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Wind turbine blades are designed to be thin and flexible elements. Because unstable dynamic behaviour can affect the life of the rotor, it is 
crucial to understand the instability of non-linear behaviour caused by large deflections. The present study undertakes both a stability analysis 
of the non-linear response and an experimental validation of a simplified model for a wind turbine blade based on a cantilever beam. The 
model is formulated taking into account large geometric deflections and assuming a Galerkin approach. The model is validated experimentally 
in a wind tunnel with aluminium beams of differing geometry. Analysis of the dynamic response using phase planes reveals that the degree of 
instability is related to the amplitude of the excitation and the stiffness characteristics.
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Highlights
•	 Slenderness and wind speed are parameters that have a significant influence on the stability of the dynamic behaviour of large 

wind turbine blades. 
•	 The non-linear dynamic model enables the dynamic behaviour of wind turbine blades to be obtained, taking into account the 

dynamic and gravitational loads.
•	 The phase planes enable the level of stability of the dynamic behaviour of HAWT blades to be detected qualitatively. 
•	 The nonlinearity of the model is linked to the large deflections present in the blade.

0  INTRODUCTION

The strategy generally applied to obtain greater 
efficiency and increase the levels of power generated 
by a wind turbine involves the use of large diameter 
rotors and the manufacture of thinner, larger, lighter, 
and more flexible blades, resulting in a rotor diameter 
of 168 m [1]. However, new blade designs cause 
greater sensitivity to dynamic excitations, which 
reduce wind turbine life span and efficiency, and 
increased vibrations and large deflections; these cause 
a high level of rotor instability [2]. Furthermore, the 
blades are usually subject to random and complex 
mechanical stresses [3].

In dynamic wind turbine blade models, elastic 
deformation is often considered in four directions, 
including flapwise (out-plane) and edgewise (in-plane 
or lead/lag) transverse deflections as the two main 
directions of vibration, as well as axial (longitudinal) 
and torsional (feather) deformations. As the blade is 
sufficiently stiff in both a torsional and longitudinal 
direction, the deformation occurring in these 
directions can usually be ignored. Moreover, as the 
cross-section of the blade is designed to make it stiffer 
in an edgewise direction than in a flapwise direction 

[4], researchers have focused more on studying the 
flapwise vibration of the blades [4] to [6].

Recent studies conducted on dynamic blade 
models in a flapwise direction include that of Jokar et 
al. [7], who used the Hamiltonian principle to derive 
a non-linear partial differential equation for a wind 
turbine blade. Although they did linearize and simplify 
the non-linear model to find natural frequencies, their 
model did not include the effect of large deformations. 
However, for modern large-scale slender and flexible 
blades, consideration must also be given to the 
deformation caused by external loads which, in many 
cases, results in a non-linear geometric effect on the 
blade. Both this effect and the aeroelastic effects of 
extreme wind conditions are becoming more and 
more common with the increasing flexibility of wind 
turbine blades. Using the multi-body method, Xu et 
al. [8] built a blade analysis model that describes the 
geometric nonlinearity and complex geometry of the 
blades, for which they obtained accurate results. They 
found that the accuracy of their results increased as 
the number of rigid bodies increases, although they 
also observed that the calculation time increases 
exponentially.
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Cruz et al. [9] presented the experimental 
validation of a simplified one-dimensional model 
of a cantilever beam formulated considering large 
geometric deformations and assuming a Galerkin 
approach. They aimed to ascertain the non-linear 
behaviour caused by the large deformations of 
thin structures, such as wind turbine blades. One-
dimensional blade models have a low computational 
cost and have been used to efficiently model non-
linear vibration analysis for a wind turbine blade, for 
both in-plane [10] and out-plane motion [11]. These 
models consider the geometric nonlinearity of blades, 
namely that large deformations cause a significant 
change in force, with a non-linear relationship 
between force and displacement. Gerstmayr and 
Irschik [12] represented large deformations using the 
elastic line approach. They used a cubic polynomial to 
represent the displacement; a similar approach is also 
applied in the present work.

Maktouf et al. [13] undertook the modal and non-
linear dynamic analysis of a rotating wind turbine 
blade in order to study the effects of rotation speed 
on natural frequencies and displacements, finding 
that the natural frequencies and displacements of 
the blade increase when the angular rotation speed 
is increased. While the sensitivity of the blade’s 
vibration characteristics to geometric nonlinearity was 
significant, the study did not consider aerodynamic 
effects.

Liu [14] studied the effect of the aerodynamic 
load and its interaction with the structure under 
uniformly distributed wind flow conditions, 
determining an expression for the wind force per 
unit based on both average and fluctuating wind 
speed. Additionally, researchers have used both blade 
element momentum (BEM) theory and actuator disk 
theory in the development of aeroelastic models [15] 
to [17]. Moreover, Akbiyik et al. [18] evaluated an air 
foil in a wind tunnel with a test section of 570 mm × 
570 mm × 1000 mm, measuring and monitoring the 
response signal using an oscilloscope.

While phase planes have been applied as a 
qualitative technique for analysing the dynamic 
stability of thin structures under considerable 
excitation amplitudes [19] and [20], phase planes 
should better pictorially represent the chaotic motion.

The present study seeks to evaluate the 
unstable response of wind turbine blades with large 
deflections, assuming maximum flapwise deflections 
in the presence of extreme wind loads and the blade 
tip at the highest part of the rotor. The model is based 
on a one-dimensional cantilever beam Lagrangian 
formulation that considers the following: uniform 

wind distribution, an effective blade surface normal 
to wind incidence; non-linear curvature of the beam 
and internal viscous damping. Also, an experimental 
set based on a wind tunnel is proposed for model 
validation.

The present research is of relevance for improving 
the design of wind turbine blades that present 
excessive vibrations and substantial deviations, as 
it provides an efficient tool for analysing the non-
linear response via phase planes. In addition, it offers 
a visual interpretation (qualitative behaviour) of the 
evolution of the instability under increasing wind 
speed. The main advantage of the method proposed is 
that, although it considers a similar shape to the blade 
and, solely deformation in a flapwise direction, the 
non-linear dynamic behaviour is described efficiently 
and with a low computational cost. Furthermore, the 
method determines the degree of blade stability in 
different conditions, ranging from low wind speeds to 
extreme loads.

1  DYNAMIC MODEL

1.1  Description of the Dynamic System

The blades undergo variable tension-compression 
stresses during one rotation of a wind turbine rotor. 
These stresses are caused by the combined loads of 
the gravity and dynamic pressure of the fluid on the 
structure. Moreover, they depend on the angular 
position of the blade in the plane of rotation, namely 
that the angular position of the blade changes during 
its rotation in the plane of rotation, which also causes 
the stresses to change from tension to compression 
during each rotation and vice versa. However, when 
the blade is positioned vertically, the tip reaches the 
highest part of the wind turbine. In this instantaneous 
angular position, the bending moments that act on the 
blade are at a maximum because their interactions 
with wind speeds are more intense and provoke large 
blade deflections. Within this time frame, the dynamic 
behaviour of the rotor is strongly influenced by the 
large blade deflections. 

In contrast, the blade, which is joined to the wind 
turbine hub, resembles a cantilever beam. Under this 
analogy, the mathematical modelling for the blade is 
considered a thin blade rigidly embedded at one of its 
ends, which causes the other free end to bend laterally 
in the direction of the wind, as seen in Fig. 1. As the 
coordinate system (x, y) is perpendicular to the plane 
of rotation (x, z), the out-plane deflection is defined by 
ξ(y), the slope of deflection by θ(y), and the normal 
force of the wind on the rotation plane as F.
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1.2  Large Blade Deflections

In the dynamic system proposed, the wind force is 
assumed to be perpendicular to the plane of rotation, 
while the displacements out-plane are determined to 
be parallel to the wind direction, and the rotational 
displacements and torsional deformations are 
considered null [7]. Thus, the movement of the 
blade in the coordinate plane (x, y) is defined as 
one-dimensional and restricts the movement of the 
deflection ξ(y).

For the continuous vibratory system, the 
deflection of the blade at any point along its length 
is determined by discretizing it into small one-
dimensional beam-type elements by means of finite 
element method (FEM). This discretization enables 
the deflection ξ(y) to be defined as a function of the 
nodal displacements of each one-dimensional element, 
expressed in Eq. (1). Ni(y) is called function form, 
while is nodal displacement and ξi(y) is the number of 
discretization nodes [21].

	 � �( ) ( ) ( ).y N y yi i
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The deflection of the blade is defined in Eq. (2) as 
a cubic polynomial dependent on the vertical position, 
where the coefficients gi relate the deflection ξ(y) to 
θ(y) its slope [12].
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Fig. 1.  Free body diagram of the lateral deflection  
of a wind turbine blade

The blade is discretized into two nodes 
corresponding to each of the ends of the beam. The 
displacements of the embedded node are defined by 
ξ(0) and θ(0), while the displacements of the free node 
are defined by ξ(L) and θ(L), respectively; moreover, 
the unknown displacements in the nodes must satisfy 
the following conditions:
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The foregoing defines the coefficients of the 
cubic polynomial as:
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Thus, substituting the coefficients from Eq. (4) 
into Eq. (2) obtains a general expression for the elastic 
curve.
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Because the lower end of the blade is embedded, 
neither lateral nor angular displacement, namely 
ξ(0) = 0 and θ(0) = 0, is found; however, displacements 
on the free end are found and defined as ξ(L) = ξ(y) and 
θ(L) = θ(y). The deflection of the blade on any point of 
its length is governed by Eq. (6) in its simplified form.
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where the function form N1 and N2 are described as:
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1.3  Kinematics of the Blade Deflection

This section defines the kinetic and potential energy of 
the movement of the blade out of the plane of rotation. 
Continuing with the analogy of the blade as a thin 
beam, the kinetic energy T of its displacement will be 
defined by Eq. (9), where ρ defines the density of the 
blade and A the cross-section area of the profile [22].
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Substituting and solving Eq. (6) in (9) obtains an 
expression for the kinetic energy of the blade in a state 
of deflection.
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Given that no significant change in the vertical 
position of the blade occurs during its deflection, 
the gravitational potential energy is considered null. 
Thus, the potential energy of the dynamic system is 
determined solely by the lateral deformation of the 
blade.

1.4  Potential Energy of Deformation

Given that no significant change is found for the 
vertical position of the blade during its movement, 
the developed potential energy is attributed to the 
deformation energy. For a cantilevered thin beam, the 
deformation energy is specified in Eq. (11), where k  
denominates the deflection curvature, E the modulus 
of elasticity and I the moment of inertia of the 
transversal section of the blade [9].
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For large deflections, the square of the deflection 
curvature k given by [19], is approximate in the 
following manner:

	 k y
y

y
y

2
2

2

2 2
2

1
3

2
�

�
�

�

�
�

�

�
� �

�
�

�

�
�

�

�
�

�

�
�
�

�

�
�
�

� �( ) ( )
. 	 (12)

Solving Eq. (11) for large deflections, the 
potential energy of the blade, caused by its lateral 
deformation, is determined by:
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1.5  Wind Excitation Force

The wind causes a pressure increase on the pressure 
surface of the blades and a pressure decrease on 

the suction surface of the blades, with this pressure 
differential causing a laterally displaced axial force to 
be exerted on the blade. In accordance with Liu [14], 
the instant wind pressure W(y, t) can be calculated as: 

	 W y t W y W y tj( , ) ( ) ( , ),� � 	 (14)

where the average wind pressure is W y V yW( ) ( )�
1

2

2� �
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2� �  and the fluctuating wind pressure is 

W y t V y tj W j( , ) ( , )�
1

2

2� � , while μ is the shape 

coefficient, V y( )  is the average wind speed, V y tj
2 ( , )  

is the fluctuating wind speed, and ρW is the air density.
Assuming uniform airflow without fluctuation, in 

Eq. (14), this is defined as:
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The airflow over the element can be simplified 
further to facilitate comprehensive analysis, 
considering wind force to be uniformly distributed 
along its entire length and expressed as the Dirac delta 
function, in Eq. (16), while L is the blade length.

	 F y W y y L( ) ( ) ( ).� �� 	 (16)

Eqs. (17) and (18) determine the wind force in 
terms of the displacements ξ(y) and θ(y).
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Evaluating the function, Eq. (16), in y = L, the 
Eqs. (19) and (20) are obtained. These equations 
describe the distribution of fluid over the blade.

	 P F� � , 	 (19)

	 P� � 0. 	 (20)

1.6  Structural Damping Forces

The structural damping force of the blades is caused 
by the dissipation of energy that occurs during 
deflection. This energy is not derived from a potential 
function and depends on the deflection speed. The 
dissipative energy of the blade ED is modelled using 
Eq. (21), where C is the structural damping coefficient 
[10].
	 E CgD i=

1

2

2
 . 	 (21)

The Rayleigh function models the internal 
dissipation forces of bodies with viscous damping.
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These structural damping forces are determined 
for ξ(y) and θ(y), and, on solving Eqs. (23) and (24) 
[9].
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1.7  Dynamic Modelling

The dynamic modelling of the blade as a continuous 
vibratory system is obtained from the Lagrange 
movement equations, where the Lagrangian L is 
defined as the difference between the kinetic T and 
potential U energy of the blade deflection and the 
term Qi defines the forces not derived from a potential 
function. Variable gi represents the generalized 
coordinates ξ(y) and θ(y) of the dynamic system [23].
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Finally, solving Eq. (25) in terms of ξ(y) and θ(y) 
obtains the following system of differential equations, 
which model the non-linear dynamic behaviour of a 
wind turbine blade presenting large deflections:
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2  NUMERICAL SIMULATION

The Runge-Kutta 4th order method is used to solve 
Eqs. (26) and (27). This method is limited to solving 
systems of first-degree differential equations, for 
which reason the following change of variables was 
carried out:
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The dynamic model is compared to other models 
in the literature, with the fundamental frequencies 
obtained shown in Table 1, with a maximum error of 
2.1 %.

Table 1.  Comparison of fundamental frequencies

Test Ref. [9] [Hz] Ref. [24] [Hz] Ref. [25] [Hz]
Comparative 1.40 5.92 3.33
Model  1.42 6.00 3.40
Error % 1.42 1.35 2.10

Below, four blades are evaluated with the 
geometric characteristics and mechanical properties of 
aluminium beams shown in Table 2, in both free and 
forced movement and with wind speeds of 10 m/s, 20 
m/s, and 30 m/s. The beams were selected based on 
network similarity [9], while the shape and dimension 
were chosen for later validation in a wind tunnel. The 
shape coefficient values given are approximate [26].

Table 2.  Physical characteristics and mechanical properties of the 
simulation blades

E [GPa] ρ [kg/m3] τ [E–3 m] L [m]

  70 2700 1.590 0.240

Blade S [m2] E–3 C [kg/s] EI [Nm2] μ [24]

Rectangular 2.640 0.010 0.231 1.170

Trapeze 3.360 0.014 0.323 1.170

Trapeze 1.920 0.011 0.185 1.170

Rhomboid 3.120 0.018 0.295 1.170
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3  EXPERIMENTAL DEVELOPMENT

To experimentally validate the model; a methodology 
was developed, as shown in Fig. 2. The following 
points were taken into account in the development 
of the experimental tests: thin aluminium blades; 
wind speeds of 10m/s, 20m/s, and 30 m/s; an Aerolab 
wind tunnel with the capacity to generate winds 
of up to 160 km/h; a hermetic test area of 600 mm 
× 400 mm × 300 mm, in which aluminium support 
has been installed to maintain the blade in a vertical 
position; a ±9 g MMA7341L accelerometer installed 
on the blade tip; a Tektronix TBS 1042 oscilloscope, 
for monitoring and saving the signal; and, computer 
equipment for processing the acceleration signals. The 
physical characteristics and mechanical properties of 
the experimental blades are shown in Table 3. For 
the validation of the phenomenon, 20 experimental 
tests were carried out for each of the aforementioned 
conditions.

Fig. 2.  Experimental schematic and flow diagram for the vibration 
analysis of the aluminium blades

Table 3.  Physical characteristics and mechanical properties of the 
blades

Blade
1 2 3 4

Geometric
shape

S [E–3 m2] 2.540 3.360 1.920 3.120

C [kg/s] 0.010 0.014 0.011 0.018

M [kg] 0.011 0.014 0.008 0.013

During the experimental tests, the blade was 
firmly fixed by the lower end. The accelerometer 
is fixed to the tip of the blade. The front surface of 
the blade is perpendicular to the wind flow, causing 

a pressure differential on the surface, resulting in 
flapwise bending and inducing vibrations. The 
acceleration signal obtained is integrated using the 
Simpson rule to define the vibration response of each 
blade in terms of displacement and speed in a flapwise 
direction.

4  RESULTS AND DISCUSSION

4.1  Simulation Results

4.1.1  Results of the Free Vibration Response

The numerical results for the dynamic behaviour of 
the four types of blades are presented in this section. 
First, the model was solved considering a small 
displacement (8 mm) at the free end of the blade as 
an initial condition, with the results for Blade 1 shown 
in Fig.3. The frequency spectrum presents a peak 
at 20 Hz, which corresponds to the first vibration 
mode. The model was then solved considering a large 
displacement (80 mm) at the free end of the blade as an 
initial condition, with the results compared in Fig. 3. 
While in Fig. 3a the free movement presents harmonic 
behaviour, the response is not sinusoidal; instead, it 
presents harmonic distortion caused by the excitation 
of the polynomial terms of the equations of motion 
[28], more notably when the deformation is large. 
The response shows a decrease over time, behaviour 
known as a stable system [29]. The frequency 
spectrum shows the main peak at 16.6 Hz, while the 
first mode shifts due to non-linear behaviour. Fig. 3b 
indicates how the nonlinearity effect was particularly 
pronounced for large deflections. Additionally, the 
existence of nonlinearities in the system reduced the 
frequency at which the first mode occurs, which leads 
to an overall reduction in the stiffness of the dynamic 
system [27].

Fig. 3.  Comparison of the free movement types (large deflections 
vs. small deflections for Blade 1; a) response overtime,  

and b) frequency map

The phase planes represent the instantaneous 
energy space. The vertical axis corresponds to 
the kinetic energy and the horizontal axis to the 
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potential energy. If the dynamic response is stable, 
the trajectory described by the energy space will be 
a smooth function, whereas; if not, the trajectory will 
display jumps or changes in direction, as well as many 
internal loops [9]. Fig. 4 presents the phase planes of 
the dynamic behaviour of Blade 1 in small and large 
deflections. The phase plane (Fig. 4a) presents closed 
loops, forming an annular shape, verifying the stable 
response of the blade to a small displacement value, 
with, in this case, the diagram showing an elliptical 
shape [30], thus indicating a linear system. The 
phase planes presented in Fig. 4b show closed loops 
with two attracting poles, which remain at the same 
location at all times. The non-linear effect is notable 
when this diagram is compared to the linear solution.

Fig. 4.  Phase planes for the free motion of Blade 1:  
a) small deflection, and b) large deflection

4.1.2  Results of the Forced Vibration Response

The phase plane trajectories of motion for different 
blades are shown in Fig. 5, which illustrates the 
progression of motion by charting the phase plane 
plots of velocity [m/s] against deflection [m]. The 
wind speed change values for each column are 10 m/s, 
20 m/s, and 30 m/s, from left to right.

Phase plane trajectories are an effective criterion 
for evaluating both stability and dynamic chaos and 
are shown for all cases considered in the present study. 
Blades 1 to 4, subject to simulated forced vibration 
at a wind speed of 10 m/s, present linear dynamic 
behaviour, characteristics that ensure that the phase 
planes describe ovoid and regular curves with well-
defined cycles, denoting stable dynamic behaviour. 
However, at higher velocities, the movement curves 
are found to be influenced by perturbations that cause 
the dynamic system to be unstable and can be seen in 
the phase planes, which present amorphous lines that 
cross over each other and distort the elliptical shape of 
the dynamic behaviour, leading to an unstable system.

With a wind speed of 20 m/s, the blades present 
moderate distortions in their movement curve; 
therefore, their vibratory response is semi-stable with 
slight dynamic chaos, the degree of deformation of the 
oval cycle determining the level of instability. Blade 3 

shows a non-linear condition related to a low level of 
stiffness and amplitude damping [9]. The simulation at 
30 m/s reveals that the dynamic of the blades is highly 
unstable with amorphous cycles of great amplitude; 
the oscillation of the system is chaotic [29]. In the 
three stages of excitation, Blade 2 shows a tendency 
for stability, through uniform cycles of movement due 
to the greater level of stiffness and damping, while 
Blade1 is susceptible to a state of chaos.

Fig. 5.  Phase planes for the dynamic response of the wind turbine 
blades, under wind excitation of 10 m/s, 20 m/s and 30 m/s

Table 4 presents a comparison of the dominant 
frequencies of each blade under maximum tip 
deflection conditions, from which it can be observed 
that, in forced movement, a decrease in frequency 
results in increased amplitude, while the opposite 
effect is seen when the frequency increases, a 
characteristic of nonlinearity [13].

Table 4.  Comparative of simulated results, in free and forced 
condition at 10 m/s, 20 m/s, and 30 m/s

Blade
Free 10 m/s 20 m/s 30 m/s

f [Hz] ξ [m] f [Hz] ξ [m] f [Hz] ξ [m] f [Hz] ξ [m]
1 21.22 0.029 22.40 0.007 19.00 0.027 22.63 0.117
2 21.42 0.029 22.60 0.011 19.02 0.023 19.30 0.094
3 24.31 0.029 25.80 0.009 19.00 0.018 16.17 0.061
4 21.28 0.029 22.70 0.011 19.20 0.028 19.40 0.096

4.2  Experimental Results

The blades are tested during free movement with a 
large initial displacement, corresponding to 30 % 



Strojniški vestnik - Journal of Mechanical Engineering 66(2020)9, 523-533

530 Lopez-Lopez, A. – Robles-Ocampo, J.B. – Sevilla-Camacho, P.Y. – Lastres-Danguillecourt, O.– Muniz, J. – Perez-Sariñana, B.Y. – de la Cruz, S. 

of its length. The non-linear response obtained is 
shown in Fig. 6, while the time response is shown 
in Fig. 6a, with the blades presenting approximate 
sinusoidal behaviour and amplitude decreases over 
time. Under this condition, the vibrations of the 
blades are damped, and no instability was observed 
[31]. The non-linear frequencies that govern the 
movement of the four blades can be seen in Fig. 6b, 
which presents results revealing that the harmonic 
dominating the displacement corresponds to the non-
linear frequencies of the blades. The lowest frequency 
of 11.97 Hz corresponds to the blade with the greatest 
rigidity, while Blade 3, the most slender of the blades, 
has a peak at 15.96 Hz with large amplitude.

Fig. 6.  Comparison of the free movement of the four blades:  
a) response over time; and, b) frequency map

The results of the forced vibration tests are shown 
in the phase planes detailed in Fig. 7. These phase 
planes present the dynamic behaviour qualitatively, 
highlighting the evolution of the system from stable 
to unstable as a consequence of the increased wind 
velocity, which demonstrates how, at velocities of 10 
m/s, the system is harmonious and sinusoidal. This 
means that the oscillation of the system is proportional 
between displacement and velocity. This behaviour 
describes completely elliptical well-defined cycles, 
with regular circumferences that determine the 

stability of the oscillation. These phase planes provide 
information on the blade oscillations, indicating that 
the greater the magnitude of the vibration associated 
with the size of the phase cycles, the more pronounced 
the curves of the ellipse or cycles. Moreover, they 
maintain a proportional relationship between their 
velocity and deflection.

Fig. 7.  Velocity-displacement phase planes for the dynamic 
behaviour of the experimental blades

The phase planes for the blades subjected to a 
wind flow of 20 m/s present dimension increase in 
comparison with those obtained at 10 m/s. In general, 
the phase planes for all the blades show a variation 
in amplitude and the appearance of ripples, indicating 
that the dynamic system has evolved despite its semi-
stable behaviour. For example, Blade 1 presents the 
greatest variation in amplitude, followed by Blade 2, 
while Blade 3 presents reduced amplitude but high 
instability. The geometric nonlinearity terms generate 
an increase in the natural frequencies, which justify 
the reduced displacement [13], shown in Fig. 8, in 
which Blade 3 presents an increased frequency when 
the wind speed increases from 10 m/s to 20 m/s.

In contrast, those blades subjected to a wind 
flow of 30 m/s show larger curves in the phase planes 
with a drastically distorted elliptical shape. These 
changes indicate instability in the dynamic behaviour 
of the blades. In other words, the more amorphous 
and irregular the phase planes, the more unstable the 
dynamic response will be. Another critical parameter 
is the geometric shape, with the trapezoidal shape of 
Blade 2 giving it greater rigidity and, during the tests, 
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balances between stability and the degree of vibration. 
However, Blade 3, which is very thin, presents a level 
of instability in the presence of vibrations and large 
deflections.

Fig. 8.  Evolution of the frequency of Blade 3 in forced motion and 
excited at 10 m/s and 20 m/s wind speed

The instability of the vibrations of the blades is 
attributed to various factors, such as increased wind 
velocity, geometric nonlinearity, large deflections, 
elevated amplitudes of vibration and increased 
pressure on the blade surface, which varies according 
to the square of the fluid velocity. Rafiee et al. 
[31] identified four issues that increase the risk of 
instability in wind turbine blades, two of which are 
increased aerodynamic force and a low stiffness level.  

Table 5. Instability of the dynamic behaviour of the blades analysed

Condition Blade 1 Blade 2 Blade 3 Blade 4
0 m/s Stable Stable Stable Stable
10 m/s Stable Stable Stable Stable
20 m/s Semi-stable Semi-stable Unstable Semi-stable
30 m/s Unstable Semi-stable Unstable Unstable

Table 5 presents a summary of the degree of 
stability torsional of the dynamic behaviour of the four 
blades, as subjected to the different wind velocities. 
The existing correlation between the experimental 
and numerical results validates the mathematical 
model and experimental validation, demonstrating 
significant convergence and similarity.

5  CONCLUSIONS

Developed with polynomial terms, the non-linear 
model enables the dynamic behaviour of the wind 
turbine blades to be ascertained, taking into account 
wind flow velocities, geometric nonlinearity, large 

deflections, structural damping, and increased wind 
speed. 

The experimental results show particular 
frequencies of 13.97 Hz, 11.97 Hz, 17.96 Hz, and 
16.96 Hz, which correspond to each of the blades 
and are related to the non-linear terms of each one. 
Thus, these frequencies are associated with the effect 
of large deformations. When Blade 3 is excited 
at a wind speed of 10 m/s to 20 m/s, the frequency 
increases from 14.7 Hz to 19.1 Hz, causing a decrease 
in the amplitude of movement. Non-linear behaviour, 
however, is more notable.

The results for both the simulation of the model 
and the experiments undertaken in the present study 
confirm that blade stiffness and wind speed are 
parameters with significant influence on the instability 
of dynamic behaviour. For example, those blades 
presenting a lower level of stiffness, such as Blade 
1, with a stiffness of 0.231 Nm2, and Blade 3, with 
a stiffness of 0.185 Nm2, are highly unstable, as 
demonstrated by their amorphous and irregular phase 
plane curves.

The simulation of the non-linear model represents 
an economical and fast option for detecting the 
dynamic behaviour of aeroelastic blade designs under 
two different operating conditions. 

Phase planes are an effective tool for identifying 
dynamic blade behaviour and can be used to reveal the 
evolution of the dynamic system from a stable, semi-
stable, unstable and, even, chaotic state.

Consequently, this work can be extended to 
include, in the modelling, the sectional properties 
of composite materials, the fluctuating effect of 
aerodynamic forces, and the rotational effects.
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7  NOMENCLATURE

x, y, z	 system coordinates, [-]
ξ ξ ξ, , 	 deflection out plane, 1st and 2nd derivative 

	 time, [m, m/s, m/s2]
θ θ θ, ,  	 deflection slope, 1st and 2nd derivative time, 

	 [rad, rad/s, rad/s2]
Ni		  ith function form, [-]
Ni		  ith deflection coefficient, [-]
L		  length of blade, [m]
ρ		  blade density, [kg/m3]
A		  cross section area, [m2]
T	 	 kinetic energy, [J]
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U	 	 potential energy, [J]
E	 	 modulus of elasticity, [N/m2]
I	 	 moment of inertia, [m4]
k	 	 deflection curvature, [m]
W	 	 instant wind pressure, [N/m2]
W 		  average wind pressure, [N/m2]
Wj		  fluctuating wind pressure, [N/m2]
V 		  average wind speed, [m/s]
Vj		  fluctuating wind speed, [m/s]
V0		  initial wind speed, [m/s]
Wm		  wind speed, [m/s]
F	 	 distributed wind force, [N/m]
Pξ		  wind force respect to ξ, [N]
Pθ		  wind force respect to θ, [N]
ρW		  air density, [kg/m3]
μ		  shape coefficient, [-]
ED	 	 dissipative energy, [j]
D		  damping force, [N]
Dθ	 	 damping force respect to θ, [N]
Dξ		  damping force respect to ξ, [N]
Qi		  ith non potential force, [N]
Uξ	 	 potential force respect to ξ, [N]
Uθ		  potential force respect to θ, [Nm]
C	 	 damping coefficient, [kg/s]
M	 	 blade mass, [kg]
S	 	 blade surface, [m2]
f	 	 fundamental frequency, [Hz]
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