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0  INTRODUCTION

Leaf springs and hinges are two kinds of flexure 
guide; they have many applications in precision 
machines, especially in nanoelectromechanical 
systems (NEMs) and microelectromechanical systems 
(MEMs). These flexure guides have outstanding 
advantages such as a lack of friction, and their guiding 
resolution is on the order of a nanometre. However, 
they have a short working range (from micrometre to 
millimetre). Therefore, the new flexure guides, which 
have a large working range and nano-resolution, have 
become very important in recent years. For example, 
a parallel leaf spring flexure has been presented with 
increasing displacement [1]; a displacement reduction 
mechanism based on torsional leaf spring hinges has 
been developed [2]; a novel flexure-based leaf spring 
has been presented with a large range (25 × 25) μm2 

[3]; a mechanism for a single-axis flexure-based 
nano-positioning stage with a large range of motion 
(up to a millimetre) is described in [4]; a multi-axis 
positioning system with nanometric resolution over 
a 1 mm stroke is described in [5]; a novel flexure 
parallel-kinematics precision positioning stage with 
a centimetre range has been designed and developed 
[6], and many hinge flexure guides have been reported 
[7] to [11]. In comparison with a hinge, the leaf spring 
has a smaller size and a minimum use of materials for 
the same displacement. Thus, we examined leaf spring 
flexure guides for the large range travel in this study. 

In general, a leaf spring can be divided into three 
types: single, single-bent, and double-bent leaf [12]. 
The single leaf has two degrees of freedom (DoF) with 
a coupled error and a small range of travel. Single-
bent and double-bent leaf flexures (DBLFs) have 
three DoF and a larger range of travel. Many studies 
in recent years have focused on using leaf springs in 
precision guided machines [1], [2] and [12] to [16]. 
The bending deflections and stresses of a cantilevered 
single-leaf flexure using higher-order beam theory 
were investigated [13]; a one DoF rotational flexure 
joint using a leaf spring has been proposed [14]; the 
bending displacement of a single-bent leaf flexure 
under transverse load has been analysed [15], and a 
leaf spring has been designed in combination with 
a hinge [2] and [16]. Even though the double-bent 
leaf flexure can create a larger range of travel than a 
single-bent leaf flexure, much research has not been 
reported. Thus, the DBLF under torsional loading 
will be investigated in this study. The U-spring model 
presented in [17] has a model similar to the DBLF, 
but only the in-plane deformations were analysed 
and a torsional analysis was not considered in the 
compliances of their model [17].

Torsional analysis plays an important role in 
machine design, especially in precision machines. 
General torsional theory considers the cases of no 
warping and warping in torsion was shown in [18] to 
[20]. Torsional theory with warping has been presented 
in many studies. Examples include a generalized 
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beam theory of bars under torsional loading presented 
in [21], and a theory of torsional analysis for an 
open thin-walled beam developed in [22] and [23]. 
However, the case of partially restrained warping 
was not considered in these studies. The partially 
restrained warping case was analysed and presented in 
[24] and [25]; however, it was applied to a different 
analysis model. The torsional analysis of a leaf spring 
with partially-restrained warping was investigated in 
[26], but it was applied to a single-bent leaf flexure 
in which the partially restrained warping occurred one 
time.

In the present study, we performed a torsional 
analysis of a DBLF with consideration of double 
partially-restrained warping and changes of the 
warping restraint factor K. The strain energy of each 
element of the DBLF was derived, and the theoretical 
torsional displacement equation of the DBLF was 
derived using Castigliano’s second theorem. The angle 
of twists of the DBLF under torsional loading from 
the theoretical equations is numerically compared 
with those from a finite element analysis (FEA) at 
the default values and with variations of the length, 
width, and thickness of the DBLF. We suggest that our 
torsional analysis could be applied to applications of 
DBLFs in nano-scanner design.

1  THEORETICAL ANALYSIS

A model of the DBLF is shown in Fig. 1. The DBLF 
was divided into three elements. It has one fixed end 
(at the free end of element 3), and three forces and 
three moments are applied to the other end. In this 
structure, the flexure acts as a leaf spring with three 
degrees of freedom and can create a large range of 
travel. The dimensions of the structure are length l, 
width b, and thickness t. When a torsional moment 
Tx is applied at the free end of element 1, element 1 
twists, element 2 bends, and element 3 twists. The 
joints between elements 1 and 2 and elements 2 and 
3 are not fixed and are not free; they produce double 
partially-restrained warping under torsional loading.

Fig. 2 shows an application of the DBLF in 
a planar nano-scanner. The system includes four 
flexures connected to four corners of a square moving 
body in order to provide three DoF motion smoothly 
and has a larger range of travel than other leaf spring 
types. When a torsion along the x or y axis is externally 
applied in the moving body, it causes out-of-plane 
motion: the moving body cannot retain a planar 
surface, which will lead to reduced scanner accuracy. 
In this investigation, the rotational displacement of the 

flexure under torsion Tx was analysed and calculated 
to ensure accurate operation of the precision machine.

Fig. 1.  Schematic diagram of the double-bent leaf flexure

Fig. 2.  Schematic diagram of a planar scanner

1.1  Derivation of Total Strain Energy

We used Castigliano’s theorem to find the rotational 
displacement of the flexure shown in Fig. 1. The twist 
angle was defined by using the partial derivative of 
the total strain energy with respect to the applied 
torsion Tx as follows:

 θx
x

U
T

=
∂
∂

,  (1)

where U is the total strain energy that is stored in the 
flexure and θx is the angle of twist. 

When the torsion moment Tx is applied to the 
flexure, it causes torque in element 1, bending in 
element 2, and torque in element 3. Thus, three 
components of strain energy due to Tx must be defined. 
The governing equation for non-uniform torsion of a 
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homogeneous isotropic prismatic bar subjected to an 
end constant torsion Tx is given by [19]  

 GJ d
dx

EC d
dx

Tx
x

w
x

x
θ θ

− =
3

3
,  (2)

where Jx, Cw, G, and E are the torsion constant, 
warping constant, modulus of transverse elasticity, 
and modulus of longitudinal elasticity (Young’s 
modulus), respectively. The general solution of Eq. (2) 
is given by [19]:

 θ α αx C C x C x C x= + + +
1 2 3 4

cosh sinh ,  (3)

where α =
GJ
EC

x

w

 is the torsion-bending constant and 

Ck (k = 1, 2, 3, 4) are the constants of integration. The 
angle of twist is defined after the boundary conditions 
(BCs) are applied.

1.1.1 Strain Energy of Torsion in Element 1

As previously mentioned, the joint between element 
1 and 2 of the DBLF is partially restrained from 
warping. Therefore, the partial warping constraint 
occurs at x = –l and free warping occurs at x = 0. To 
find the angle of twist of element 1 with the partial 
warping constraint at the joint, the following two 
extreme BCs are defined and combined as follows:

First case. Given the assumptions that the 
full warping constraint occurs at x = –l and the 
free constraint occurs at x = 0, we have θx(–l) = 0,  
d l
dx
xθ −( )

= 0  at x = –l; and Mω = 0 or 
d
dx
x

2

2

0
0

θ ( )
=   

at x = 0 (where Mω is the bimoment [18]). Thus, the 
following constants for Eq. (3) are determined: 
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Therefore, the twisting angle of the first case is

θ
α

α α
α

α
αx

x

x

T
GJ

x l
l

x
l11

1 1
= + − −





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

cosh
sinh

cosh
. (4)

In the second case, given the assumptions that 
free warping occurs at both ends (x = –l and x = 0), 

we have θx(0) = 0 and Mω = 0 or d
dx

x
2

2
0

θ
=  at x = 0; 

and Mω = 0 or d
dx

x
2

2
0

θ
=   at x = –l. The constants are 

determined in this case as follows:

 C C T
GJ

C Cx

x
1 2 3 4
0 0 0= = = =, , , .  (4a)

Thus, the twisting angle of the second case is

 θ
α

αx
x

x

T
GJ

x
12
= ( ).  (5)

In the studied flexure, the joint between elements 
1 and 2 was considered to be a flexible joint, which 
means it was not completely free to warp, but was 
also not fully restrained. Hence, the joint is partially 
restrained. A warping restraint factor K1 was 
introduced to find the degree of partial restraint from 
warping [24]. Then, the warping restraint factor K1 
was introduced into Eqs. (4) and (5): 
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From Eq. (6), when K1 = 0, the fully-restrained 
warping occurred at end x = –l (case 1), and free 
warping occurred when K1 = 1 (case 2). Eq. (6) 
represents the angle of twist of element 1 with the 
partial warping constraint at the joint. Therefore, the 
first- and second-order derivative equations were 
determined to be:

 θ
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and
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The strain energy stored in element 1 is defined 
as follows [23]:

 U EC dx GJ dxt w
l

x x
l

x1

0

1

2
0

1

21

2

1
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= ( ) + ( )

− −
∫ ∫θ θ" '

.  (9)

1.1.2  Strain Energy of Torsion in Element 2

Tx causes the pure bending in element 2 of the DBLF. 
The strain energy of bending is defined as follows:

 U
T
EI

dyb

l
x

x
2

0

2

2
=

( )
∫ ,  (10)

where lx = tb3 / 12  is the moment of inertia about the 
x-axis. 
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1.1.3  Strain Energy of Torsion in Element 3

Similar to element 1, the joint between elements 2 and 
3 of the DBLF is partially restrained from warping. 
Therefore, at element 3, the partial warping constraint 
will occur at x = –l and the full warping constraint will 
occur at x = 0. To find the angle of twist of element 
3 with the partial warping constraint at the joint, the 
following two extreme BCs are defined and combined 
as follows:

First case: we assumed that the full warping 
constraint occurs at both x = 0, and x = –l. Thus, 

the BCs are θx(0) = 0 and 
d
dx
xθ 0

0( )
=

�
 at x = 0; and 

θx(–l) = 0 and 
d l
dx
xθ −( )

= 0  at x = –l.

The constants for Eq. (3) are determined as 
follows:
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Therefore, the twisting angle is:
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Second case: we assumed that the full warping 
constraint occurs at x = 0, and the free warping 
constraint occurs at x = –l. Thus, the BCs are θx(0) = 0 

and 
d
dx
xθ 0

0( )
=

�
 at x = 0, Mω = 0 or 

d l
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x

2

2
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x = –l. 
The constants for Eq. (3) are determined as 

follows:
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The warping restraint factor K2 was introduced 
into Eqs. (11) and (12):
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or 
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where K K l K l
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When K2 = 0, the fully-restrained warping occurs 
at end x = –l (case 1), and free warping occurs when 
K2 = 1 (case 2). Eqs. (13) and (14) represent the 
angle of twist of element 3 with the partial warping 
constraint at the joint. Therefore, first- and second-
order derivative equations were determined to be:

     θ θ
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x x
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x K x
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The strain energy stored in element 3 is defined 
by Eq. [20]:

 U EC dx GJ dxt w
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l
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The torsion constant Jx of the rectangular cross 
section bar was determined by using Eq. (161) 
published at [19]:

 J bt t
b

t
bx = − −







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




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
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3 4

4
3
1 0 63 1

12
. .  (18)

The warping constant Cw with respect to the shear 
centre is defined [18] as the warping moment of inertia 
and is calculated as follows:

 C dA
bt

w = ∫ =
( )

ω 2

3

144
,  (19)

where ω is the warping function.
From Eqs. (9), (10), and (17), the total strain 

energy was determined as follows:
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1.2  Twist Angle

Integrating each of the terms in Eq. (20) yields:
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Therefore, from Eq. (21), the angle twist at the 
free end of the DBLF under torsion load Tx is obtained 
as follows: 
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Eq. (22) includes the partial warping constraints 
at the joints between elements 1 and 2, and elements 
2 and 3.

2  COMPARISON OF RESULTS

To verify the results of the theoretical analysis, FEA 
was conducted by using ANSYS 14.0 commercial 
FEA software. The parameters of the DBLF with 
length l = 10 mm, width b = 4 mm, and thickness t = 0.5 
mm were selected as the default values. The material 
used in this simulation is aluminium 6061. The torsion 
moment is Tx = 1 N mm. The FEA model has a mesh 
size of 0.1 mm. The sensitive parameters were used 
to check the agreement between the FEA results and 
theory results, with the following variations: length 
l = 5 mm to 20 mm, width b = 2 mm to 8 mm, and 
thickness t = 0.25 mm to 1 mm. The angles of twist 
of the DBLF from the theory were numerically 
calculated and compared using the FEA results with 
the various factors K1 and K2. The factors with lower 
errors compared to the FEA results were chosen and 
used in the subsequent design steps. 

2.1  Angle of Twist at Default Values

The rotational displacement of DBLF under torsion 
load Tx is defined by Eq. (22) according to the 
theoretical analysis. Both warping restraint factor 
values were chosen at K1 = K2 = K = 0, 0.5, and 1. The 
FEA simulation was also conducted at the default 
values of flexure. Table 1 shows the results obtained 
using the theoretical method and FEA. The error for 
K = 0.5 was the lowest at 1.3 %, and the errors for K = 0 
and K = 1 were 1.59 % and 8.7 %, respectively. The 
free warping was considered at two joints (K = 1) and 
showed significantly higher errors. The case of K = 0 
with fully-restrained warping at the joints also gave 
larger errors than in the case of K = 0.5. This indicates 
that the results based on the theoretical equation with 
K = 0.5 are in good agreement with the FEA results at 
the default values. Moreover, the two joints between 
elements 1 and 2, and 2 and 3, of the DBLF were 
well understood with the partial warping constraints 
(K = 0.5). However, to ensure the reliability of the 
calculations, the sensitive parameters with changes 
of length, thickness, and width of the DBLF were 
analysed and tested.

Table 1.  Comparison between theory and FEA results at the default 
values of the DBLF

Method
Rotational 

displacement 

θx [mrad]

Error between 
FEA and 

theory [%]

FEA 4.32 -

Theory

Fully-restrained warping 

(K = 0)
4.25 –1.59

Partially-restrained 

warping (K = 0.5)
4.37 1.3

Free warping (K = 1) 4.73 8.7

2.2  Sensitive Parameter Analysis

Fig. 3 shows the results of Tx sensitivity for length 
l that were obtained by using theory and FEA to 
simulate the variation of rotation θx for lengths l = 5 
mm to 20 mm under torsion Tx with warping restraint 
factor values of K1 = K2 = K = 0, 0.5, and 1. The values 
of θx are shown in the left y-axis and the errors are 
shown on the right y-axis. When length l increases, the 
rotation θx increases linearly in both methods, and the 
differences in these values are small. However, it is 
easy to observe the larger differences in the smaller 
length as shown in Fig. 3 and the values shown in 
Table 2. The errors from theory (K = 0.5) are below 
5 %, while the errors for K = 0 and K = 1 are nearly 
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Fig. 3.  Variation of θx according to length l under torsion Tx

Table 2.  Comparison between theory and FEA

Length [mm] FEA
Theory Error [%]

K=0 K=0.5 K=1 K=0 K=0.5 K=1
5 1.960 1.775 1.893 2.247 9.44 3.42 –14.61

6.5 2.659 2.516 2.635 2.992 5.35 0.88 –12.54
8 3.365 3.261 3.380 3.737 3.09 –0.45 –11.07

9.5 4.065 4.006 4.125 4.483 1.44 –1.49 –10.28
11 4.767 4.752 4.871 5.228 0.31 –2.19 –9.69

12.5 5.483 5.497 5.616 5.974 –0.25 –2.43 –8.95
14 6.179 6.243 6.362 6.719 –1.04 –2.96 –8.75

15.5 6.861 6.988 7.107 7.465 –1.85 –3.59 –8.80
17 7.575 7.734 7.853 8.210 –2.09 –3.66 –8.38

18.5 8.262 8.479 8.598 8.956 –2.63 –4.07 –8.40
20 8.970 9.224 9.344 9.701 –2.84 –4.16 –8.15

Fig. 4. Variation of θx according to thickness t under torsion Tx
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10 % and 15 %, respectively. Thus, the theoretical 
result with K = 0.5 is in better agreement with the FEA 
results. 

Similarly, Fig. 4 shows the results of Tx sensitivity 
for thickness t with the variation of thickness t = 0.25 
mm to 1 mm. When thickness t increases, the rotation 
θx decreases nonlinearly for both methods, and the 
curves of these values are quite similar. However, 
there are large differences in the comparison of errors 
with FEA, as shown in Fig. 4, and the values shown 
in Table 3. In this simulation, the errors of theory 
(K = 0.5) are below 2 %, while the errors for K = 0 and 
K = 1 are nearly 3 % and 10%, respectively. These 
results show that the theoretical result with K = 0.5 is 
the most accurate prediction. 

Fig. 5 shows the results of the variation of 
rotation θx according to the width b = 2 mm to 8 
mm under torsion Tx based on theory and FEA. The 

warping restraint factors values are the same as in the 
aforementioned two cases. When width b increases, 
the rotation θx is decreasing in both methods. The 
errors compared with FEA are presented in Fig. 5 and 
Table 4. The errors of theory (K = 0.5) are below 5 % 
while the errors for K = 0 and K = 1 are up to nearly 
8 % and 17 %, respectively. These graphs also reveal 
that the results of theory with K = 0.5 are in strong 
agreement with the results of FEA.

In summary, the simulation was conducted 
at the default values and for variations of length, 
thickness, and width values and compared with the 
numerical calculations from the theoretical equations. 
The warping restraint factors values were varied as 
follows: K1 = K2 = K = 0, 0.5, and 1, corresponding to 
fixed (no warping), partially restrained warping, and 
free (free warping), respectively, in the theoretical 
method. The results are presented in Figs. 3 to 5 and 

Table 3.  Rotation θx [mrad] results for theory and FEA according to thickness t under torsion Tx

Thickness [mm] FEA
Theory Error [%]

K=0 K=0.5 K=1 K=0 K=0.5 K=1
0.25 32.797 32.447 33.343 36.029 1.07 –1.66 –9.85
0.325 15.214 14.971 15.386 16.632 1.60 –1.13 –9.32

0.4 8.295 8.145 8.372 9.053 1.81 –0.93 –9.13
0.475 5.007 4.937 5.075 5.490 1.39 –1.37 –9.65
0.55 3.279 3.230 3.321 3.593 1.50 –1.26 –9.56
0.625 2.275 2.237 2.300 2.489 1.67 –1.10 –9.41

0.7 1.654 1.619 1.665 1.802 2.10 –0.66 –8.96
0.775 1.241 1.214 1.248 1.351 2.21 –0.57 –8.88
0.85 0.960 0.937 0.963 1.043 2.49 –0.28 –8.59
0.925 0.760 0.740 0.761 0.824 2.64 –0.13 –8.45

1 0.615 0.597 0.614 0.665 2.88 0.11 –8.20

Fig. 5.  Variation of θx according to width b under torsion Tx
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Tables 1 to 4. The errors in the no warping case (K = 0) 
sensitivity analysis are up to 10 %. The errors in the 
free warping case (K = 1) are up to 17 %. The errors 
in the partially-restrained warping case (K = 0.5) 
are lower than 5 %. These results indicate that the 
partially-restrained warping at the two joints of DBLF 
is well explained with factors K1 = K2 = K = 0.5. 

3  CONCLUSION

We analysed the angle of twist of the DBLF under 
torsion with consideration of the partially-restrained 
warping at two joints and the warping restraint factor 
K. The strain energy of each element is derived, and 
the total strain energy of the DBLF is presented based 
on Castigliano’s theorem. The equations of rotational 
displacement of the DBLF under torsion are presented. 
The finite element simulation was conducted at 
the default values, and for variations of length, 
thickness, and width, using various values of the 
warping restraint factors. Our results indicate that the 
theoretical equations with consideration of the double 
partially-restrained warping effects (K1 = K2 = K = 0.5) 
for the DBLF can provide a sufficiently accurate 
prediction of torsional angle in the design of precision 
machines. 
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