
12.	 Variac transformer
13.	 Suction blower

Fig. 1.  Experimental system
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Fig. 1, the diagram of experimental system is shown. 
It consists of an artificial roughened SAH with an 
inlet section, test section, exit section and connected 
to a GI pipe which is equipped with flange coupling, 
orifice plate, U-tube manometer, thermometers, 
suction blower, valves and variac transformer. 
The solar radiation intensity was measured by a 
pyranometer (Fig. 2). In the present work, the SAH 
duct length is 168 cm, width is 28 cm, and height is 4 
cm. A photographic view of absorber plate is shown 
in Fig. 3a and its detailed diagram is shown in Fig. 
3b, which is made of a 1 mm-thick galvanized iron 
(GI) sheet. A 4 mm glass cover has been used in this 
system. The experiments have been conducted on 
three different types of roughened absorber plates. 
The detail specification of the roughened absorber 
plate is given in Table 1. The GI pipe connected to 
air heater duct is of 3-inch diameter. To measure the 
mass flow rate of air, varying from 0.0235 kg/s to 
0.0270 kg/s. through the SAH, an orifice meter was 
fitted to the pipe. The pressure drop was measured by 
using a U-tube manometer, fitted across the orifice 
plate. A 2-Horse Power – 3-phase suction blower was 
used to allow ambient air through the SAH duct. The 
intensity of solar radiation was measured with a digital 
pyranometer. For measuring the temperature at various 
locations of the plate and air temperatures at the inlet 
and outlet of collector duct, digital thermometers were 
used. The experiments were conducted on clear days 
in the month of February and data were recorded from 
10:00 to 14:00 for six days. A total of fifty sets of 
data were collected for three different specifications 
of roughened absorber plate on the basis of roughness 
height (e), relative roughness pitch (P/e), and relative 
roughness height (e/D).

Fig. 2.  A photograph of pyranometer system

The uncertainties occurring in measurements of 
parameters were calculated by using equation [23] and 
[26] given below and are presented in Table 2. 

	 U u u un= + + + 1

2

2

2 2
0 5

... ,
.

	 (1)

where, un indicates the relative uncertainties in the 
individual factors. 

a) 

b) 
Fig. 3.  a) A photograph of absorber plate, and  

b) absorber plate with transverse wire rib roughened

Table 1.  Specification of roughened absorber plate

Roughness parameter
Absorber roughness type

Type A Type B Type C
Relative roughness  

pitch (P/e)
10 10 10

Relative roughness  

height (e/D)
0.014 0.017142 0.009571

Roughness  

height (e), [mm]
0.98 1.2 0.67

Table 2.  Uncertainty in measured parameters

Serial no. Measuring instruments Uncertainty

1 Uncertainty in 
temperature 
measurement

Collector inlet ±0.166 °C
Collector outlet ±0.166 °C
Absorber plate ±0.166 °C
Ambient air ±0.166 °C

2 Air velocity ±0.14 m/s
3 U- tube manometer ±0.0001 mWc
4 Solar intensity ±0.1 W/m2

1.2  Exergy Analysis of a Solar Air Heater

The analysis of the exergy of a system is the most 
useful concept for the optimal use of energy. This 
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analysis can be used to design thermal systems and 
to make plans for their efficient operations. The 
exergetic efficiency of a system is the ratio of exergy 
gained by the system to exergy input to the system. 
The following assumptions have been used in the 
present analysis:
1.	 The system works under a steady-state condition.
2.	 Kinetic and potential energies (KE) and (PE) are 

negligible.
3.	 Chemical and nuclear reactions are negligible.
4.	 Specific heat of air is constant and can be 

considered to be an ideal fluid.
5.	 The heat transfer to the system and work transfer 

from the system are positive.
In general, energy and exergy balance equations 

in rate form with negligible kinetic and potential 
energies can be written as [5], [10] and [27]:

	  E Ei o∑ ∑= , 	 (2)

	   Ex Ex Exi o loss∑ ∑ ∑− = , 	 (3)

where,
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( ) ( )

,int 	 (4)
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The Eq. (5) can also be expressed as:
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Using the Petela theorem, Σ Exheat•  can be given 
as [5] and [8]:
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and the specific exergy at inlet and outlet can 
respectively be given as:

	 ψ i i e a i eh h T s s= −( ) − −( ), 	 (8)

	 ψ o o e a o eh h T s s= −( ) − −( ). 	 (9)

The external loss term in Eq. (6) is calculated by 
using following equation [14] and [15]:
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When using Eqs. (7), to (10) in Eq. (6) the 
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where, 

	  Q IA WC C= =and 0. 	 (12)

The changes in enthalpy and the entropy of the air 
can be given respectively as:

	 ∆ = − = −( )h h h C T Tair o i p fo fi , 	 (13)
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Putting Eqs. (12) to (14) in Eq. (11), the following 
expression is obtained:
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The exergetic efficiency of SAH can be 
formulated by the ratio of net exergy output of the 
system to exergy input of the system.
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Van Gool [28] introduced the term “improvement 
potential” which is based on the concept of an 
exergetic analysis for various processes or systems. 
The improvement potential is expressed as follows:

	
 IP ExII dest= −( ) .1 η

	 (17)

1.3  Artificial Neural Network(ANN)

An artificial neural network works like a human brain, 
which consists of many solving units interconnected 
in a massively parallel structure. Because of its fast 
computing speed and satisfactory results, it is widely 
used in artificial intelligence applications in the 
field of engineering, mathematics, energy systems, 
medicine, economics, etc. This is used not only 
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in estimating, but also in optimizing and learning 
processes. Nowadays, ANNs can be used to solve 
complicated problems which are difficult to do so by 
conventional methods [17] and [20].

Fig. 4.  Basic structure of an artificial neuron

ANN is a computational tool that works like 
a human neural system. It is a complex information 
processing system, which is structured with 
interconnected segmental processing elements called 
“neurons”. These neurons find the input information 
from other sources and then generally perform a non-
linear operation on the results and give the final result 
as output. ANN works in two ways, first learning and 
second storing the knowledge in interconnects called 
“weights”. ANN can be used to estimate the values on 
the basis of input parameters, optimum topology, and 
training processes. In feed-forward networks (Fig. 4), 
each product of input elements and weights are fed to 
summing junctions and is summed with the bias of 
neurons as follows [17], [18] and [29]:

	 Y w x bj ij i
i

n

j= +
=
∑
1

. 	 (18)

Then, the sum Y passes through transfer function 
F which generates an output.

	 F Y u F w x bj j ij i j
i
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In the hidden layer, tansig and logsig transfer 
functions are mostly used. The nonlinear activation 
function, which is widely used, is the sigmoid function 
whose output lies in between 0 and 1, and it is given 
as:

	 F Y
ej Yj( ) =

+ −

1

1
. 	 (20)

When at input or output layer, negative values are 
found, the tansig transfer function is used, which is 
written as:
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The performance index of different training 
algorithms is represented by the mean square error 
(MSE) and it is formulated as:

	 MSE
n
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. 	 (22)

1.4  Selection Criteria for Optimal ANN Model with Error 
Analysis

The optimal ANN model, applied to predict the 
exergetic performance, is based on the criteria of 
minimum errors of root mean square error (RMSE), 
and the best fit of ANN predicted data with 
experimental data on the basis of R2. The RMSE, R2, 
mean relative error (MRE) and coefficient of variance 
(COV) are formulated as:

	 RMSE
n
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2  RESULTS AND DISCUSSION

2.1  Parametric Study of Experimental Results

In the present work, the exergetic performance of 
a roughened solar air heater was investigated by 
conducting experiments to obtain data. The exergetic 
efficiency, exergy destruction and improvement 
potential were calculated using Eqs. (16), (11) and 
(17), respectively, for the mass flow rates of air in the 
range of 0.0235 kg/s to 0.027 kg/s.

Fig. 5a shows the variation of exergetic efficiency, 
exergy destruction, and improvement potential with 
mass flow rate for e/D = 0.014. It has been found 
that exergy efficiency increases with the mass flow 
rate of air while the values of exergy destruction and 
improvement potential decrease within the air mass 
flow rate 0.0235 kg/s to 0.027 kg/s. Fig. 5b depicts the 
effects of mass flow rate on different specifications 
of the wire-roughened solar collector on the basis of 
e/D. It can be seen from Fig. 5b that with increase 
in e/D the exergy efficiency increases. However, the 
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optimum exergetic efficiency has been observed at the 
highest value of e/D= 0.01714 for the roughened solar 
collector. It has also been found that the minimum 
exergy destruction is obtained at e/D = 0.0171 for 
mass flow rate 0.027 kg/s and maximum IP is obtained 
at e/D= 0.014 for mass flow rate of air 0.0235 kg/s.

a) 

 b) 	
Fig. 5.  Effect of mass flow rate on exergetic efficiency at  

a) Exdest and IP , and b) different e/D

2.2  Development of ANN Model 

In the present work, the experimental data were 
collected for six days. From the experiment total 50 
sets of data were collected with the use of three types 
of roughened absorber plates. The experimental data 
sets range is shown in Table 3. The proposed multi-
layered perceptron (MLP) ANN model is represented 
in Fig. 6. 

The aim of the present work is to predict the 
exergetic performance of an artificial roughened 
solar air heater. The ANN model is structured with 
three layers: an input layer, hidden layer and output 
layer. At input layer seven input parameters such as 
experimental time, mass flow rate of air, absorber 
plate roughness height, atmospheric temperature, 
air mean temperature, plate temperature and 
solar radiation intensity, and in output layer five output 
parameters such as exergy inlet, exergy outlet, exergy 

efficiency, exergy destruction, and improvement 
potential are taken [30] and [31].

Fig. 6.  ANN model to predict exergetic performance

Table 3.  Range of experimental sample of complete sets

Minimum Maximum

Input 
parameters

m  [kg/s] 0.0235 0.0270

e [mm] 0.67 1.2

Ta [°C] 32 42

Tp [°C] 63.2 73.4

Tm [°C] 38 47.5

I [W/m2] 750 950

Output 
parameters

Exin [W] 318 345.736

Exout  [W] 1.336 2.7307

Exdest  [W] 268.232 292.050

ηII [%] 0.39 0.805

IP  [W] 266.486 290.508

2.3  Data Preparation

In this model, 70 % of the sample data are taken for 
training process and the remaining 30 % of data are 
used for testing (15 %) and validation (15 %) process. 
A feed-forward back-propagation algorithm has been 
applied for learning the present model. In this model, 
one hidden layer has been chosen. 

Before developing the ANN model, the input/
output sample data must be normalized between –1 
and 1 for the accuracy of prediction. The normalized 
value (Ynorm) for each raw input/output data set (Yi) 
was calculated as:

    Y Y Y
Y Y

High Low Lowi
value value value=

−
−

−( ) +min

max min

, 	 (27)

where, the high value and low value is 1 and –1, 
respectively.
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2.4  Selection of Training and Transfer Function

The three types of training functions are selected: LM, 
SCG and CGP learning algorithms. After selecting 
the training function, LEARNGDM is initiated, 
which is an adaption of the learning function. The 
Tansig transfer function is selected for hidden layer 
and linear function (purelin) for output layer. For the 
training process, 5 to 7 numbers of neurons have been 
selected in the hidden layer to predict the output result 
accurately. 

During the training period, the training algorithm 
adjusts the weights and biases iteratively to minimize 
the error between actual and predicted values of the 
ANN model. The performance of the training process 
of ANN model is measured on the basis of MSE.

2.5  ANN Simulation

For predicting the exergetic performance of the 
roughened SAH, the following steps were adopted in 
the MATLAB ANN simulation:

Table 4.  Statistical error values with different training functions of training and testing process

Output parameters

Process with learning algorithms Exout Exin ηII IP Exdest

RSME  

Training

LM-5 0.05647 0.06377 0.03080 0.13484 0.02587
LM-6 0.02782 0.03790 0.01041 0.04424 0.02566
LM-7 0.02519 0.02917 0.00782 0.02769 0.01497
SCG-5 0.03753 0.04127 0.01247 0.07255 0.04227
SCG-6 0.17464 0.06027 0.04578 0.11789 0.07677
SCG-7 0.14655 0.10521 0.09279 0.12534 0.09024
CGP-5 0.10228 0.30766 0.04641 0.31832 0.10039
CGP-6 0.11865 0.28707 0.04774 0.23702 0.14003
CGP-7 0.10320 0.05024 0.04925 0.11668 0.07117

Testing

LM-5 0.03005 0.50991 0.01555 0.06352 0.04458
LM-6 0.02245 0.02709 0.01018 0.02627 0.01691
LM-7 0.01120 0.01610 4.83E-03 0.02432 0.01313
SCG-5 0.40007 0.02705 0.01394 0.07270 0.03727
SCG-6 0.10025 0.02781 0.02514 0.06995 0.03381
SCG-7 0.06774 0.05859 0.02329 0.05604 0.03246
CGP-5 0.08624 0.19382 0.02825 0.24316 0.13871
CGP-6 0.11225 0.19068 0.01621 0.34687 0.16709
CGP-7 0.09295 0.05199 0.03344 0.07217 0.03679

R2

Training

LM-5 0.97024 0.99989 0.90439 0.99953 0.99976
LM-6 0.99278 0.99996 0.98907 0.99995 0.99998
LM-7 0.99408 0.99998 0.99384 0.99998 0.99999

SCG-5 0.98665 0.99995 0.98343 0.99986 0.99993

SCG-6 0.65209 0.99991 0.82352 0.99964 0.99978

SCG-7 0.79957 0.99971 0.79244 0.99961 0.99972

CGP-5 0.91134 0.99743 0.76631 0.99742 0.99963
CGP-6 0.89532 0.99776 0.76001 0.99856 0.99929
CGP-7 0.90061 0.99993 0.75553 0.99965 0.99982

Testing

LM-5 0.9835 0.99966 0.9072 0.99949 0.99965
LM-6 0.99076 0.9999 0.98007 0.99991 0.99995
LM-7 0.99778 0.99997 0.99536 0.99993 0.99997
SCG-5 0.97066 0.9999 0.95966 0.99934 0.99975
SCG-6 0.62323 0.9999 0.8256 0.99939 0.9998
SCG-7 0.68975 0.99954 0.75261 0.9996 0.99981
CGP-5 0.93679 0.99482 0.79456 0.99272 0.99678
CGP-6 0.91458 0.99487 0.80245 0.98401 0.99462
CGP-7 0.83595 0.99965 0.79671 0.99935 0.99976
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Step 1. Selection of input and output parameters for 
ANN model.

Step 2. Collection of input and output data samples 
from experiments.

Step 3. The collected data sets are divided into three 
sets: training, testing, and validation data sets.

Step 4. Selection of training and adaption learning 
function.

Step 5. To choose the number of neurons and hidden 
layer with transfer functions.

Step 6. To train the ANN model with experimental 
data.

Step 7. Compare the performance of different models 
on the basis of statistical error analysis.

Step 8. Determine the optimal ANN model.
Step 9. Extract the predicted data and save this data.

The trial-and-error method is adapted to select 
the number of neurons in the hidden layer. There are 
many rules of thumb available in the literature. Two 
of them mentioned by Masters [32], Witten and Frank 
[33], Shibata and Ikeda [34] are given below. The 
optimum number of neurons are calculated by:

	 H M N
n =

+
2

, 	 (28)

	 H M Nn = ⋅ . 	 (29)

Using the two formulas above, the number of 
neurons is obtained as 6, so on the basis of trial and 
error method 5 to 7 numbers of neurons have been 
selected to obtain the optimum number of neurons for 
the best ANN model. The three training algorithms, 
TRAINSCG, TRAINCGP and TRAINLM, were used 
for training process and each model is trained for 50 
times. The statistical results of training with 5 to 7 
neurons are shown in Table 4.

The networks were trained on the basis of 
experimental and calculated data with LM, SCG and 
CGP training functions and predicted the results. 
From Table 4, it is found that at the training process 
the value of RMSE for exergy outlet, exergy inlet, 
exergy efficiency, improvement potential and exergy 
destruction are 0.025193, 0.029170, 0.007822, 
0.027696, and 0.014971, respectively, for LM-
7, which is the lowest error among three training 
functions. Accordingly, the values of R2 are 0.99408, 
0.99998, 0.99384, 0.99998, and 0.99999, respectively. 
The value of RMSE at the testing process are 
0.011208, 0.016105, 4.83E-03, 0.02432 and 0.013133, 
respectively, and the value of R2 are 0.99778, 0.99997, 

Fig. 7.  Regression plot of TRAINLM-7 at R=1; a) training, b) validation, c) test, and d) all
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0.99536, 0.99993 and 0.99997 respectively. LM-7 is 
the optimum topology due to lowest error of RMSE 
and higher values of R2 among different training 
functions. When TRAINLM with 7 neurons ANN 
model is trained, the ANN model training process 
stopped at the 51st epoch where 50 cross validation 
errors occur. At epoch 1 and corresponding to MSE 
= 0.00084188, the best performance is obtained. 
The regression plot for TRAINLM with 7 neurons 
is shown in Fig. 7. The plot exhibits the ANN model 
from the complex relationship of experimental data on 

the basis of R. It has been found that the experimental 
data of different output parameters matches with 
predicted data. The values of R for training, validation, 
testing, and all processes are unity, which is a sign of 
the accurate result.

A comparison of the experimental data with 
predicted data from ANN model is shown in Fig. 8. The 
values of R2 for predicted exergy outlet, exergy inlet, 
exergy efficiency, improvement potential and exergy 
destruction are 0.99584, 0.99997, 0.99517, 0.99983 
and 0.99997 respectively which are nearer to unity 

a)       b)       c) 

d)       e) 
Fig. 8.  Comparison of experimental and ANN predicted values for: a) exergy outlet [W], b) exergy inlet [W], c) exergy efficiency [%],  

d) improvement potential [W] and e) exergy destruction [W]

a)       b)       c) 

d)       e) 
Fig. 9.  Individual error for ANN predicted a) exergy outlet, b) exergy inlet, c) exergy efficiency,  

d) improvement potential and e) exergy destruction
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and thus give accurate results. The individual errors 
are shown in Fig. 9. From Fig. 9, it has been found 
that the errors between actual and ANN predicted 
data is very small. From Fig. 9, the predicted exergy 
outlet, exergy inlet, exergy efficiency, improvement 
potential and exergy destruction most individual 
errors are found between ±0.02, ±0.03, ±0.01, ±0.025 
and ±0.025, respectively.

The performance of the selected MLP ANN 
model for the exergetic performance of solar air heater 
is shown in Table 5 on the basis of MSE, COV, MRE 
and R2. The MSE and R2 is calculated by using Eqs. 
(22) and (24), respectively. The remaining MRE and 
COV are calculated by Eqs. (25) and (26) respectively. 
It has been found that the values of MSE, COV and 
MRE are very low for the predicted value of exergetic 
performance parameters. In contrast, the values of R2 
for all parameters are greater than 0.995. From Table 
5, the best predicted values are for exergy inlet due to 
the lowest error of MSE, COV and MRE among all the 
variables and these values are 7.10E-05, 7.91E-03and 
2.70E-03, and the highest value of R2 is 0.99997.

Table 5.  Performance of predicted exergetic analysis of solar air 
heater for selected ANN model

Pa
ra

m
et

er
s

Exout Exin ηII
IP Exdest

MSE 4.76E–04 7.10E–05 4.90E–04 3.60E–03 5.64E–04

COV 1.08E+00 7.91E–03 1.1658 2.12E–02 8.36E–03

MRE 8.50E–01 2.70E–03 9.96E–01 1.51E–02 6.68E–03

R2 0.99584 0.99997 0.99517 0.99983 0.99997

3  CONCLUSION

In the present work, the exergetic performance of 
SAHs with three different geometries of artificial 
roughness on absorber plates, has been worked 
out using an ANN technique. A total of fifty sets 
of sample data were collected from experiments. 
Different types of ANN model were developed and 
trained by taking experimental time, mass flow rate, 
roughness size, atmospheric air temperature, mean 
temperature of air, absorber plate temperature, and 
solar radiation intensity as input variables and exergy 
outlet, exergy inlet, exergetic efficiency, exergy 
destruction, and improvement potential as output 
variables. Three different types of learning algorithms 
were used for the training process. Among these three 
learning algorithms, the LM algorithm with 7 neurons 
in the hidden layer is found to be optimal for the 

best network. The experimental and calculated data 
were successfully trained with LM-7 and predicted 
the exergetic performance of SAH. The values of 
MSE, COV and MRE of predicted data are very low, 
which shows that the estimated results are closer to 
experimental data of SAH. The value of R2 for exergy 
inlet, exergy outlet, exergy efficiency, IP and exergy 
destruction were found to be 0.99584, 0.99997, 
0.99517, 0.99983 and 0.99997, respectively, which 
give the satisfactory results of predicted data. The 
best approximate and least approximate values have 
been found for exergy inlet and exergy efficiency, 
respectively, on the basis of statistical results. Because 
of the reduced computing time and high accuracy of 
results, the ANN technique can be used to successfully 
predict the exergetic performance of a roughened 
absorber plate SAH.

4  NOMENCLATURE

AC	 area of collector absorber surface, [m2]
bj	 bias,
Cp	 specific heat of air at constant pressure,  
	 [J/(kg K)]
e	 roughness height, [mm]
e/D	 relative roughness height,
E 	 energy rate, [W]	
Ex 	 exergy rate, [W]	
Exdest 	 rate of irreversibility, [W]

h	 enthalpy, [J/kg]
Hn	 number of hidden neurons,
I	 solar radiation intensity, [W/m2]
IP 	 rate of improvement potential, [W]
m 	 mass flow rate, [kg/s]

M	 input parameters,
N	 output parameters,
P	 fluid pressure, [Pa]
P/e	 relative roughness pitch,
Qc 	 solar energy absorbed by collector surface, 

	 [W]
Qu	 energy gained by air, [W]
R	 correlation coefficient,
R2	 coefficient of multiple determination,
Ra	 universal gas constant, [J/(kg K)]
s	 specific entropy, [kW/(kg K)]
t	 time [s]
T	 temperature, [K]
un	 relative uncertainties,
wij	 weights,
xi	 input variables,
XA	 actual value,
XP	 predicted value,
Y	 experimental value of output parameter.
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Greek letters
α	 absorptivity of absorber plate,
ηII	 exergy efficiency, [%]
ψ	 specific exergy, [J/kg]
τ	 transmissivity of glass cover.

Subscripts
a	 ambient air,
c	 collector,
e	 environment,
ext	 external,
fi	 inlet air,
fo	 outlet air	,
fm	 mean air	,
gen	 generation,
heat	 heat,
i	 inlet,
int	 internal
loss	 loss,
min	 minimum,
max	 maximum,
o	 outlet,
opt	 optical,
p	 plate,
s	 sun.
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