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0  INTRODUCTION

Extensive studies of “road-friendly” heavy vehicles 
have been performed during the last few decades to 
reduce road damage and increase the rated load of 
vehicles. However, the load-sharing ability of multi-
axle heavy vehicles, which has a strong correlation 
with road-friendliness, has been far from adequately 
investigated. Load-sharing is defined as the 
equalization of the axle group load across all wheels/
axles [1]. When a multi-axle heavy vehicle with leaf 
suspensions travels on a rough road or hits a bump/ 
pothole, such as a bridge-head, or speed control humps, 
unequally distributed loads among the axles of an axle 
group tend to appear due to the ineffectiveness of the 
load-sharing mechanism (centrally pivoted walking 
beam, trunnion shaft, etc.) and the high stiffness of 
leaf springs [2]. This phenomenon causes overloading 
of a single axle of the axle group, which has at least 
two disadvantages: (a) it increases the possibility of a 
tire bursting as well as reducing the maneuverability 
and stability of the vehicle; (b) it accelerates the 
rutting and fatigue that contributes to pavement 
damage [3]. As a consequence, the improvement of 
load-sharing within axle groups has attracted much 
attention among both vehicle manufacturers and road 
management departments.

Load-sharing performances of axle groups are 
specified in regulations for road-friendly vehicles in 
many countries. The DIVINE (Dynamic Interaction 
between Vehicle and Infrastructure Experiment) 

project undertaken by OECD (Organization for 
Economic Cooperation and Development) suggests 
that in order to qualify as a road-friendly tandem 
suspension, the average load variation per unit of 
relative vertical suspension displacement must be 
less than 0.3 kN/mm [4]. The Australian specification 
for road-friendly suspensions nominates that road-
friendly suspensions must have static load-sharing, 
i.e., load-sharing when the vehicle is stationary, to a 
defined value, between axles in an axle group or tires 
in an axle group. However, the formal methodology 
to determine the static load-sharing value on a heavy 
vehicle is not defined [5]. In Europe, an air suspension 
needs to have fully-functioning hydraulic shock 
absorbers to pass a static road-friendliness test [6], 
and heavy vehicles with road-friendly suspensions are 
allowed higher static axle loads. A common problem 
with these regulations is that only the static load-
sharing of vehicles is specified and that there is no 
requirement for suspensions to retain their dynamic 
load-sharing performance, i.e., load-sharing when the 
vehicle is driving. 

Many other load-sharing metrics have also 
been proposed by researchers. LSC (Load-Sharing 
Coefficient) [7] and DLSC (Dynamic Load-Sharing 
Coefficient) [8] have been used to evaluate static 
and dynamic load-sharing, respectively. Noting that 
perfect load equalization would give a LSC of 1.0 [9], 
LSC values for steel suspensions were documented 
in the range 0.791 to 0.957 [7]. Air suspensions with 
conventional-size longitudinal air lines were placed 
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in the middle of this range with LSCs of 0.904 to 
0.925 [4]. More recent studies commissioned by the 
National Road Transport Commission of Australia 
found that installation of larger air lines on multi-
axle air suspensions increased longitudinal air flow 
between air springs on adjacent axles [10] and [11] 
Follow-up tests funded by the Queensland Department 
of Main Roads discovered that an improvement in 
DLSC of 4 to 30% for a tri-axle coach and 37 to 77% 
for a tri-axle semi-trailer were obtained by alternating 
the conventional-size longitudinal air connection 
(three 6.5 mm inside diameter connectors connecting 
6.5 mm inside diameter air lines) with a larger air 
connection (three 20 mm inside diameter connectors 
connecting 50 mm inside diameter air lines) [12] and 
[13]. However, due to the limitations of laboratory 
equipment, only vehicle speed and a limited number 
of air connections were considered in most tests, so 
that the effect of some other factors like the static 
absolute air pressure of the air spring and static height 
of the air spring on load-sharing have not yet been 
reported before. 

Limitations of laboratory and on-road tests 
can be addressed by developing realistic models of 
longitudinal-connected air suspensions. Potter et al 
developed a simplified tandem bogie model, and 
by changing the damping coefficient and torsional 
stiffness of the leveling beam of the model [2], 
it can represent load-leveling steel suspensions, 
independent steel suspensions, longitudinal-connected 
air suspensions, and independent air suspensions, 
respectively. Davis proposed a model of a tri-axle semi-
trailer with longitudinal-connected air suspensions 
[12], and used a variable “load-sharing fraction” to 
represent the load-sharing ability of the suspension. 
However, the physical meaning of the variable was 
unclear. A more realistic model of a similar tri-axle 
semi-trailer was developed by Roebuck et al based 
on aerodynamics and thermodynamics [14]. In the 
model, the volumetric flow rate [m3/s] between two 
air springs was assumed to be simply proportional 
to the difference in air pressure with a constant 
coefficient Cflow [m3/(kPa·s)]; in addition, the volumes 
and effective areas of the air springs were simplified 
as constants while the vehicle was travelling. 

Unfortunately, these simplifications of 
nonlinearities reduced the precision of the proposed 
models. A more realistic model of longitudinal-
connected multi-axle air suspensions is urgently 
needed for precise analysis and optimization of load-
sharing in multi-axle semi-trailers.

The rest of this paper is organized in the 
following order. In Section 1, a novel nonlinear 

model of longitudinal-connected tri-axle air 
suspensions is derived based on fluid mechanics 
and thermodynamics. The accuracy of the model 
is validated and load-sharing criteria are chosen 
in Section 2. Based on the model, the effects of air 
suspension parameters (static height and static 
absolute air pressure of air spring, inside diameters of 
air line and connector) on dynamic load-sharing are 
analyzed in Section 3. Finally, Section 4 presents a 
summary of the results and draws conclusions.

1  INTEGRATED MODEL OF VEHICLE AND ROAD EXCITATION

1.1 Mathematic Model of the Tri-Axle Semi-Trailer 

A basic half model representing a typical tri-axle semi-
trailer with longitudinal-connected air suspensions in 
most western countries was employed, as shown in 
Fig. 1. This model includes five degrees of freedom 
(DOF), which are vertical displacements of sprung 
mass and three unsprung masses, z, x1, x2, x3, as well 
as the pitch angle of the sprung mass, ϕ.

Front Rear

q1 q2 q3

x1 x2 x3

z

ϕ

Fig. 1.  Schematic of the tri-axle semi-trailer with longitudinal-
connected air suspensions

The equations of motion of the semi-trailer are 
given by:

	
m x q x k c z x l

P P A mg

t t

s s

1 1 1 1 1 1 1

1 0 1
1
3

   = − + − − −

− − +

( ) ( )

( )

φ

       ,,

       

	 (1)

	
m x q x k c z x

P P A mg

t t

s s

2 2 2 2 2 2 2

2 0 2
1
3

  = − + − −

− − +

( ) ( )

( ) ,        
	 (2)

	
m x q x k c z x l

P P A m

t t

s s

3 3 3 3 3 3 3

3 0 3
1
3

   = − + − + −

− − +

( ) ( )

( )

φ

        gg,
	 (3)



Strojniški vestnik - Journal of Mechanical Engineering 59(2013)1, 14-24

16 Chen, Y. – He, J. – King, M. – Chen, W. – Wang, C. – Zhang, W.

   
J P P A c z x l mg l

P P

s s

s

   φ φ= − − − + −




−

− −

( ) ( ) )

(

3 0 3 3 3

1 0

1
3

     )) ( ) ) ,A c z x l mg ls1 1 1
1
3

− − − −





  φ
	 (4)

	
mz P P A P P A

P P A c z x
s s s s

s s



  

= − + − +

+ − − − −

( ) ( )

( ) (
1 0 1 2 0 2

3 0 3 1 1    φll

c z x c z x l mg

)

( ) ( ) ,

−

− − − − − −    2 2 3 1    φ

	 (5)

where mt1, mt2, mt3 and q1, q2, q3 are the unsprung 
masses and road excitation of the three axles, 
respectively. m is the sprung mass of the semi-trailer. 
J is the moment of inertia of the gross sprung mass 
around the lateral axis. Ps1, Ps2, Ps3 and As1, As2, As3 
are the dynamic absolute air pressure and dynamic 
effective area of the three air springs, respectively. P0  
is atmospheric pressure. l is the wheelbase, c1, c2, c3 
are the damping coefficients of three dampers, and kt1, 
kt2, kt3 are the stiffness of the three tires.

1.2  Road Roughness Excitation 

Many methodologies have been proposed to model 
road surface profile [15] to [17]. One method is to 
describe the profile as a realization of a random 
process that is represented by its PSD (Power Spectral 
Density). A concise spectral model is used in this 
study as [18]:

	 G n G n n
n

n n nq q( ) ( )( )= <−
0

0

2
1 2  (  < ), 	 (6)

where Gq(n) is the PSD function [m3/cycle] for the 
road surface elevation; n is the spatial frequency 
[cycle/m]; n0 is the reference spatial frequency, 
n0  =  0.1 cycle/m; Gq(n0) is roughness coefficient  
[m3/cycle], whose value is chosen depending on the 
road condition. Classification of road roughness 
is based on the index of the ISO standard [19]. The 
ISO has proposed a road roughness classification 
from Class “A” (very good) to Class “H” (very poor) 
according to different values of Gq(n0). n1 and n2 are 
lower and upper spatial cutoff frequencies when Gq(n) 
reaches 1 and 10-5 m3/cycle, respectively [19]. 

When travelling along the road surface at a 
constant vehicle speed u, the temporal frequency, f, 
and n are related as f = un. Therefore, the relationship 
between spatial PSD and temporal PSD becomes:
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As the angular frequency, ω, is related to f as 
ω = 2 π f, Eq. (7) is rewritten as:
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q q( ) ( ) .ω π

ω
= 4 2

0 0
2

2 	 (8)

Eq. (8) is transformed to the following equation 
when inserting a lower cutoff angular frequency, ω1 
[20]:
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where ω1  =  2 π n1 u. Standard road roughness is a 
response of a first order linear to a white noise, w(t) 
[21], therefore:

	 G H Sq ( ) ( ) ,ω ω ω= 2 	 (10)

where Sω is the PSD of the white noise, Sω =1. 
Substituting Eq. (10) into Eq. (9) yields:
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Then the road roughness q(t) is given by:

	 q t n uq t n G n uw tq( ) ( ) ( ) ( ).= − +2 21 0 0π π 	 (12)

The upper cut-off frequency n2  was modeled 
by setting the sampling frequency of w(t) based on 
Nyquist sampling theory, i.e., the sampling frequency 
should be at least 2n2u Hz. A time delay of l / v for 
road excitation is applied between adjacent axles.

1.3  Detailed Model of Longitudinal-Connected Tri-Axle Air 
Suspensions 

To solve the equations in section 1.1, a detailed model 
of longitudinal-connected tri-axle air suspensions is 
needed to express Ps1, Ps2 and Ps3 as functions of the 5 
variables (5 DOF).

It is assumed that all the air springs are stroked 
fast enough so that all the heat of the operation is 
conserved when the vehicle is travelling, i.e., an 
adiabatic process occurs. Thus, the formula for 
calculating the dynamic absolute air pressure inside 
the front air spring, Ps1, is [22]:

	 P
V
m

P
V
ms

s

s

k
s

s

s

k
1

1

1
10

10

10

( ) ( )= = constant. 	 (13)

Vs1, Vs10 are the dynamic volume, and static 
volume of the front air spring; ms1, ms10 are the 
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dynamic air mass, and static air mass inside the 
front air spring; and Ps10 is the static absolute air 
pressure inside the front air spring. The value of the 
above exponent, k, varies with the gas used and is a 
function of the specific heat of the gas. Air suspension 
operation is characterized by neither an isothermal 
nor an adiabatic process, but is instead polytropic. In 
normal use, however, the process is much closer to 
adiabatic than isothermal. Accordingly, the value of k 
is set to 1.4. 

Ps1 is obtained from Eq. (13) as follows:

	 P
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V m
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s s

s s
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where Vs1 is a function of the dynamic height of the 
front air spring, and is given by:

	 V z x l A Vs s s1 1 1 10= − − +( ) ,φ 	 (15)

where As1 can also be approximated as a function of 
dynamic height based on experimental data.

ms1 depends on the air flow rate inside the front 
connector, G1 [kg/s], is given by:

	 m m G dts

t
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= + ∫ . 	 (16)

Since only small variations of temperature, air 
pressure and air spring volume exist when the semi-
trailer is travelling, the air flow inside the front 
connector is considered to be an incompressible 
steady flow, which satisfies the following formula, 
according to Bernoulli’s equation [23]:
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where Pf1 is the dynamic absolute air pressure inside 
the front connector; vs1, vf1 are the air flow speed [m/s] 
inside the front air spring and the front connector, 
respectively; and the air inside all the air springs, 
connectors and the air line is assumed to have a same 
constant density, ρ, when the semi-trailer is travelling; 
Af1 is the effective area of the front connector, which 
is equal to the actual area multiplied by a contraction 
coefficient, 0.7 [24].

Noting that As1 is related to Af1 because 
As1·vs1 = Af1·vf1, inserting vs1 = Af1·vf1  / As1 into Eq. 
(17) yields:
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where vf1 is modified with a coefficient, cd (0.8), to 
reflect the friction of the connector. Therefore, the 
actual air flow speed inside the front connector, v'f1, 
and G1 are given by:
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Substituting Eqs. (15), (16) and (20) into Eq. (14) 
yields:
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The dynamic absolute air pressures inside the 
three connectors and the longitudinal air line are 
assumed to have the same value, Pf1, during travel. 
Thus, similar expressions for the air flow rate inside 
the middle and rear connectors (G2 and G3), as well 
as the dynamic absolute air pressure inside the middle 
and rear air springs (Ps2 and Ps3) are derived as 
follows:
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where Ps20, Vs20, ms20 are the static absolute air 
pressure, static volume and static air mass of the 
middle air spring, Ps30, Vs30, ms30 are the corresponding 
parameters for the rear air spring; and Af2, Af3 are the 
areas of the middle and rear connectors, respectively. 
The three air springs have the same static absolute air 
pressure, static volume and static air mass, and the 
three connectors have the same inside diameter.

The air line is made of steel, so the volume of 
air line is constant. Based on Eq. (14), the dynamic 
absolute air pressure inside the air line, Pf1, is 
expressed as a function of the static air mass of the air 
line, ml0, the static absolute air pressure inside the air 
line, Ps10, and the gross air flow rate inside the air line, 
Gl, shown as follows:
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Substituting Eqs. (20), (22), (23) and (27) into 
Eq. (26) yields:
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Based on the equations in Section 1.1, Section 1.2 
and Eqs. (21), (24), (25) and (28), an integrated model 
of road excitation and a fully-loaded tri-axle semi-
trailer with longitudinal-connected air springs was 
developed with Matlab/ Simulink. Parts of the key 
parameters are tabulated in Table 1. The expression of 
the effective area of each air spring as a function of 
the dynamic height of corresponding air spring will be 
obtained based on test results in Section 2.2.

Table 1.  Parameters of the Tri-axle Semi-trailer Model

Para- 
meter Value Dimen-

sion Description

As10 0.0783 m2 Static effective area of each air 
spring

Vs10 0.0125 m3 Static volume of each air spring
hs0 0.16 m Static height of each air spring
df 0.0065 m Inside diameter of each connector

ds 0.0065 m Inside diameter of the longitudinal 
air line

Ps10 464288 Pa
Static absolute air pressure inside 
each air spring, each connector 
and the air line

P0 101325 Pa Atmosphere pressure

m 8700 kg Gross sprung mass of the semi-
trailer

mt1 336 kg Unsprung mass of each air spring

J 5684 kg·m2
Moment of inertia of the gross 
sprung mass around the lateral 
axis

kt1 1960000 N/m Stiffness of dual tires on each hub

ρ 6.5417 kg/m3 Density of air inside air springs, air 
connectors and the air line

crebound 288600 N·s/m

Damping coefficient of each 
damper when dynamic height 
of respective suspension is 
increasing

cbump 184500 N·s/m

Damping coefficient of each 
damper when dynamic height 
of respective suspension is 
decreasing

2  LOAD-SHARING CRITERIA AND MODEL VALIDATION

2.1  Load-Sharing Criteria

Criteria need to be chosen to evaluate the load-sharing 
of the semi-trailer. A metric often used to characterize 
the magnitude of dynamic forces of a wheel in an axle 
group is the DLC (Dynamic Load Coefficient) [7], 
defined as:

	 DLC i
F i

i

mean

( )
( )

,=
σ 	 (29)

where σi denotes the standard deviation of wheel-
force i, and Fmean(i) denotes the mean wheel-force 
of wheel i. Although DLC is usually referred to as a 
road-friendliness criterion and has been criticized for 
its mutually exclusivity with another load-sharing 
criterion, LSC [1], it still has been widely used as one 
measure to differentiate suspension types from each 
other (e.g., steel vs. air) [12], [13] and [25].
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De Pont points out that LSC does not address 
dynamic load-sharing [8]. The DLSC was proposed 
as an alternative to LSC, to account for the dynamic 
nature of wheel-forces and instantaneous load-sharing 
during travel, and is defined as [8].

	 DLSC
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The dynamic load-sharing of wheel i, DLSi(j), is:
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where n is the number of wheels on one side of an 
axle group; k is the number of terms in the dataset; 
and Fi(j)  is the instantaneous force at wheel i.

In this study, the average DLSC of tires on the 
same side of the semi-trailer axle group was employed 
as a metric of load-sharing. The average DLC of 
tires on the same side of the semi-trailer axle group 
was used to evaluate road-friendliness as well as to 
analyze the relationship between load-sharing and 
road-friendliness.

2.2  Model Validation

The prototype of the tri-axle semi-trailer was tested on 
various road sections for verification of the integrated 
model of vehicle and road excitation, as shown in Fig. 
2. The tests were part of a joint project titled “Heavy 
vehicle suspensions – testing and analysis” between 
the Queensland University of Technology (QUT) 
and the Department of Transport and Main Roads, 
Queensland (TMR) [26].

The setups of the tests are shown in Fig. 2. 
Two types of longitudinal connections were used to 
connect the passive air suspensions on the same side: 
conventional (three 6.5 mm inside diameter connectors 
connecting a 6.5 mm inside diameter air line) and 
large (three 20 mm inside diameter connectors 
connecting a 50 mm inside diameter air line). Strain 
gauges (one per hub) were mounted on the neutral axis 
of each axle between the spring and the hub to record 
the shear force on the hubs, i.e., air spring force, and 
accelerometers were mounted as closely as possible to 
each hub and to the corresponding upper positions at 
the chassis to derive the height of each air spring. In 
addition, six air pressure transducers were employed 
to obtain the pressures inside the air springs, and a 

TRAMANCO P/L on-board CHEK-WAY telemetry 
system was used to record all the data.

The dynamic force of each tire was derived 
based on the shear force on the respective hub and 
the acceleration on the respective axle. The effective 
area of each air spring was obtained by dividing the 
respective shear force by the respective pressure 
inside the air spring, and the volume of each air spring 
was derived by multiplying the respective effective 
area by the respective spring height.

The tests comprised of driving the semi-trailer 
over three typical urban road sections at speeds 
ranging from 60 to 80 km/h; the sections of road 
varied from smooth with long undulations to rough 
with short undulations. The IRI (International 
Roughness Index) values of each road section were 
provided by TMR, and the IRI is related to Gq(n0)  
in Eq. (6) as IRI G nq= ×0 78 103

0. ( )  [27]. Ten 
seconds of dynamic signal data were recorded per 
road section, and this was done for both experimental 
cases (i.e., conventional longitudinal connection vs. 
large longitudinal connection) for the fully loaded 
condition. 

Thus, the dynamic effective area of each air 
spring is approximated as a function of the dynamic 
height of corresponding air spring, y, based on the 
experimental results, shown as: 

	

A y y

y
s1 7.670500 2.866880

0.354226 0.093002.

= − +

− +

−3 2

	 (32)

The effective area multiplied by the dynamic 
spring height yields:

	

Vs y y

y y

1 7.670500 2.866880

0.354226 0.093002

= − +

− +

−4 3

2 . 	 (33)

The comparisons between the test and simulation 
results in terms of load-sharing performance are listed 
in Table 2. 

As shown in Table 2, a reasonable agreement 
exists between test and simulation results for both 
types of connection, under various road roughness 
conditions and vehicle speeds. The absolute error 
ratio of the DLC between each test and corresponding 
simulation is less than 10%; except for test/simulation 
4, the absolute error ratios of the DLSC are less than 
20%. It is also noted that all the simulation results 
are smaller than the corresponding test results, 
which mainly dues to wear of the suspensions 
of the test vehicle after a period of use and some 
simplifications of the model of longitudinal-connected 
air suspensions. 
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a)   b)   c) 

d)   e)   f) 

g) 

Fig. 2.  Setups of the tests; a) prime mover, b) test semi-trailer with test load, c) large longitudinal air line, d) strain gauge, e) accelerometer 
mounted on the axle, f) air pressure transducer, g) CHEK-WAY telemetry system underneath the semi-trailer [26]

Table 2.  Comparison of Load-Sharing Performances between Tests and Simulations

Test/
simulation

number

Type of 
longitudinal 
connection

IRI
Velocity
[km/h]

Load-sharing 
criteria

Test results
Simulation

results

Error ratio 
(compared with the 

test results) [%]

1 conventional 6.213 60
DLC 0.0791 0.0733 -7.3

DLSC 0.0505 0.0431 -14.6

2 large 6.213 60
DLC 0.0699 0.0637 -8.9

DLSC 0.0440 0.0357 -18.8

3 conventional 7.602 70
DLC 0.1034 0.1001 -3.2

DLSC 0.0851 0.0721 -15.3

4 large 7.602 70
DLC 0.0983 0.0926 -5.8

DLSC 0.0819 0.0645 -21.2

5 conventional 8.880 80
DLC 0.1773 0.1679 -5.3

DLSC 0.1506 0.1256 -16.6

6 large 8.880 80
DLC 0.1775 0.1626 -8.4

DLSC 0.1474 0.1256 -14.8

It can be concluded from Table 2 that the 
simulation results correlated well with the 
measurements. Therefore, the integrated model 

of vehicle and road excitation in this study can be 
employed for further analysis.
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3 EFFECT OF SUSPENSION PARAMETERS ON LOAD-SHARING

3.1 Effect of Static Height and Static Pressure

The effect of the static height and static pressure of air 
springs for the fully-loaded semi-trailer are discussed 
in this section, for a constant vehicle speed of 20 m/s 
and a standard “B” class road profile. Note that the 
effective area of each air spring at a given height 
is nearly constant with various static absolute air 
pressures, i.e., Eq. (32) always holds. The new static 
pressure of each air spring under a new static height 
is related to the corresponding static spring height as 
follows:
P hs new s new10 0

3
( ) ( )(= × × −

+

+2900 9.8 7.670500

2.86688           00 0.354226

             0.093002)

h hs new s new0
2

0

1 1 0

( ) ( )

.

−

+

+

+− 11325 105* . 	(34)
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Fig. 3.  Effect of static height on load-sharing; a) DLSC, b) DLC, c) 
DLSC optimization ratio and DLC

The influence of the static height (varying from 
0.15 to 0.22 m) and corresponding static pressure 
(varying from 463431 to 495204 Pa) on load-sharing 
are shown in Fig. 3.

It can be seen in Figs. 3a and b that both the DLSC 
and DLC reduce as the static height increases. In fact, 
when the static height increases, the absolute value 
of dAs10 / dy increases and dVs10 / dy decreases based 
on Eqs. (32) and (33). These result in the reduction of 
dynamic stiffness of each air spring and accordingly 
the decline of DLSC and DLC. 

Another finding is that compared with the DLC of 
the semi-trailer with connection “2”, which decreases 
at a relatively constant rate, the DLSC of the semi-
trailer with connection “2” decreases more slowly 
and becomes constant when the static height exceeds 
0.19 m. This indicates that when a large connection 
is employed, the load-sharing will not change much 
as the static height increases and the air pressure of 
air springs decreases, but the dynamic tire forces will 
continue to reduce.

The optimization ratios of both DLSC and DLSC 
decline as the static height increases, as shown in Fig. 
3c. As the static height increases, Vs10 increases, and 
the volume of air line / Vs10 decreases, and the effect 
of employing large air line and connectors becomes 
less prominent.

3.2  Effect Of Inside Diameter of Air Line and Connector

The effects of size of air line and connector (varying 
from 10 to 100 mm) on load-sharing are plotted in 
Fig. 4, with a constant vehicle speed of 20 m/s for the 
fully-loaded semi-trailer and a standard “B” class road 
profile. The diameters of the connectors are always 
less than or equal to those of the air lines in all the 
simulations.

It can be seen in Figs. 4a and 4b that with a fixed 
diameter of air line, both DLSC and DLC reduce 
quickly as the air line diameter increases from 10 to 
30 mm. For example, with a 100 mm diameter air 
line, reductions up to 11.4 and 8.4% are observed for 
DLSC and DLC, respectively. When the diameter of 
air line increases beyond 30 mm, both DLSC and DLC 
decrease more slowly and finally become constants. 

However, when the diameter of the connector 
is fixed, the change of DLSC with air line diameter 
is different from that of the DLC. With a 10 mm 
diameter connector, as the air line diameter increases 
from 10 to 100 mm, the DLSC only decreases 1.0%, 
while the DLC decreases 6.8%. Thus, although the 
load-sharing of the semi-trailer improves very slowly 
by increasing the size of the connector, the dynamic 
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tire force and accordingly the road-friendliness of the 
semi-trailer are effectively improved. 
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Fig. 4.  Effect of size of air line and connector on load-sharing 
optimization ratios; a) DLSC, b) DLC

The change in dynamic tire force can be revealed 
more clearly with spectral analysis. Fig. 5 shows 
the PSD for dynamic tire force for three types of 
longitudinal connections among air suspensions, i.e., 
type “1”, type “2” (both as specified above), and 
type “3” (three 100 mm inside diameter connectors 
connecting a 100 mm inside diameter air line). It is 
evident that the dynamic tire forces are effectively 
isolated by using large air lines and connectors, 
especially at frequencies lower than 0.3 Hz and 
frequencies from 0.8 to 5.0 Hz. Compared with the 
semi-trailer with air connection “1”, the peak values 
around the body bounce frequency (about 1.9 Hz) 
of the front dual tires decreased by 18.6 and 60.6% 
through employing air connections “2” and “3”, and 
the corresponding optimization ratios of the middle, 
rear dual tires are 22.3, 50.5, 36.6 and 58.1%, 
respectively. 

4  CONCLUSIONS

In this study, the effects of suspension parameters on 
dynamic load-sharing of longitudinal-connected air 
suspensions of a tri-axle semi-trailer were investigated 
comprehensively. A novel nonlinear model of 
longitudinal-connected tri-axle air suspensions 

was formulated based on fluid mechanics and 
thermodynamics and validated through test results. 
The effects of road surface conditions, driving speeds, 
air line diameters and connector diameters on the 
dynamic load-sharing capability of the semi-trailer 
were analyzed in terms of the DLSC and DLC, and 
the following conclusions can be drawn:
1.	 The road-friendliness metric DLC, is generally in 

accordance with the load-sharing metric DLSC.
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Fig. 5.  Effect of size of air line and connector on optimization 
ratios of load-sharing; a) front axle, b) middle axle, c) rear axle
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2.	 When the static height or the static pressure is 
increased, the DLSC optimization ratio declines. 
The reason for this phenomenon is that the static 
height increases with more static pressure, Vs10  
increases, and the volume of air line divided by 
Vs10 decreases. Thus, the effect of employing 
a large air line and connectors becomes less 
prominent.

3.	 Assuming that the diameter of the air line is 
always larger than that of the connector, the 
influence of the diameter of air line is more 
significant than that of the connector. When the 
semi-trailer is driving at 20 m/s on a standard “B” 
class road and the connector diameter is fixed at 
10 mm, the DLSC only decreases 1.0% as the 
air line diameter increases from 10 to 100 mm. 
However, when the air line diameter is fixed at 
100 mm, the reduction reaches 11.4% as the 
connector diameter increases from 10 to 30 mm; 
as the connector diameter continues to increase, 
the DLSC declines at a very slow rate and 
becomes constant.
Based on the proposed model, investigation of the 

control methods of the tri-axle air suspension system 
with longitudinal air line and their influence on load-
sharing will be undertaken in the future.
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