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With the rapid development of the horizontal drilling technology, the drilling fluid shale shaker 

(DFSS) will feature high capacity and high efficiency. Hence a vibrating mechanism of three co-rotating 

rotors system coupled with springs is proposed for designing large-sized and heavy-duty vibrating screen 

in petroleum drilling engineering. To master synchronization characteristic of the vibrating system, the 

dynamic equations of three co-rotating rotors coupled with springs are firstly built up based on 

Lagrange’s equations. Secondly, synchronous conditions of the system are derived based on the average 

method, and its stability criterion is obtained by adopting Hamilton's principle. Besides, the influences of 

various factors including positional parameters of three motors, stiffness coefficient of the springs and 

frequency ratio on synchronization behavior are numerically analysed in the steady state. Additionally, 

the Runge–Kutta algorithm with adaptive control is employed to build an electromagnetic coupling 
model, and the relationships between synchronization state of the system and and its mechanical-

electrical coupling characteristics are investigated. Finally, an experimental prototype is designed to 

prove the correctness of mentioned theory and numerical analysis. The research result shows that in-

phase synchronization of three co-rotating rotors coupled with springs is easy to implement by the 

selection of a large enough stiffnes.  

Keywords: Synchronization, Dynamic characteristic, Synchronous conditions, Stability 

criterion, Springs 

 

Highlights: 

• A vibrating mechanism of three co-rotating rotors system coupled with springs is proposed. 

• The synchronization characteristics of the system are investigated by theory and numerical analysis. 

• The stable phase difference of three motors are stabilized at zero by selection of a large enough stiffness. 

• An experimental prototype is designed to prove the correctness of theory and numerical analysis.  

• The presented model can be applied to high capacity and high efficiency in the DFSS. 

 
0 INTRODUCTION 

 
Vibration utilization has always played an 

important role in a variety of manufacturing 

industries, such as the vibration conveyer, 

vibration-impact pile driver, vibratory centrifuge, 

vibratory crusher, vibratory feeder, etc. The 

vibrating screen is the most representative 

vibration utilization equipment, especially in the 

area of petroleum drilling engineering. The 

vibrating scree is a kind of solids control 

equipment to separate out drilling cuttings from 

circulating drilling fluid in the process of drilling, 
which not only undertakes the task of removing a 

large number of cuttings, but also can create a 

necessary condition for normal operation of the 

next solid control equipment. A number of 

researches with the DFSS are focused on the 

study of structural design, screening performance, 

synchronization theory, etc. In structural design 

and screening performance of the vibrating 
screen, Baragetti put forward to increase the 

structural and functional performance of the 

screen by means of a modification of the two 

side-walls of the mechanical system, and studied 

the dynamic and structural behavior of the 

original and modified vibrating screen by using 

theoretical and numerical models [1]. Dong 

adopted a three-dimensional discrete element 

method to study the effect of aperture shape on 

particle flow and separation in a vibrating screen 

process [2, 3]. For synchronization theory of 
rotors, Blekhman firstly proposed the method of 

direct separation of motions to solve many 

engineering problems [4-6]. Balthazar 

investigated synchronization of two rotating 
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unbalanced motors mounted on the horizontal 

beam by means of numerical simulations [7, 8]. 

Subsequently, Wen investigated the 

synchronization problem of two motors in non-

resonance system via using small parameter 

averaging method, and various synchronous 

vibrating machines were invented to improve 

productivity [9, 10]. Based on Wen’s method, 

Zhang et al investigated the synchronization of 

two or three exciters in a far-resonant vibrating 

system of plane motion [11, 12]. Fang et al 
discussed the dynamic characteristics of a rotor-

pendula system by theoretical analysis and 

numerical simulations, and he found that the 

synchronous behavior is determined by mass ratio 

coefficients, structure parameters, rotating 

directions, and frequency ratios [13, 14]. Cheng et 

al used the average method of small parameters to 

explore synchronization of two eccentric rotors 

with a common rotational axis in the far-resonant 

spatial system. It can be found that the phase 

difference of two eccentric rotors with common 

rotational axis is easily approaching   during the 
running process of the steady-state [15, 16]. 

Besides, Kong and Huang studied composite 

synchronization of the vibrating system driven by 

multi-motor through applying cross-coupling 

control strategy and modified master-slave 

control structure [17-20]. 

Nowadays, on the one hand, with the rapid 

development of the horizontal drilling 

technology, the DFSS takes a higher demand for 

its processing capacity and separating efficiency. 

On the other hand, as the space of on-site drilling 
is limited, many companies have proposed to 

improve the processing capacity by increasing the 

screen layers, which caused the total mass of the 

vibrating body increased, and the vibrating 

system driven by multiple motors are required to 

achieve a greater exciting force. Hence, many 

scholars developed a vibrating system with 

multiple non-identical exciters in a far-resonant 

vibrating system to apply in DFSS [21-23]. 

However, for synchronization of three non-

identical coupled exciters, those results prove that 

the phase difference of co-rotating motors 
stabilized in the neighborhood of Pi, and the 

exciting force of two exciters are counteracted 

each other[11]. In order to improve the amplitude 

and screening efficiency of the system, a 

vibrating mechanism of three co-rotating rotors 

system coupled with springs in a non-resonance 

system are proposed to apply for designing large-

sized and heavy-duty vibrating screen in 

petroleum drilling engineering. In this paper, to 

further explore the synchronous mechanism of the 

proposed system and master its synchronous 

characteristics, the main contents are as follows: 

In section 1, a mechanical model of three co-

rotating rotors coupled with springs is introduced. 

Then, the synchronous conditions and the 

stability criterion of the system are obtained. 

Next, the influence of positional parameters of 
three motors, stiffness coefficient of the coupling 

springs, frequency ratio, the total mass of the 

system etc., on the steady phase difference are 

numerical discussed in section 2. In section 3, we 

studied the relationships between synchronization 

state of the system and its mchanical-electrical 

coupling characteristics by utilizing the Runge–

Kutta algorithm with adaptive control. In 

addition, an experimental prototype of three co-

rotating rotors system coupled with springs is 

designed and manufactured. Synchronous tests 

and dynamic tests of the vibrating system are 
implemented in section 4. Finally, several 

important conclusions are summarized in section 

5. 

 

1 SYNCHRONIZATION MECHANISM 
 

1.1 Mechanical model and dynamical equations 
Fig. 1 shows a vibrating system driven by 

three co-rotating rotors coupled with springs, 

which mainly consists of three motors, a rigid 

frame, an elastic foundation, two coupling springs 

and four supporting springs. Unbalanced rotors 

actuated by three identical asynchronous motor 

are modeled by an eccentric lump im  and 

attached eccentric length ir ( )1,2,3i = . Three 

motors are parallelly installed on a rigid frame, 

and the adjacent two motors are connected with a 

spring with a stiffness coefficient k . The distance 

from the rotating center of each motor to the 

connection of the end of coupling spring is a . 

And the vibrating body is connected with a fix 

foundation by four supporting springs with 

stiffness jk  and damping jf  in j − direction. 

When three motors are simultaneously provided 

an electromagnetic force, the impact energy 
produced by its asynchronous motion is absorbed 

by the coupling springs during the startup stage of 

the system. And then the impact energy adsorbed 
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by the coupling springs is increasingly released as 

the operation of the vibrating system. The steady-

state motion of the system is finally implemented 

under the action of the coupling springs. In the 

vibrating system, choosing  1 2 3, , , , ,q x y    =  

as a generalized coordinate. Then, the generalized 

active forces of the system are 

 1 2 30,0,0, , ,j e e eQ T T T=  in the - jq direction. Due 

to the mass of three motors is far less than the 

rigid frame 0( )im m  and the swaying 

displacement is extremely small ( 1) ， the 

coupling inertial moment caused by an 

asymmetric installation of three motors can be 

ignored. Considering three motors are 

symmetrically arranged on the rigid frame, and 

it’s structure parameters satisfy: 1 3l l l= = , 

2 sinl l = , 1  = − , 2 2 = , 3 = . 

According to the general form of Lagrange's 

equation, the dynamics equations of the vibrating 
system are derived: 
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3
2

1

3
2

1

3
2

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

cos sin

sin cos

sin cos

cos sin s

 

   

   

        

    

=

=

=

 + + = − 

 + + = − − 

 + + = + + + 

+ = + − +







x x i i i i i i

i

y y i i i i i i

i

i i i i i i i i i

i

e

Mx f x k x m r

My f y k y m r

J f k m l r

J f T m r x m r y m rl ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2

1 1 1 1 1 1 1

2

2 1 1 1 1 1 2

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 1 3 2 2 1

in cos

sin cos sin sin cos , , , , ,

cos sin sin cos

sin sin cos , ,

    

         

         

      

+ − +

+ − − − + +

+ = + − + + − +

− − + − +

e

m rl

ka kla kal kl f k l a

J f T m r x m r y m r l m r l

ka ka kl f k( )

( )

( ) ( ) ( ) ( )

2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 2

3 3 3 3 3 3 2 3 3 1 2

, , ,

cos sin sin sin sin

cos sin cos cos , , , , ,



        

          

+ = + − + + +

− + − − + + +

e

l a

J f T m r x m r y m r l kal

m r l ka kla kl f k l a

                (1) 

where 
3 3 3

2 2 2 2 2

0 0 1 1 1 1 2 2 2 2 3 3 3 3

1 1 1

, , , ,i i i i i o o oM m m J J m l m r J J m r J J m r J J m r= + = + + = + = + = +     

y

xo
o

y y

x

x



1m

o

2l

,x xk f
x

y1r

1

0m
2

3

1

1l 3l

32

3r2r 3m
2m

,x xk f

,y yk f ,y yk f
,k f 

Foundation

Frame

y

a
k k

 

                                    a)                                                                      b) 
Fig. 1. A vibrating system driven by three co-rotating rotors coupled with springs: a) Simplified mechanical model; 

and b) Coordinate system 
 

Here, M is the total mass of the system; J  

is the rotational inertia of the system; 

( )1 2, , , , ,if k l a   is a coupling term of the 

springs, and its expression are given in Appendix. 

 

1.2 Steady-state response 
Due to the motion of the system is 

changing periodically during the running process 
of the steady-state, the average velocity of three 

motors is also periodic, and their average values 
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with the least common multiple period ( )T  are 

approximately equal to a constant ( )m : 

 
0

0
m

1
constant

t T

t
dt

T
 

+

= =   (2) 

Assuming the average phase   of the 

three motors in steady state, and their phase 

differences are expressed by 12 and 23 , 

respectively, i.e. 1 2 12  − = , 2 3 23  − = . 

Hence, we have 
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  (3) 

Considering the coefficients of the 

instantaneous change with the average speed of 

three motors and their phase difference are 

expressed as 0 , 12 , 23 , respectively. i.e., 
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  (4) 

Introducing small parameters ( )1,2,3i i =  

to Eq. (3), we know that the vibrating system 

operates at the steady state when the average 

values ( )1,2,3i i = with one period are equal to 

zero. Hence, the acceleration of three motors can 
be written as follows: 
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And introducing following dimensionless 
parameters: 
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Where, 

, ,nx x ny y nk M k M k J   = = =   

Here, 0m is the standard mass of the system and 

0r  is the standard radius of three rotors. Inserting 

the dimensionless parameters (6) into Eq. (1) 
yields the dimensionless formulas of the dynamic 

equations of the system in j −  ( , , )j x y =  

direction as 
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When the vibrating system operates at the 

steady state, the periodic solutions of the system 

in j −  ( , , )j x y =  direction can be expressed as 
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here, 
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1.3 Synchronous conditions 
Since the far-resonant vibrating system is 

commonly used in engineering applications, the 

exciting frequency of the system is 3~10 times 

than its natural frequency, i.e. jn   , and the 

vibrating system with small damping ( )0.07j   

[10]. Hence, ( )2 2 1j j jn n  − , j = +  

( )2arctan(2 / 1 )j j jn n − . In light of literature [11, 

12], the rated slip of motors ranges from 0.02 to 

0.08 during the running process of the steady-

state. When three rotors are rotated with an equal 

velocity ( )i m = , their electromagnetic torque 

can be written in the form: 

 0 0ei e i e i iT T k = −   (9) 

Where 0e iT and 0e ik  are given in literature 

[14]. Differentiating Eq. (8) to obtain , , , ,x x y y   

and  . Then, inserting them into the dynamical 

equations of the rotors in Eq. (1), and integrating 
them with one period. We obtain the matrix form 

of i  in the form: 

 = +Pε Qε μ   (10) 

where  
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Parameters 11 , 
12  , etc., are shown in the 

Appendix. 

The symbol P represents the coupling 

matrix of three rotors; the symbol Q  is defined as 

the stiffness matrix of the vibrating system; and 

the symbol μ  is the torque coupling matrix of 

three rotors. When the vibrating system operates 
at the steady state, the coefficients of the 

instantaneous change are approximate to zero, 

i.e., 0 0 = , 12 0 = , 23 0 = . Hence, the values 

of ε  also tends to zero. Inserting them into Eq. 

(10), we obtain 0=μ , and adding them together 

to get following expression: 
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Eq. (11) is the equilibrium equation of the 

dynamical moment of whole system. The first 

term
3

0

1

e i

i

T
=

 
 
 
  represents the sum of the output 

torque of three motors; the second 

term
3

1

m i

i

f
=

 
 
 

 is the sum of resistance torque of 

three motors during operation; and the remaining 

terms denote the mechanical load of three motors 

operating in the steady state and the coupling 

torque of those connecting springs among three 

rotors. Moreover, it can be seen that there is no 

coupling term with connecting spring in Eq. (11). 

An optimal zero phase synchronization of three 

motors are achieved, i.e., 12 0 = ， 23 0 = . That 

is to say the deformation rate of this connecting 

springs is always equal to zero during the running 

process of the steady-state. Due to 0=μ , the 

difference equations of two of motors can be 

obtained: 
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                                                                         (13) 

Eq. (12) and Eq. (13) are dimensionless 

difference equations with respect to 12 and 23 , 

which reveals coupling property of the system 

when the vibrating system operates at the steady 

state. 

 

1.4 Stability criterion 
In this study, neglecting the effect of 

system damping, the vibrating system is suffering 

not only gravitational forces but also the output 

torque of motors during the running process of the 

steady-state. Thereby, three co-rotating rotors 

system coupled with springs is a nonholonomic 

conservation system. According to the Hamilton's 

principle, we get following expression: 

 ( )
2 3

10

d 0i i

i

T V Q q



  
=

 
− + = 

 
   (14) 

Where T ,V , iQ and iq represent the total 

kinetic energy, the total potential energy, the 

generalized force, and the generalized 

coordinate of the system, respectively. From 

the model proposed in Fig. 1, we obtain total 

kinetic energy of the system: 

 ( )2 2 2

0 0

1 1

2 2
zT m x y J T= + + +   (15) 

Here zT  is the sum of kinetic energy 

with three motors. Since their rotation speed are 

identity with each other during the running 

process of the steady-state, zT  can be regarded 

as a constant. The total potential energy of the 
vibrating system can be written as: 

          

2 2

2 2 2

1 2

1 1

2 2

1 1 1

2 2 2

x yV k x k y

k k k

= +

+ +  + 

                      (16) 

The interaction Hamiltonian of the system 
over one period can be written the following: 

 ( ) ( )
2

0 0

T

H T V dt T V d



= − = −    (17) 

As the model of three co-rotating rotors 
system has two degree of freedoms (DOFs), we 

choose 12 , 23 to be a generalized 

coordinate. Three rotors are rotating with an 

equal velocity ( )m  when the vibrating system 

operates at the steady state. Simultaneously, the 

values of 12 and 23 are approximately equal 

to a constant ( 12  and 23  ). According to a 

mechanic system with integrity constraint, the 

system can be changed from one position to 
anther under the action of conservative forces, 

and the movement of the system is tending to 

be stable when its interaction Hamiltonian has a 

minimum. Therefore, a stability criterion of the 

system can be obtained in the form: 

 

2

2
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2
2 2 2

2 2

12 2312 23
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0
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H H H



  
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
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   
−  

    

  (18) 

 

2 NUMERICAL DISSCUSSION 
 

Some theoretical results with regard to 
synchronous conditions and stability criterion for 

three co-rotating rotors system coupled with 

springs are described in the preceding section.  

From Eqs.(12), (13) and (18), it can be seen that 

synchronous state of the system is mainly 
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determined by positional parameters of three 

motors, stiffness coefficient of the coupling 

springs, frequency ratio, the total mass of the 

system, etc. To deeply grasp the influence of 

various factors on synchronous state of the 

system, some numerical analysis for solving Eq. 

12 and Eq. 13 under the conditions of Eq. (18) are 

performed to analyse the influence of positional 

parameters of three motors and frequency ratio on 

synchronous characteristic of the vibrating 

system. 
When the vibrating system operates at the steady 

state, the synchronization state of the system is 

defined as follows: The phase difference of rotors 

is always close to ( )2, 2 − or ( )90 90− ， , the 

vibrating system is called the in-phase 

synchronization. And the phase difference of 

rotors is always close to ( )2,3 2  or 

( )90 ，270 , the system is called the anti-phase 

synchronization. Considering installation angle 
 of motors are set as15°, 30°, 42°, 60°, 

respectively, and the influence of stiffness 

coefficient of the coupling springs on 

synchronization state are presented in Fig. 2. 

When 0k = , that is to say there isn't coupling 

springs among these rotors, the phase differences 

between 122 and 232  consistently tend towards 

anti-phase synchronization. From Fig. 2(c), it can 

be found that the values of 122  and 232 are 

equal to 127.4° and 112.1°, respectively, when 

42 = . For the coupling springs with a small 

coefficient, their elastic force has no influence on 

synchronous characteristic of the vibrating 

system. But with the increasing of k over a critical 

value, the phase difference between each pair of 

the rotors gradually stabilize at zero. Accordingly, 

the synchronous state of the system is changed 

from anti-phase synchronization to the in-phase 
synchronization suddenly. Moreover, from 

contrasting results shown in Fig. 2, it is also 

demonstrated installation angles of three motors 

have significantly impacted on synchronous 

behavior of the vibrating system. 

 
Table 1. The structural parameters of the vibrating system in engineering 

unbalanced rotors 
1,2,3i =  

a rigid frame motor  coupling springs 

2im = (kg) 90M = (kg) 1 0.35,0.52,l =  41 ~ 4.2 10k =  (N/m) 

0.04r = (m) 6.8J = (kg.m2) 0.64,0.85 (m) 0.02a = (m) 

157m = (rad/s) 
4 68 10 ,6.6 10xk =   (N/m) 2 0.12,0.18,l =  — 

0.02if = (N.s/m) 
4 68 10 ,6.6 10yk =   (N/m) 0.22,0.3 (m) — 

— 
3 56 10 ,4.96 10k =   (N/m) 3 0.35,0.52,l =  — 

— 1000xf = (N.s/m) 0.64,0.85 (m) — 

— 1000yf = (N.s/m) 1 160 =  — 

— 1000f = (N.s/m) 2 78 =  — 

— — 3 20 =  — 

 

                                                a)                                                                       b)  
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                                              c)                                                                         d)    

Fig. 2. Installation angle of motors and stiffness coefficient of the coupling springs are major influence 

on the dynamic characteristics: a)  = 15° ; b)  = 30° ; c)  = 42° ; and d)  = 60°  

 

We assume that 42 =  and the value of l  is 

equal to 0.32[m], 0.64[m], 0.85[m], 1.28[m], 
respectively. The influences of stiffness 

coefficient of the coupling springs on 

synchronization state are illustrated in Fig. 3. 

Compared with numerical results with different 

installation distances, the parameter l  has an 

appreciably effect on synchronous behavior of the 

vibrating system when 0k = . In addition, anti-

phase synchronization occurs for the coupling 

springs with a small coefficient. But with the 

increasing k over a critical value, the phase 

difference between each pair of the rotors 

gradually stabilize at zero. Accordingly, it can be 

concluded that the changing trends closing to zero 

are different when three motors are installed in 

different location. 

 

a)                                                                               b)        

 

c)                                                                                     d)  
Fig. 3. Installation distance of motors and stiffness coefficient of the coupling springs are major influence 
on the dynamic characteristics:a) 0.32l = [m]; b) 0.64l = [m]; c) 0.85l = [m]; and d) 1.28l = [m] 

Fig. 4 shows stiffness coefficient of the 

coupling springs is major influence on the 

dynamic characteristics of the vibrating system 

under the conditions of different frequency ratio. 

It can be concluded that frequency ratio of the 

system has no influence on synchronous behavior. 
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But for different frequency ratio, the changing 

rule of phase difference with changing of stiffness 

coefficient of the coupling springs in the steady 

state are consistent with those preceding 

conclusions in Fig. 2 and Fig. 3. 

 

a)                                                                               b)  

 

c)                                                                              d)  
Fig. 4. Frequency ratio and stiffness coefficient of the coupling springs are major influence on the 

dynamic characteristics: a) 4.47jn = ; b) 5jn = ; c) 6.8jn = ; and d) 8.95jn =  

 

3 SIMULATION VERIFICATION  
 

Based on the dynamics equations (1), a 

simulation model with three co-rotating rotors 

system coupled with springs are established by 
means of the Runge–Kutta algorithm with 

adaptive control. The relationships between 

synchronization state of the system and their 

mechanical-electrical coupling characteristics are 

investigated, and further analysis results are 

employed to verify the correctness of theoretical 

derivation and numerical analysis. Simulation 

parameters are identical with numerical results in 

Table 1. 

 

3.1 Dynamic characteristics for 0K = [N/m], 

0.48l = [m], 5.48
j

n =  

Simulation results for 

( , , ) 5.48jn j x y = = , 0.48l = [m], 0k = [N/m] 

are shown in Fig. 5. Here,  48 10 N/ m= xk   

 48 10 N/ m= yk , 
41.28 10k =  [rad/m]. The 

vibrating system are gradually changed from 

desynchrony state to the synchronization for 

about 3 seconds, and the driving torque of three 

motors are changed near 3.9[N.m], 3.71[N.m], 

3.71[N.m], respectively, as shown in Fig. 5(a). 

Moreover, three rotors are rotated with a same 

velocity 152.7[rad/s] when the vibrating system 

operate at the steady state, the phase 

difference 122 between rotor1 and rotor 2 is 

stabilized at -4.49[rad]  (102.7 4.49 rad−  

2 )+  and the phase difference 232 between 

rotor2 and rotor 3 is stabilized at 

8.42[rad](122.4° 8.42[rad] 2− ), as shown in 

Fig. 5(f). Compared with numerical result of the 

corresponding parameter in Figure2(c), the results 

show that simulation results are proven to be in 

good agreement with numerical results. Fig 5(c), 

5(d) and 5(e) shows phase diagrams of the 

vibrating system in the DOFs. As seen from those 

diagrams, the rigid frame was’t rapidly excitated 
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owing to its large mass during the initial process 

of the vibrating system, which caused the phase 

diagram of the mass center of the system are 

chaotic in the DOFs. The synchronous behavior 

of vibrating system is gradually implemented as 

the system kept running, the phase diagram of the 

mass center of the system in the x-y plane is a 

closed ellipse, and its amplitude in the DOFs is 

2.82×10-3[m], 2.8×10-4[m], 3.34×10-4[rad], 

respectively, as schematically illustrated in Fig. 

5(g). 

 

a)                                                                                           b) 

 

c)                                                                                d) 

 

e)                                                                                         f) 
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                                                                                       g) 

Fig. 5. Simulation results for 0k = [N/m], 0.48l = [m], 5.48jn = ： a) Driving torque of three motors; 

b) rotational velocity of three motors; c) Phase diagram of the system in x −  direction; d) Phase 
diagram of the system in y −  direction; e) Phase diagram of the system in  −  direction; f) Phase 
difference of three motors; and g) Displacement response of the rigid frame in x −  , y − , −  
directions, respectively 

 

3.2. Dynamic characteristics for 

 K = 60000 N/ m ,   l = 0.48 m  ,  j
n = 5.48   

For system parameters in section 4.1, 

changing the value 46 10k =  [N/m], and 

simulation results are shown in Fig. 6. When three 

motors are simultaneously provided with 

electromagnetic force, the synchronization 

phenomenon occurs after 4 seconds, and the 

rotational velocities of three motors are stabilize 

at 151.8[rad/s], as shown in Fig. 6(b). As 

illustrated in Fig. 6(a), the driving torque of three 

motors in synchronous state are 4.72[N.m], 

4.4[N.m], 4.4[N.m], respectively. Fig 6(c), 6(d) 

and 6(c) show phase diagrams of the vibrating 

system in x − , y −  and  −   directions, 

respectively. The results show that the phase 

diagram of the mass center of the system are 
chaotic during the initial process of the vibrating 

system. And its phase diagra in the x-y plane is a 

closed ellipse when the vibrating system operates 

at the steady state. The value of 122  is 

approximately equal to 0.194[rad]  (11.1  

 0.194 rad ) , and the value of 232  is 

approximately equal to 0.181[rad] (10.4  

 0.181 rad ) . By comparison, the simulation 

results are in good agreement with numerical 

results. Fig. 6(g) shows the amplitude of the mass 

center of the system in synchronous state, and its 

magnitudes are 3.1×10-3[m], 3.1×10-3[m], 

4.64×10-3[rad], respectively, as shown in Table 2. 

In addition, comparing simulation results in Fig. 5 

and Fig. 6, it is demonstrated that synchronous 

state of the system is significantly changed by 
those coupling springs among the rotors, which 

makes the system transit from anti-phase 

synchronization to the in-phase synchronization. 

And it can be seen that adjusting the value of the 

coupling spring stiffness can make phase 

difference close to zero to meet the requirements 

of the strongly exciting designing large-sized and 

heavy-duty vibrating screens in engineering. 
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                                           a)                                                                                  b) 

       

                                                 c)                                                                               d)  

     

                                                  e)                                                                                        f) 

 

 

 

                                                                                         g)  

Fig. 6. Simulation results for 60000k = [N/m], 0.48l = [m], 5.48jn = : a) Driving torque of three 

motors; b) Rotational velocity of three motors; c) Phase diagram of the system in x −  direction; d) 
Phase diagram of the system in y −  direction; e) Phase diagram of the system in  −  direction; f) 
Phase difference of three motors; and g) Displacement response of the rigid frame in x −  , y − , −  
directions, respectively 

 

 



Strojniški vestnik - Journal of Mechanical Engineering vol(yyyy)no, p-p  Received for review: yyyy-mm-dd 
© 2015 Journal of Mechanical Engineering. All rights reserved.  Received revised form: yyyy-mm-dd 

DOI code Original / Review / Short Scientific Paper Accepted for publication: yyyy-mm-dd 

*Mingjun Du's Address: Southwest Petroleum University, Chengdu, China, dmj9213@163.com 
13 

 

Table 2. Displacement amplitude of the vibrating system with the changing of the stiffness of the 
coupling springs 

 
x − direction 

(mm) 

y − direction 

(mm) 

 −  direction 

(mm) 

0k =  2.82 0.28 3.34 

60000k =  3.1 3.1 4.64 

 
3.3. Dynamic characteristics for 

 3K = 0000 N/ m ,   l = 0.48 m  ,  j
n = 6.8   

Fig. 7 presents results of computer 

simulation when 30000k = [N/m], 0.48l = [m], 

6.8jn = . Here, 
45.2 10x yk k= =  [N/m], 

38.32 10k =  [rad/m]. The synchronous velocity 

of three rotors is rotating with a speed 

152.5[rad/s] while the vibrating system operates 

at the steady state, and their output torques are 

stabilized at 4.28[N.m], 3.99[N.m], 3.99[N.m], 

respectively. The value of 122  is 

0.58[rad](33.2° 0.58[rad]), and the value 

of 232  is 0.523[rad] (29.97°  0.523[rad]). Thus, 

the simulation results are in good agreement with 

the numerical results discussed in Fig. 7 and Fig. 

5. Fig. 7(g) shows the amplitude of the mass 

center of the system in synchronous state, and its 

magnitudes are 3×10-3[m], 2.9×10-3[m], 3×10-

3[rad], respectively. 

 

                                          a)                                                                                         b)   

 
                                                c)                                                                                      d)  



Strojniški vestnik - Journal of Mechanical Engineering vol(yyyy)no, p-p 

 

Mingjun Du, Yongjun Hou. 14 

 
                                                e)                                                                                        f)  

 

 

 

g)   

Fig. 7. Simulation results for 30000k = [N/m], 0.48l = [m], 6.8jn = : a) Driving torque of three motors; 

b) Rotational velocity of three motors; c) Phase diagram of the system in x −  direction; d) Phase 
diagram of the system in y −  direction; e) Phase diagram of the system in  −  direction; f) Phase 
difference of three motors; and g) Displacement response of the rigid frame in x − , y − , −  directions, 
respectively 

 

4 EXPERIMENTAL VERIFICATION  
To validate the correctness of above-

mentioned theory and numerical analysis, it is 
necessary to further give some corresponding 

experimental analyses. An experimental strategy 

with synchronous tests and dynamic tests of the 

vibrating system are introduced, which consists of 

high-speed imaging system and dynamic testing 

system. The experimental prototype including 

induction motors(YZS-1.5-4), coupling springs, a 

rigid frame, an elastic foundation, four supporting 

springs, etc., are shown in Fig. 8. The motor 

performance parameters of YZS-1.5-4 are shown 

in Table 3. Two inseries springs in the coupling 

springs have always subjecting to a changing 

force alternately in compression when the 
vibrating system operates at the steady state, 

which ensured three rotors rotating in the same 

directions are easy to achieve a in-phase 

synchronization. The main parameters of the 

experimental prototypes are 1 0.41l = [m], 

2 0.15l = [m], 3 0.4l = [m], 1 159 = , 2 83 = , 

and the other parameters are identical with table 

1. The location parameters of four measuring 
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point on the prototype are 1( 0.45 0.23)P − −， , 

2 ( 0.22 0.23)P − −， , 3 (0.23 0.23)P −， , 

4 (0.46 0.23)P −， , respectively. 

 

                                     a)                                                                                                  b) 
Fig. 8. Experimental prototypes: a) three co-rotating rotors in a vibrating system; and b) two co-rotating 
rotors coupled with two inseries springs 

Table 3 . Parameters for vibration three-phase asynchronousmotor (YZS-1.5-4) 
Parameter Voltage 

[V] 
Power 
rating 
[HZ] 

Output 
Power 
[kw] 

Current 
[A] 

Frequency 
[r/min] 

Exciting 
force 
   [kN] 

Weight 
[kg] 

Value 380 50 0.12 0.36 1500 1.5 16 

 
The dynamic testing results of three co-

rotating rotors in a vibrating system are shown in 

Fig. 9. From spectral analyse shown in Fig. 9(a), 

it can be seen that the peak spectra of point 2P  and 

point 3P  in horizontal and vertical directions 

reaches a maximum when system frequency is 

approximately equal to 24.125 [Hz]. Fig 9(b) and 

9(c) show acceleration of four measuring point in 

horizontal and vertical directions. It can be 

concluded that their magnitudes are almost the 

same with a value 24.4[m/s2]. But the phase 

constants of the acceleration with point 1 and 4 

are different than point 2 and 3 in horizontal 

direction, and both the magnitudes and phase 

constants of their acceleration are different in 
vertical direction. Fig 9(d) and 9(e) show velocity 

of four measuring point in horizontal and vertical 

directions, and Fig 9(f), 9(g), 9(h) and 9(i) show 

the displacement of four measuring point in 

horizontal and vertical directions, respectively. 

The motion trajectories of four measuring point in 

xoy plan are elliptically, as illustrated in Fig. 9(j). 

However, its ovality and vibrating direction on 

the rigid frame are different, the reason is that 

both the magnitudes and phase constants of their 

displacements are different in horizontal and 

vertical directions. In addition, some simulation 

results of corresponding experimental prototype 

are employed to verify the correctness of 

theoretical analysis based on Eq.(1). The 
comparison between the dynamic test results and 

the simulation results with three co-rotating rotors 

system are given in Table 4. Those results show 

that the dynamic test results are proven to be in 

good agreement with simulation results, and all 

range of error for the measuring-point in vibrating 

body are within 30%. 

 

                         a)                                                        b)                                                      c) 
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d)                                                      e)                                                     f) 

 

g)                                                     h)                                                     i) 

 

j) 
Fig. 9. Dynamic characteristics of three co-rotating rotors system: a) spectral analysis; b) Horizontal 
accelerations of the measuring point; c) Vertical accelerations of the measuring point; d) Horizontal 
velocity of the measuring point; e) Vertical velocity of the measuring point; f) Displacements of the point 
1; g) Displacements of the point 2; h) Displacements of the point 3; I) Displacements of the point 4; and 
j) Motion trail of the measuring point in xoy plane 
 
Table 4. The amplitude comparison between the dynamic testing results and the simulation results with 

three co-rotating rotors system 

 

Results of dynamical 

testing 

Results of dynamical 

simulation 
Error value 

-x direction -y direction -x direction -y direction -x direction -y direction 

Measuring 

point 1P  
0.0017 0.0016 0.0015 0.0018 11.8% 11.1% 

Measuring 

point 2P  
0.0017 0.0011 0.0014 0.0015 17.6% 26.7% 

Measuring 

point 3P  
0.0017 0.0013 0.0014 0.0013 17.6% 0 

Measuring 

point 4P  
0.0018 0.0018 0.0015 0.0016 16.7% 11.1% 
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Fig. 10 shows the transiently state of three 

co-rotating rotors at different moments. As can be 

seen those diagrams, the value of 12  is 

3.56[rad], and the value of 23  is 4.04[rad]. It is 

concluded that the synchronous state of any two 

motors is in anti-phase synchronization when the 

vibrating system operates at the steady-state. 

Comparing with the simulation results of 

corresponding experimental prototype, the 

simulation values of 12  and 23  are 

3.46[rad], 3.47[rad], respectively, and their error 

of magnitudes are within 30%, as shown in Table 

5. 

 

 

 

Fig. 10. Phase difference with three co-rotating rotors system 
 

Table 5. The comparison between the testing value and the simulation value of phase difference with 
three co-rotating rotors system 

 
Experimenal test results 

The result of 

computer 

simulation 

Error value 

122  232  122  232  12  23  

Phase 

difference(rad) 
204° 3.56 -128.8° 4.04 3.46 3.47 2.8% 14.1% 

For the experimental prototype with two 

co-rotating rotors coupled with springs in a 

vibrating system, its testing results of dynamic 

characteristics are shown in Fig. 11. From Fig 

11(a) and 11(b), it can be seen that the connecting 

springs with a stress state occuring periodically 

can be ensured the synchronous operation of the 

system, the magnitudes of acceleration of point 
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2P  and point 3P  in horizontal direction are almost 

the same with a value 20[m/s2]. But the 

magnitudes of their acceleration in vertical 

direction are greater different with values 

44.1[m/s2] and 19.3[m/s2], respectively. 

Integrating once and twice for the acceleration 

during the running process of the steady-state, 
respectively, we can obtan the velocity and 

displacement of point 2P  and point 3P  in 

horizontal and vertical directions, as shown in Fig 

11(c)-(f). Moreover, comparing simulation results 

of corresponding parameters, it can be seen that 

the results of dynamic testing and simulation with 

two co-rotating rotors coupled with springs are in 

good agreement, as shown in Table 6. Fig. 11(g) 

shows the motion trajectories of point 2P  and 

point 3P  during the running process of the system, 

it is easy found that its motions are elliptically 

when the vibrating system operates at the steady 

state. But their ovality and vibrating direction on 

the rigid frame are different. 

 

a)                                                      b)                                                     c) 

 

d)                                                     e)                                                      f) 

 

g) 
Fig. 11. Dynamic characteristics of two co-rotating rotors coupled with springs in a vibrating system: a) Horizontal 
accelerations of the measuring point; b) Vertical accelerations of the measuring point; c) Horizontal velocity of the 
measuring point; d) Vertical velocity of the measuring point; e) Displacements of the point 2; f) Displacements of the 
point 3; and g) Motion trail of the measuring point in xoy plane 
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Table 6. The amplitude comparison between the dynamic testing results and the simulation results with two co-
rotating rotors coupled with springs in a vibrating system 

 
Results of dynamical testing 

Results of dynamical 

simulation 

Error value 

-x direction -y direction -x direction -y direction -x direction -y direction 

Measuring 

point 2P  
0.0017 0.0016 0.0021 0.0015 19%  23.8% 

Measuring 

point 3P  
0.0032 0.0014 0.0027 0.0018 15.6% 22.2% 

As can be seen from Fig.  12, the 
transiently state of two co-rotating rotors coupled 

with springs are presented by an experimental 

test. And its comparison between the testing value 

and the simulation value of phase difference are 

listed in Table 7. It can be seen that in-phase 

synchronization of two co-rotating rotors coupled 

with springs is easy to implement by the springs 

suffering from the stress state and unstressed state 
periodically and alternately. That is to say the 

coupling springs can make the phase difference 

between the three rotors close to zero during the 

running process of the steady-state. The 

experimental results are in good agreement with 

the simulation results in the vibrating system.

 

 

Fig.  12. Phase difference with two co-rotating rotors coupled with springs in a vibrating system 

 
Table 7. The comparison between the testing value and the simulation value of phase difference with 

two co-rotating rotors coupled with springs in a vibrating system 

 
The results of the indirect 

experomental tests 

The result of computer 

simulation 
Error value 

Phase 

difference 122 (rad) 
0.67° 0.012 0.75° 0.013 7.7% 

 
5 CONCLUSION 

 
In this work, a vibrating mechanism of 

three co-rotating rotors system coupled with 

springs in a non-resonance system is proposed to 

design large-sized and heavy-duty vibrating 

screens. The paper is focused on the research of 

theoretical derivation, numerical analysis, 
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computer simulations and experimental 

verification. The conclusions are as follows: 

(1) For the couping springs with a small 

stiffness k , the coupling springs have a little 

influence on synchronization characteristics of the 

vibrating system. And the synchronous state of 

motors is always to maintain in anti-phase 

synchronization. But with the increasing k over a 

critical value, the phase difference among each 

two rotors gradually stabilize at zero. 

Accordingly, synchronous state of the system is 

changed from anti-phase synchronization to in-

phase synchronization. Additionally, it can be 

concluded that the frequency ratio of the system 

has a little influence on synchronous behavior, but 

the synchronous state of the system is influenced 

by positional parameters of three motors, stiffness 
coefficient of the coupling springs.  

(2) An electromechanical coupled dynamic 

model of three co-rotating rotors system coupled 

with springs is established based on the Runge–

Kutta algorithm with adaptive control. The 

relationships between synchronization state of the 

system and their mechanical-electrical coupling 

characteristics are investigated. It can be found 

that the coupling spings with a large enough 

stiffness can make the phase difference among the 

three rotors close to zero during the running 

process of the steady-state. Finally, an 
experimental prototype including synchronous 

tests and dynamic tests of the vibrating system is 

designed to prove to be in good agreement with 

theory and numerical analysis results.   

 (3) The presented model in this paper can 

be applied to large-sized and heavy-duty vibrating 

screens, which can promote the rapid 

development of a new drilling technology and the 

DFSS towards high capacity, high efficiency, low 

noise, intelligent, energy-saving, environmental 

protection, etc.  
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7 NOMENCLATURES 

 

im  mass of the rotor i , 1,2,3i =   

0m  mass of the rigid frame 

ir  
eccentric radius of the rotor i , 

1,2,3i =  

0r  a standard radius 

i  
angular displacement of the rotor 

i , 1,2,3i =  

i  installation angle of the rotor i , 

1,2,3i =  

il  distance from center of mass to 

the rotor i , 1,2,3i =  

iJ  rotational inertia of the motor i , 
1,2,3i =  

if  damping coefficient of motor i , 
1,2,3i =  

M  the total mass of the vibrating 

system, 
3

0

1

iM m m= +   

J  rotational inertia of the vibrating 

system, 
3 3

2 2

0

1 1

i i i iJ J m l m r= + +    

jf  damping constant of the vibrating 

system in j −  direction, 

, ,j x y =  

jk  stiffness of four supporting spring 

in j −  direction, , ,j x y =  

k  stiffness coefficient of the 

connecting spring 
a  distance between the rotating 

center of motor i and the end of 

coupling springs  

12  phase differences between motor 

1 and motor 2 

23  phase differences between motor 

2 and motor 3 

i  
instantaneous change coefficients, 

1,2,3i =  

0 ，

12 ， 23  

coefficients of the instantaneous 

change with m , 12 and 23  

, ,x y     damping coefficient of the 

vibrating system in j −  

direction, , ,j x y = , 

2x x nxf M = , 2y y nyf M = , 

2 nf J   =  

nj  natural frequency of the vibrating 

system  in j − direction, 

, ,j x y = , nx xk M = , 
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ny yk M = , n k J  =  

mr el  lir  

rir i  

dimensionless 

parameters 0mr m M= , el J M= , 

li i er l l= , 0ri ir r r= , 

0i im m = , 1,2,3i =  

jn  frequency ratio in j −  

direction j m njn  =  

eiT  
driving torque of the rotor i , 

1,2,3i =   

0e iT  
output torque of the rotor i , 

1,2,3i =  

0e ik  
scaling factor of electrical and 

mechanical damping, 1,2,3i =  

T  total kinetic energy of the system 

V  
total potential energy of the 

system 

iQ  generalized force of the system 

iq  
generalized coordinate of the 

system 

zT  the sum of kinetic energy with 

three motors 

•  integrating over one period T  of 

time, ( )
0t T

T

dt

+

• = •  

( )•  The first derivative of time, 

( )d dt•  

( )•  The second derivative of time, 

( )
22d dt•  
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