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0  INTRODUCTION

To evaluate structural reliability of dynamically loaded 
components it is necessary to know the scatter of the 
loading spectra as well as the scatter of the fatigue-
life durability curve of the structural material [1] to  
[7]. Structures that are made from spring steels are 
typically subjected to a large number of load cycles. 
For this reason, a S-N fatigue-life curve is normally 
used to predict the fatigue life of such structures. In 
the past it was presumed that a fatigue-life limit Sa;FL 
exists at a certain number of load-cycles-to-failure 
NFL, e.g., for structural steels the fatigue-life limit 
should occur between 2×106 [8] and 108 [9] load-
cycles-to-failure, see Fig. 1. However, it turned out 
that for most metallic structural materials there is no 
fatigue-life limit [10]. What exists in practice is a so-
called Haibach’s knee point, below which the slope of 
the S-N curve is reduced. This part of the S-N curve 
is usually referred to as a very-high-cycle domain. 
Haibach [11] proposed a model for the S-N curve in 
which the slope below its knee-point is 2k–1, if its 
slope in the high-cycle domain is k, see Fig. 1.

Additionally many other researchers have shown 
that the slope of the S-N curve in the very-high-cycle 
domain is reduced ([12] to [14]). What is common 
to all these cases is that, not only the slope, but also 
the scatter of the experimental fatigue-life data, is 

significantly changed (i.e. increased) below the knee 
point of the S-N curve, see Fig. 2.

Fig. 1.  A S-N fatigue-life curve

It was further shown [13] and [14] that the slope 
of the fatigue-life curve in the very-high-cycle domain 
is much smaller than the one proposed by Haibach. In 
order to make reliable predictions of the structure’s 
fatigue life in the high-cycle and very-high-cycle 
domains one must be able to model the variable trend 
as well as the variable scatter of the number of load-
cycles-to-failure for these two domains of the S-N 
curve.

The shape of the S-N curve in the vast 
neighbourhood of the knee point between the high-
cycle and very-high-cycle fatigue domains of the S-N 
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curve is similar to the shape of the Coffin-Manson 
curve [15] in the neighbourhood of the transition 
between the low-cycle elastic-plastic domain and the 
high-cycle elastic domain of the fatigue-life curve. 
For this reason it is possible to model the S-N curve in 
the high-cycle and the very-high-cycle domains with a 
similar form:

 S a N c N a b c da
b b d= ⋅ + ⋅ >− − +( ) ; , , , ,0  (1)

where Sa represents the amplitude stress, N is the 
number of load-cycles-to-failure and a, b, c, d are 
parameters dependent on the material. We have shown 
before [16] that it is possible to model the fatigue-
life curve of such a shape together with its scatter 
by applying a Weibull’s two-parametric probability 
density function (PDF) to describe the scatter of the 
number of load-cycles-to-failure for an arbitrary 
amplitude-stress level:
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In that study we have presumed that the Weibull’s 
scale parameter η (which represents the number 
of load-cycles-to-failure at a 0.632 probability of 

rupture) was dependent on the amplitude-strain level 
εa via Coffin-Manson equation and that the Weibull’s 
shape parameter β was constant [16]. However, there 
is a huge difference between the scatter of the e-N 
curve and the scatter around the knee point between 
the high-cycle and very-high-cycle domains of the 
S-N curve. While the width of the scatter band of the 
e-N curve is constant below and above its knee point, 
this is not the case for the knee point between the high-
cycle and very-high-cycle domains of the S-N curve. 
In the latter case, the width of the scatter band of the 
S-N curve in the very-high-cycle domain is much 
larger than in the high-cycle domain, see Fig. 2. For 
this reason it is not possible to describe the scatter of 
such durability curve using a two-parametric Weibull 
PDF from Eq. (2) with a constant shape parameter β. 
On the contrary, to model the S-N curve around the 
knee point between the high-cycle and very-high-
cycle fatigue domains the Weibull’s shape parameter 
β should also depend on the amplitude-stress level Sa. 

The objective was to build a model for predicting 
the S-N curves and their scatter for a specific spring 
steel. Since the material’s characteristics depend on 
the manufacturing technology and the heat treatment 
of such steels, these influential factors should be 
considered when modelling the corresponding 
S-N curves. The S-N curves can vary a great deal 
between differently produced and/or heat-treated 
steels, even for similar operating conditions. That 
is why we decided to apply a serial hybrid neural 
networks to build the model that is able to predict 
the S-N curve and its scatter as a function of the 
manufacturing technology and the heat treatment. 
A similar approach was successfully applied before, 
for modelling the dependence of the S-N and e-N 
curves on the operating conditions ([17] and [18]). In 
the scientific literature there exist a number of articles 
on the application of neural networks for modelling 
and predicting durability curves. However, most of 
them are based on either multi-layer perceptrons or 
basis functions. With such an approach it is difficult 
to embed into a neural network an analytical model 
that is capable for predicting trend and scatter of the 
durability curve. Since the approach from Klemenc et 
al. [18] was proved to be successful we modified it in 
such a way that a new model is capable of predicting 
the S-N curve in its high-cycle and very-high-cycle 
fatigue domains by considering also the increased 
scatter of the fatigue-life data below the knee point of 
the S-N curve. The manufacturing technology and the 
heat treatment were the inputs to the neural network 
and the parameters of the S-N curve and its scatter 
were its outputs.

Fig. 2.  Scatter of the S-N curve in the high-cycle  
and very-high-cycle fatigue domains
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Such a comprehensive model of the S-N curves 
with a capability of considering the increased scatter 
in the transition between the high-cycle and very-
high-cycle domains has not been presented in the 
literature yet. A further innovation was to combine this 
model with the neural network in order to model the 
relationship between the parameters of the S-N curve 
and the applied manufacturing technology. The theory 
is explained in detail in section 1, experimental data 
are presented in section 2 and the results are presented 
and discussed in section 3.

1  THEORETICAL BACKGROUND

1.1  Variable-Scatter Model for the S-N Curve

To model the S-N curves and their scatter for a 51CrV4 
spring steel a similar statistical model as used in [16] 
was applied. Following this approach, the scatter of 
the number of load-cycles-to-failure N for an arbitrary 
amplitude-stress level Sa was described using a two-
parametric Weibull’s PDF, see Eq. (2) in section 1. 
The trend of the S-N curve in the neighbourhood of 
the knee-point was linked directly to the Weibull’s 
scale parameter η:

 S a S c S a b c da a
b

a
b d= ⋅ + ⋅ >− − +η η( ) ( ) ; , , , ,( ) 0  (3)

with the Weibull’s shape parameter β that is now 
dependent on the loading level Sa:
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With this equation the shape parameter β changes 
continuously and smoothly from the value of f at 
very low amplitude-stress levels to the value of 
( f·g) at high amplitude-stress levels. The transition 
gradient between the two limit values depends on the 
parameter h, with the steepest gradient occurring at 
the amplitude-stress value SKP. When combined with 
the scale parameter η from Eq. (3) a small scatter 
is obtained at high amplitude-stress levels and an 
increased scatter is obtained at the lower amplitude-
stress levels that correspond to the very-high-cycle 
fatigue domain.

To avoid illogical shape of the durability curves 
around the knee point Sa = SKP two limit conditions are 
defined:
1. The parameter g should never exceed the 

following value of glim:
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2. The parameter h should never exceed the 
following value of hlim:
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The two conditions in Eqs. (5) and (6) limit the 
transition gradient between the small and large values 
of the shape parameter β relative to the trend-curve 
slope ratio (b+d)/b. The knee-point stress SKP is 
calculated as a cross-section of the two asymptotes of 
Eq. (3), see Fig. 2:

 S aKP KP
b= ⋅η ,  (7)
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In this way the S-N curve and its scatter in 
the neighbourhood of the knee point between the 
high-cycle and very-high-cycle fatigue domains is 
modelled with seven parameters: a, b, c, d, f, g and h. 
These parameters can be estimated using a numerical 
optimisation process.

1.2  Serial Hybrid Multilayer Perceptron

Since the material characteristics of the spring steel 
are dependent on the manufacturing technology 
and the heat treatment, they are also reflected in the 
trend and scatter of the corresponding S-N curve. 
This means that the parameters, a, b, c, d, f, g and h 
from subsection 1.1 are not constant, but they differ 
according to the applied production process. To 
model this relationship, the serial hybrid multilayer 
perceptron (SHMP) neural network according to 
Agarwal [19] was applied.

The multilayer perceptron (MP) is linked in 
series with the analytical model of the S-N curve and 
its scatter from Eqs. (3) and (4), see also Fig. 3 ([20] 
and [21]). This means that the MP is applied first for 
modelling the dependence of the parameters a, b, c, 
d, f, g and h on the manufacturing technology and the 
heat treatment. Then the analytical model is used only 
for modelling the S-N curve and its scatter after the 
seven parameters are predicted by the MP.

The result of each fatigue-life test was the 
number-of-cycles-to-failure Nl for the given 
amplitude-stress level Sa;l, the manufacturing 
technology and the heat treatment. Therefore the data 
points for training and/or testing the SHMP have the 
following form: {(xl, Sa;l, Nl)l = 1, ..., n}. The vector 
of the input independent variables x represents the 
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parameters of the applied production process. The lth 
amplitude-stress level Sa;l is the independent variable 
of the analytical model from subsection 1.1 and Fig. 3. 
The lth number-of-cycles-to-failure Nl is the SHMP’s 
dependent variable and n is the total number of 
sample points. Having this in mind, Eqs. (2) to (4) are 
changed as follows:
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The output of neuron zj is equal to the weighted 
sum of Mi outputs zi from the preceding layer, 
modified by an activation function φj:

 z w zj j ij i
i
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where wij are the synaptic weights and Qj is the 
threshold of the neuron. In our case the activation 
function was a tanh() function for the hidden neurons 
and a linear function for the output neurons. This 
activation function was used instead of the more 
commonly used sigmoid function, because it turned 
out that a convergence of a training process was 

much better with the tanh() than with the sigmoid 
function in the studied case. The inputs xi to the MP 
model were the components of the condition vector x. 
The output neurons zk are applied for calculating the 
parameters a, b, c, d, f, g and h. The relations between 
these parameters and the neural outputs zk must fulfill 
the restraints from Eqs. (3) and (4) and ensure the 
robustness of the model:
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These restraints were extensively tested in a 
preliminary study involving two different spring 
steels, a cold-drawn structural steel and two complex-
phase steels.

The cost function for the SHMP model was 
a maximum-likelihood function EML according to 

Fig. 3.  Topology of the applied serial hybrid multilayer perceptron
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Pascual and Meeker [22]. Using this cost function the 
failed specimens as well as run-outs are considered 
for estimating the S-N curve and its scatter. For the 
fatigue failure a fatigue-failure identifier δl is set to 
1 and for the run-outs it is set to 0 in the EML cost 
function, see Eq. (13).

To calculate the error eML(l) for each sample 
l, the parameters a, b, c, d, f, g and h are predicted 
first by the MP for the input vector xi. From these 
parameters and the value of Sa;l the Weibull’s scale 
parameter ηpred;l is calculated with Eq. (9) using the 
Newton-Raphson method. The shape parameter βpred;l 
is calculated with Eq. (10).

The training of the SHMP model was carried out 
numerically with an error back-propagation algorithm 
and an epoch-based training. The gradients of the cost 
function EML for the synaptic weights wij were 
calculated as the sum of the gradients of the individual 
samples: ∂ ∂ = ∂ ∂

=∑E w e l wML ij ML ijl

n
/ ( ) /

1
. In every 

iteration of the training process the synaptic weights 
were adapted as follows [23]:
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The training process proceeds until the modelled 
S-N curves with their scatter agree with the 
experimental results for the different vectors xi. The 
training-rate parameter θij in Eq. (15) was added to 
consider the past gradient changes according to the 
delta-bar-delta rule [21].

The sample gradients ∂eML(l) / ∂wij were 
calculated as follows ([21] and [22]):

 ∂ ∂ = ⋅e l w zML ij j i( ) ,∆  (15)

where Dj is the error of the neuron j in the next layer 
to which the neuron i sends its signal. The next layer 
of neurons is either a hidden or an output layer. To 
calculate the errors Dj in the output layer of the MP the 
partial derivatives ∂eML(l) / ∂zk for the output neurons 
zk must be calculated for each sample (xl, Sa;l, Nl, δl):
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For reasons of clarity, the marking of the 
dependence on the vector x is omitted in Eq. (16) and 
the corresponding partial derivatives are listed in the 
appendix.

1.3   Selecting the Optimal SHMP Model

The SHMP model should represent the experimental 
data {(xl, Sa;l, Nl, δl);  l = 1, ..., n} in the best possible 
way, but if the SHMP topology is too complex a 
data over-fit can occur. So the complexity should 
sometimes be sacrificed to avoid the over-fitting of 
the SHMP model. In our study we decided to choose 
the optimal topology of the SHMP model using the 
Akaike information criterion (AIC) [23]:

 AIC n Ew ML= ⋅ + ⋅2 2 ln( ),  (17)

where nw is the number of synaptic weights in the MP 
and EML is the final value of the cost function. The 
smaller the value of the AIC criterion, the better the 
SHMP topology. In addition to the original form of the 
AIC criterion, we also applied its modification with a 
second-order correction for small samples [24]:
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2  EXPERIMENTAL DATA

Cylindrical specimens according to the ASTM E 606-
92 standard [25] were prepared by Institute of Metals 
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and Technology. They were cut from 51CrV4 steel 
bars in the rolling direction and manufactured by 
turning. In the middle the specimens were polished to 
an average roughness Ra of 0.2 mm, see Fig. 4. The 
steel bars were produced by two manufacturing routes. 
The reference series was prepared by a conventional 
manufacturing technology, i.e. continuous casting 
and hot rolling. The alternative series was first 
continuously cast, then electro-slag remelted (ESR) 
in order to obtain more uniform microstructure and 
finally hot rolled.

Fig. 4.  Cylindrical specimen used for the fatigue experiments

Cylindrical test specimens from both series were 
subjected to two different heat treatment procedures. 
The first heat treatment of the specimens consisted 
of heating to 870 °C, soaking for 10 minutes, which 
was followed by quenching in N2 gas at 5 bar and a 
fast cooling rate of 7.5 °C/s until 60 °C. The second 
heat treatment of the specimens was performed at the 

same austenitizing temperature of 870 °C but a slower 
cooling rate of 2.7 °C/s was obtained by reducing N2 
gas pressure to 1.05 bar. In both cases the specimens 
were finally tempered at 475 °C for 1 h. 

Therefore four different groups of specimens were 
obtained: two different manufacturing technology 
routes combined with two different heat treatments. 
Altogether 101 specimens were manufactured with at 
least 23 specimens in each group [26].

The fatigue-life experiments were carried out 
at the universal dynamic servo-hydraulic test stand 
Instron 8802. A Dynacell load sensor was used 
for force measurements and the experiments were 
load-controlled. The axial loading of the cylindrical 
specimens was fully reversed (R = –1). The 
experiments were carried out at a room temperature 
of 21 °C at different amplitude-stress levels (500 
MPa to 780 MPa) until the fatigue failure occurred. 
The testing frequency was 30 Hz. If the number of 
loading cycles exceeded 1 million without the fatigue 
failure the experiment run was terminated in order to 
reduce the experimental time and cost, since it follows 
from the literature that the fatigue failure between 
1 million and 2 millions of loading cycles is highly 
unlikely for these kind of high-strength steels [12]. 
The experimental results are presented in Fig. 5.

3  RESULTS AND DISCUSSION

3.1  Defining the SHMP Topologies and Pre-Processing the 
Data

There are two independent parameters that represent 
the input for the SHMP (a binary variable indicating 

Fig. 5.  Experimental fatigue-life data for 51CrV4 steel (abbreviations: conv.=conventional manufacturing technology,  
ESR=electro-slag remelting, FCR= fast cooling rate, SCR=slow cooling rate)
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the manufacturing technology and a real-valued 
variable indicating the cooling rate after the warming-
up phase), so the number of neurons in the SHMP 
input layer was two. The seven parameters a, b, c, d, 
f, g and h were predicted by the SHMP. Therefore, 
there were seven neurons in the output layer of the 
SHMP. All the SHMPs had one hidden layer and four 
different topologies consisting of 2 (NN_1), 3 (NN_2), 
6 (NN_3) or 9 (NN_4) neurons in the hidden layer.

The training set was composed of all the n = 
101 samples in Fig. 5. Many training processes were 
carried out with different initial values of the synaptic 
weights and training-rate parameters. A number of 
iterations were limited to 2,000,000 for each training 
process. The details on the training processes are 
listed in Table 1 for the best achieved cost functions. 
Variations of the cost-functions EML during these 
training processes are presented in Fig. 6.

Fig. 6.  A cost-function history during the training process

3.2  Prediction Results

We can see from Table 1 that the NN_4 topology 
with the largest number of neurons in the hidden 
layer resulted in the lowest value of the EML cost 
function that was achieved before 1 million of training 
iterations with no further reduction in the cost-
function, see Fig. 6.

However, this result is misleading, because the 
NN_4 topology had almost as much synaptic weights 
as there was the number of training samples. That is 
why this topology may be improper, since it is prone 
to data over-fitting.

From the viewpoint of the AIC and AICc,BA 
criteria, the best topology was NN_1, with two 
neurons in the hidden layer. The good score in the 
two AIC criteria was only due to its small number of 
synaptic weights, because its cost function was the 
highest. This implies that its fit of the S-N curves to 
the experimental data is not the best – see Figs. 7 and 
8 for a comparison of the modelled S-N curves.

To assess the prediction quality of the SHMP 
models the S-N curves with their scatter were 
additionally estimated on a case-by-case basis. The 
seven parameters a, b, c, d, f, g and h for each of the 
four S-N curves were estimated using the real-valued 
genetic algorithm ([27] and [28]). The S-N curves, 
which were estimated using the genetic algorithm, are 
presented with a black color in Figs. 7 and 8.

It can be concluded from Table 1 and Figs. 
7 and 8 that the best fit to the fatigue-life data is 
achieved with the NN_3 and NN_4 topologies. This 

Table 1.  Summary of the applied SHMP topologies and their training processes

SHMP topology NN_1 NN_2 NN_3 NN_4

Basic data about  
the SHMP topologies 
and their training 
processes

No. of input neurons 2 2 2 2
No. of output neurons 7 7 7 7
Act. function of output neurons linear linear linear linear
No. of hidden layers and neurons 1 layer, 2 neurons 1 layer, 3 neurons 1 layer, 6 neurons 1 layer, 9 neurons
Act. function of hidden neurons tanh() tanh() tanh() tanh()

Initial value of the parameter η 10–8 10–8 10–8 10–8

Value of the parameter α 10–2 10–2 10–2 10–2

Initial (final) value of the param. κ 5×10–12 10–11 10–11 5×10–12

Initial (final) value of the param. γ 0.995 0.99 0.99 0.995

Value of the parameter ξ 0.7 0.7 0.7 0.7

No. of train. Samples per epoch 101 101 101 101
Iteration no. for the minimum CF 2000000 2000000 2000000 786200

Cost function values  
and the AIC criteria 
values for the trained 
SHMP

Smallest value of the CF EML 901.53 901.39 897.41 896.71

Number of synaptic weights nw 27 37 67 97

AIC criterion 955.5311 975.3921 1031.407 1090.708
AICc,BA criterion 976.2434 1020.027 1307.528 7428.041
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a)      b) 

c)      d) 

Fig. 7.  Modelled S-N curves for the SHMP topologies NN_1 and NN_2; a) Conv., FCR, b) Conv., SCR, c) ESR, FCR, d) ESR, FCR

a)   b) 

c)    d) 

Fig. 8.  Modelled S-N curves for the SHMP topologies NN_3 and NN_4; a) Conv., FCR, b) Conv., SCR, c) ESR, FCR, d) ESR, SCR
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means that the most appropriate topology was NN_3 
with less neurons in the hidden layer, because the 
discrepancy in the cost functions for the topologies 
is almost insignificant. Due to the relatively small 
number of training data the NN_3 topology has better 
generalisation ability and is less prone to the data-
overfitting. Besides, it resulted in the lower values of 
the two AIC and criteria when compared to the NN_4 
topology.

By comparing the S-N curves modelled with the 
SHMP and the genetic algorithm, it can be concluded 
that the modelled S-N curves do not differ a lot for 
the NN_3 and NN_4 topologies. This means that the 
SHMP topologies NN_3 and NN_4 were successfully 
applied for modelling the fatigue-life data of the 
51CrV4 steel. The only exception is the S-N curve 
model for the data set that corresponds to the ESR 
manufacturing combined with the fast cooling rate 
during quenching. In this case the transition zone 
between the high-cycle- and very-high-cycle-fatigue 
domains is very broad in both directions (Sa and N). 
This is very difficult to model with a SHMP, given the 
fact that the same transition zone is much narrower 
for the other three data sets. For this reason it was 
extremely difficult to build a good S-N curve model, 
even if we try to do it individually with the genetic 
algorithm.

From the presented results it can be concluded 
that the introduced SHMP model is capable of 
modelling the S-N curve and its scatter well, also 
in the neighbourhood of a knee point between the 
high-cycle- and very-high-cycle-fatigue domains. 
Of course, since there is always a problem with a 
relatively small number of experimental fatigue-
life data one should always try to find the simplest 
possible SHMP model that still enables fairly good 
predictions of the S-N curves and their scatter. The 
applied SMHP is general, which means that it can be 
applied for modelling the S-N curves and their scatter 
for arbitrary (metallic) materials, if the appropriate 
experimental data are available and the fatigue-life 
data-sets have approximately equal size for different 
manufacturing technologies.

4  CONCLUSION

In this article a procedure is presented for predicting 
the S-N curves and their scatter for 51CrV4 spring 
steel on the basis of experimental fatigue-life data that 
was obtained for different manufacturing technologies 
and heat treatments. The procedure is based on the 
application of a multilayer perceptron neural network, 
into which an analytical shape of the bi-linear S-N 

log-log curve was incorporated with the Weibull 
PDF describing its scatter. The results presented in 
the article were obtained for four combinations of the 
manufacturing technologies and quenching cooling 
rates. Different SHMP topologies were applied and 
each of them was trained with 101 experimentally 
obtained samples.

The results presented in the article show that it 
is possible to simultaneously estimate the parameters 
of the S-N curves and their scatter on the basis of 
the experimental data for different combinations of 
manufacturing technologies and heat treatments. 
The selection of a suitable SHMP topology should 
be made very carefully. It is almost always possible 
to obtain a good fit to the training data, if complex 
SHMP topologies with large numbers of neurons 
in the hidden layer are applied. On the other hand, 
such topologies can over-fit the data, especially if the 
number of synaptic weights in the SHMP model is 
comparable or larger than the number of data points 
in the training set. For this reason two variations of the 
AIC were applied in the research to select the proper 
SHMP topology. It turned out that the AIC criterion 
alone was not enough to estimate the most appropriate 
SHMP topology. So, when choosing the optimal 
SHMP model, one should make a trade-off between 
the simplicity of the SHMP model and its ability to 
generalise (but not over-fit) the experimental data. A 
general rule-of-thumb would be that there should be 
at least a few times more data points in the training set 
than there are synaptic weights in the SHMP model.
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