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Abstract 

This paper reports on a numerical study for steady flow and heat transfer distribution for a configuration relevant to Liquid 
Composite Molding, where a gap between a porous substrate and the solid boundary of a mold cavity yields an edge flow. The flow
within the porous domain is modeled by the Brinkman-Forchheimer formulation, and the edge flow itself is described by the Navier-
Stokes equations. The cure of the fluid (resin) is simulated as a volumetric heat generation. The predictions are obtained using a well-
tested control-volume finite element method, however, a novel methodology had to be devised to define the interface between the
free and porous system.  The most relevant finding is the critical role of the gap upon the quality of the part. The presence of the gap 
can reduce substantially the average flow through the porous substrate, therefore yielding high temperature levels in this region. 
These temperatures may be sufficiently high to cause serious defects to the part being molded.  

Introduction 

  Numerical and analytical investigations of flow and 
heat transfer distribution in composite systems containing 
simultaneously a porous and an open fluid domain are 
receiving renewed interest from the scientific and 
engineering community due to the demand for the 
development of models that can enhance mold design in 
the area of Liquid Composite Molding (LCM)[1,2]. LCM 
processes, such as Resin Transfer Molding (RTM) are 
preferred manufacturing processes for large structural 
components of complicated shape made out of polymer 
composites. These processes, in general, are characterized 
by their high cost-effectiveness, relatively simple tooling 
requirements, low cycle times, and net-shape production.  
They require the impregnation of a polymeric resin 
through a porous preform, which is placed in the mold 
cavity, and it can be composed of glass, carbon, or Kevlar 
fibres. The main difficulty with these processes is usually 
associated with the eventual presence of small clearances 
between the preform and the mold edges, which result 
from rough cutting, ill fitting, or deformation of the 
preform. The clearance yields a preferential flow path, 
which can disrupt the filling of the mold and the 
impregnation of the preform, resulting in poor quality of 
the part due to voids, residual stresses, and poor bonding 
between the fibres and the resin.  This preferential flow, 
which involves the interface between a porous and non-

porous medium, poses a major phenomenological 
challenge, and it has been the focus of intense research 
over the years. In the past, most models for edge flows 
used the Darcy’s Law, and they were formulated either 
on the basis of an analytical formulation for the interface 
[3], e.g. [1,2], or on the basis of an equivalent 
permeability for the edge [1,2,4]. Both approaches, 
however, do not take into account the transverse flow, 
which can be important, and based on analyses using a 
transverse flow factor, as discussed in [2], often, it cannot 
be neglected. Moreover, although the Darcy’s Law with 
appropriate modifications [5] can successfully replicate 
the flow features for random fibre mats as well as woven 
fibre mats, significant deviations from the Darcy’s Law 
predictions were documented [6].  
    To overcome these shortcomings a state-of-the-art 
model for the flow [7] was developed, and it is based on  
the Navier-Stokes equations combined with the 
Brinkman-Forchheimer equations. In the present work, 
the above-mentioned model [7] is further enhanced by 
taking into consideration thermal effects. For this purpose 
a heat transfer submodel is built in. The cure process [8], 
which yields an exothermic reaction, is modeled, 
although in a somewhat simplified form, as a steady, 
uniform volumetric heat generation in the fluid. Control 
of this exothermic reaction is critical in what concerns the 
component's final structural integrity and quality.  The 
heat dissipation is investigated in terms of a non-
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dimensional heat generation, Reynolds number, Darcy 
number, and the fluid and porous medium properties. The 
influence of the gap, and in particular its dimensions, 
upon the heat dissipation from the core region of the 
porous medium is also investigated. 
    The present model, in what concerns the flow 
modeling, as already mentioned, follows closely [7], and 
it can be succinctly described as follows: 1. The flow 
within the porous medium is governed by the Brinkman-
Forchheimer model; 2. The Navier-Stokes equations are 
used in the modeling of the edge flow, i.e. the “free” 
medium. This approach, by combining the Navier-Stokes 
equations with the Brinkman-Forchheimer equations, 
avoids the well-known difficulties associated with linking 
the Navier-Stokes and the Darcy equations [9,10]; 3. At 
the “free”/porous medium interface, the only 
approximation required is to assume that the fluid fully 
supports the tangential and normal stresses; and 4. The 
cure is modeled by assuming a steady, uniform 
volumetric heat generation within the fluid.  For the sake 
of completeness, an overview of the model's development 
is presented. 

Physical and numerical modelling 

Physical domain and geometry 

   The two-dimensional configuration under analysis is 
presented in Fig. 1. The fluid enters the mold cavity from  

the left, with a constant velocity, flows through the 
porous medium, (the shadowed region of Fig. 1) or 
through the top and right-hand side channels (edge flow), 
leaving the mold cavity through its right-hand side. In the 
exit region the outflow conditions are placed further 
downstream to reduce their influence upon the upstream 
flow. The flow and energy transfer are assumed to be 
steady and laminar.  The fluid physical properties are 
taken as constant. 

d

DD
H

L

d

Figure 1.  Domain and geometry  (Dimensions: 
H=25mm; L/H=5; D/H=0.1). 

Free fluid region 

   The flow in the open region is governed by the 
continuity and Navier-Stokes equations. Defining the 
dimensionless variables: *i ix x H , *i iu u U ,

2
*p p U , and Re UH , the dimensionless 

version of the governing equations, using the indicial 
notation , 1,2i j , becomes: 

Nomenclature y cartesian co-ordinate, m

Da Darcy number, ND Greek symbols 
F Forchheimer coefficient, ND thermal diffusivity, m2s-1

H channel height (reference dimension), m 1 viscosity ratio, ND 
k thermal conductivity, Wm-1

ij    Kronecker delta, ND 

L channel length, m T temperature difference, K 
m mass flow rate, kg.s-1 porosity, ND 
n unit normal vector, ND K permeability, m2

p pressure, N.m-2 dynamic viscosity, kg.s-1.m-1

Pr Prandtl number, ND  kinematic viscosity, m2.s-1

q  heat flux, Wm-2
B Brinkman modified effective viscosity, kg.s-.m-1 

gq  heat generation, Wm-3 density, kg.m-3

Rc ratio of thermal conductivities, ND  total stress, N.m-2 

Re Reynolds number, ND
t unit tangent vector, ND Subscripts 
T temperature, K B Brinkman value 
U cartesian velocity component in the  ch channel 
 x-direction, m.s-1 f "free" fluid domain 
u reference velocity, m.s-1 i interface 

y-direction, m.s-1 i,j cartesian subscripts ; tensorial notation 
v cartesian velocity component in the  in inlet 
 y-direction, m.s- fd free domain
V volume, m3 pd porous domain 
V velocity vector, m.s-1 ref reference value 
 * normalized variable s solid
x cartesian co-ordinate, m * normalized variable
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Taking the reference temperature difference as 
2

ref PT RePrU c , the Prandtl number, Pr  and 

the dimensionless heat generation ,,, ,,, 2 2
* ggq q H U ,

the energy conservation equation in the open domain 
becomes:

,,,
**

* * 2* * *

1 g
i

i i i

qT
u T

x x RePr x RePr
    (3) 

Since the ‘artificial’ exit region was considered of small 
length it is assumed to be a region with no volumetric 
heat generation. 

Fluid-saturated porous region 

   The dimensionless mass conservation equation in the 
porous medium is exactly the same as for the open fluid 
domain, (Eq. (1)). The fluid flow in the porous domain is 
governed by the Brinkman-Forchheimer equations, 
[11,12], that give, in dimensionless form:  

** 1
* *

* * * *

* *

1

1V

j
i j

i j i i

j

upu u
x x x Re x

F u
ReDaDa

    (4) 

where  is the permeability of the porous medium, 
1 B  is the ratio between the Brinkman viscosity 

and the fluid viscosity, 51.75 150F  is the 
Forchheimer coefficient, 2Da K H  is the Darcy 
number, and *V  is the modulus of the dimensionless 
velocity vector. 
   The thermal conductivity of the porous medium is 
given by the combination of the porous solid matrix and 
saturating fluid thermal conductivities. In this work it is 
used a geometric mean approach [12], given by 

1 1
s ffk k k k Rc , where Rc  is the ratio of 

thermal conductivities, s fRc k k . The dimensionless 
energy conservation equation in the porous domain is 
therefore given by: 

,,,1
**

* * 2* * *

g
i

i i i

qTRcu T
x x RePr x RePr

   (5) 

In the porous domain, only the volume fraction  is filled 
with liquid, where heat is being generated. 

Interface 

   At the interface of the fluid-saturated porous and open 
domains, mass, momentum, and energy balances must be 
satisfied as discussed in [10]. It is assumed here that there 

are no phase change phenomena or chemical reactions, 
and local thermodynamic equilibrium prevails. Mass 
conservation at each point of the interface implies that, in 
dimensionless form, 

* * * *V .n V .nfd pd
                  (6) 

where the subscripts fd and pd indicate free domain and 
porous domain values, respectively, and *n  is a unit 
vector normal to the interface. 
 Taking the dimensionless stress  

* * * * * *1ij i j j i ijRe u x u x p ,

the continuity of the normal and shear stresses is  

* * * * * *

* * * * * *

n .n . n .n .

t .n . t .n .
fd pd

fd pd

              (7) 

*t  being the dimensionless unit vector tangent to the 
interface. In addition, it is assumed that the pressure is 
continuous across the interface, that is, 

* *fd pdp p                       (8) 

   The mass conservation equation, Eq. (6), requires equal 
normal velocities on both open- and porous-domain sides. 
The essential velocity continuity condition at the 
interface [13], however, implies: 

* *V Vfd pd
                  (9) 

Equation (7) requires that, at the interface, the viscous 
part of the total normal stress and the shear stress are 
supported only by the fluid contained in the porous 
medium. An approach, which has been used in previous 
work dealing with the Brinkman-Forchheimer model, 
[13,14]. 
   In what concerns heat transfer, thermodynamic 
equilibrium at the interface imposes that 

* *fd pdT T                   (10) 

and the energy balance at the interface gives 
           * * * *'' ''n .q n .qfd pd

                 (11) 

where the total energy flux is defined as 

        *

*

'' *
* *

*
1

'' *
* *

*

1
i

i

ifd i

ipd i

Tq u T
RePr x

TRcq u T
RePr x

             (12) 

Numerical modelling 

   The physical model is solved using a two-dimensional 
laminar version of the control-volume finite element 
method (CVFEM) described in [15]. Similar procedure is 
followed for the discretization of the Brinkman-
Forchheimer equations, with the source terms described 
by the terms multiplying * ju  in Eq. (4).  

   The calculation domain, as fully reported in [10], is first 
discretized into three-node triangular elements.  The 
nodes of this finite element mesh are the vertices of the 
triangular elements.  The grid is designed so that there is 
a line of nodes along the entire interface between the 
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open and the fluid-saturated porous domains.  The 
discretization of the calculation domain yields polygonal 
control volumes surrounding the nodes in the finite 
element mesh.  Part of the resulting finite element mesh, 
and a polygonal control volume surrounding a node on 
the interface (P) are illustrated in Fig. 1. 

The thermophysical properties are stored at the 
centroid of each element and assumed to prevail over the 
respective element.  In this work, these properties include 
mass density, dynamic viscosity, specific heat, and 
thermal conductivity of the fluid in the open domain, and 
Brinkman (or effective) dynamic viscosity, effective 
thermal conductivity, porosity, and permeability in the 
fluid-saturated porous medium. All dependent variables 
are stored at the same nodes in the finite element mesh, 
leading to a co-located formulation [15,16].  

The momentum equations in the free and porous 
domains are integrated over each of the polygonal control 
volumes. Then, each of these integro-differential 
equations is approximated by a discretized equation that 
connects the dependent variables at each node in the 
finite element mesh to those at its immediate neighboring 
nodes.  In the derivation of algebraic approximations to 
the various terms in the integro-differential equations, the 
dependent variables are interpolated over each element by 
similar interpolation functions, giving rise to an equal-
order CVFEM.  In the approximation of advection 
transport terms, the advected dependent variables are 
interpolated by flow-oriented exponential upwind 
functions in each element, and linear interpolations of the 
dependent variables are used to approximate the viscous 
or diffusion transport terms.  The pressure is interpolated 
linearly in each element.  The velocity components that 
are involved in the mass flux terms are interpolated using 
the so-called momentum interpolation scheme [17].  Full 
details of the formulation steps are available in [10].  The 
temperature field is calculated based on the discretized 
form of Eqs. 3 and 5, and using the converged velocity 
field. 

Figure 2.  Control volume associated with a node P
located on the interface between adjacent free (1) and 
fluid-saturated porous (2) regions of the calculation 
domain. 

 The overall iterative solution procedure can be 
summarized, at each iteration level, as follows: (i) based 
on guessed or latest available values of the velocity 
components, density, and viscosity, the discretized 
equations for the velocity components are constructed, 
except for contributions of the pressure-gradient terms, 
and the appropriate boundary conditions are introduced 
by manipulation of the coefficients and constants of these 
equations; (ii) pseudo-velocities and pressure coefficients 
are evaluated at each node; (iii) discretized equations for 
the pressure are obtained, and pressure or mass flow 
boundary conditions are introduced in the coefficients of 
such equations; (iv) a new pressure field is calculated; (v)
the terms corresponding to the pressure gradient are 
introduced into the discretized momentum equations, 
based on the newly calculated pressure field, and the new 
velocity field is evaluated. This sequential procedure is 
repeated until suitable convergence criteria are satisfied.  
Then, the energy equations, Eqs. 3 and 5, in discretized 
form, and combined with the converged velocity field are 
solved iteratively. In this work, only structured grids with 
a line-by-line arrangement of the nodes were used.  The 
discretized equations were solved using a simple line-
Gauss Seidel iterative procedure, with a block correction 
algorithm, as a convergence accelerator.  Detailed 
description of the overall iterative solution procedure can 
be found in [10,15]. This solution procedure was 
considered to have converged when the maximum 
normalized residues in the discretized momentum and 
pressure equations, and discretized energy equations were 
all less than 10 – 6.

Model justification and testing 

   In this section is reported a very small sample of the 
extensive testing to which the model was subjected, and 
which is reported in some detail in [7,10].   

Transverse flow 

As already mentioned, models for edge flows based on 
the Darcy Law, which are formulated using an analytical 
formulation for the interface [1,2,3], or an equivalent 
permeability for the edge [1,2,4] do not take into account 
transverse flow.  Close observation of the flow along the 
gap of width "d" (Fig. 1), reveals the strong influence of 
the transverse flow, which is depicted in Fig. 3, where the 
velocity vectors for the flow within the gap are shown. 
   Figure 3 is nearly self-explanatory; Fig. 3(a) clearly 
denotes a flow that resembles plane Poiseuille flow, 
however, Figs. 3(b) and (c) present flow complexities, 
which are well beyond the capability of the Darcy Law – 
based models already discussed [1,2,3,4]. 

P

1

2
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(a)

(b)

(c)

Figure 3.  Vectorial form of the velocity within the gap 
for the two-channel configuration (  = 0.7, Re = 10-1, Da
= 10-6) in three different regions, namely:  a) Halfway the 
top channel; b) Bend between the top and RHS channel, 
and c) Outlet. 

Isothermal testing 

Flow through a plane channel with a porous plug is 
selected as an illustrative example.  This problem 
involves flow through a parallel-plate channel with a 
porous plug, as shown schematically in Fig. 4, under an 
imposed overall pressure drop. For distances sufficiently 
far from the porous plug, the flow is fully developed. In 
the vicinity of the porous plug, the flow is not fully 
developed. Nevertheless, in this case, the fluid flows in a 
direction that is essentially normal to the interfaces 
between the open and fluid-saturated porous domains. As 
in the problem presented in the preceding subsection, the 
governing dimensionless parameters are the Reynolds 
number based on the mean velocity, =Re uH , the 

Darcy number for the porous domain, 2Da K H , the 
porosity of the porous domain, , and the viscosity ratio, 

1 B .

Pin Pout

3H 2H 3H

H

Figure 4.  Geometry and computational domain for the 
plane channel with a porous plug. 

      It is assumed that at distances of 3H upstream and 
downstream of the porous plug, the y-direction 
component of velocity, v, is zero and a cyclic boundary 
condition [10] can be applied to u, the streamwise 
component of the velocity. At the center of the porous 
plug, an essentially plug flow is expected if the 
permeability is low. The domain dimensions, a fixed 
value of the streamwise overall pressure drop ( 1 0.p
N/m2), the Darcy number, a fixed value of porosity 
( 0 7. ), and the viscosity ratio were imposed, and the 
properties  and  were adjusted in order to obtain the 
desired Reynolds number, which is 1Re  for all the 
results presented for this problem. 
   Preliminary numerical tests of the asymptotic type have 
shown that a 21 21 21 21  mesh, with a 
geometrically increasing node density towards the 
interfaces between the free and porous domains 
interfaces, in the streamwise direction, with a factor of 
1.2, and a uniform node distribution in the y direction, 
gives essentially grid independent results. 
   Results for 210Da  and 1 1  are presented in Fig. 

5a where, on the left-hand side, is presented the centerline 
u velocity dependence on the streamwise dimensionless 
coordinate x H , and on the right-hand side is presented 
the centerline pressure dependence on x H . It is 
observed in Fig. 5a that the velocity field changes 
markedly due to the presence of the porous plug, this 
change being examined in this work via the variation of 
the u velocity along the centerline. On the left-hand and 
right-hand boundaries of the open domains, the u velocity 
variation in the y direction is essentially parabolic, and in 
the central region of the porous plug, this profile adjusts 
to be more flat (nearly a plug flow profile), with a lower 
centerline u velocity within the porous domain. The flow 
field is almost one-dimensional over most of the open 
and porous domains, but it is two-dimensional in the 
vicinity of the interfaces between the open and porous 
domains, where adjustments of the velocity field occur. 
In this case, as already mentioned, this adjustment occurs 
in a thin region, the extent of which scales as 

110~H Da . From the right-hand side of Fig. 5a it 
is observed that the centerline pressure presents distinct 
behaviors in the free and porous regions, with an 
essentially linearly decreasing profile in each, but with 
greater slope in the porous region, as expected. These 
results are in good qualitative agreement with the 
corresponding results in the literature.   
   For Da = 10-3 and 1 1 , the results are presented in 

Fig. 5b. In this case, it is observed that marked changes in 
the centerline u velocity occur in a narrower region than 
that for Da = 10-2 and 

1
1 , as now, 

3 210~H Da . Also, in this problem, a lower Darcy 
number corresponds to lower permeability, thus the 
global pressure drop occurs almost fully in the porous 
domain, as illustrated by the right-hand side of Fig. 5b. 
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Figure 5.  Centerline u velocity (left) and pressure (right) for p=1.0 N/m2, =0.7 and Re=1 for 
(a) Da=10-2 and =1; (b) Da=10-3 and =1; and (c) Da=10-2 and =5.

Results for the same conditions as those considered 
previously (Fig. 5a), but with 

1
5 , are presented in 

Fig. 5c. As the effective viscosity is now higher within  
the porous domain, the centerline u velocity presents a 
flatter profile than in Fig. 5a, and an increase in the 
pressure drop over the porous domain is observed. 

Results and discussion

 Numerical simulations were conducted using a non-
uniform structured grid with 81 columns of nodes in the x
direction and 55 rows of nodes in the y direction, with 17 

rows of nodes in the channel region (of width d), and 13 
rows of nodes in the inlet and outlet zones (of width D).  
The selection of this grid is determined on the basis of 
extensive grid convergence testing [18]. 
 The results were obtained for the geometry presented in 
Fig. 1, considering 5L H , 0 1.D H , 0.54, 1,

100Rc , and ,,, 9
* 10gq . The remaining governing 

dimensionless parameters were subjected to change in 
order to observe their influence on the resulting flow and 
temperature distributions. 
 The first analysis that should be undertaken is related 
with the gap width. From Figs. 6 and 7, it can clearly be  
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observed that a change from 0.04d H  to 0.02d H ,
(i.e. a decrease of 0.02 in the dimensionless mold cavity 
clearance), results in substantial alterations in what 
concerns the flow through the porous medium. Figure 6 
clearly shows a preferential flow through the top and 
right hand side channels in detriment of the flow through 
the porous medium, whereas in Fig. 7 it can be observed 
that a decrease in the clearance width minimizes the edge 
flow, yielding an increase of the flow through the porous 
medium. A pressure fall can be observed near the inlet 
region for 0.04d H  whereas, for 0.02d H , the 
pressure is more uniformly distributed along the bed.  In 
what concerns the global dimensionless pressure 
difference, it can be observed that this parameter is 
considerably higher for the smaller gap (i.e. for 

0.02d H  and )5
*( 3.1 10p  for 0.04d H . In terms of 

temperature fields, the larger gap leads to a larger region 
subjected to high temperatures in the vicinity of the mold 
exit. Furthermore, the maximum global dimensionless 
temperature difference is considerably higher for the 
larger gap (i.e. 4

* 3.5 10T for 0.04d H , and 
4

* 1.9 10T  for 0.02d H ).  
 The influence of Darcy number is also relevant, as 
expected. When comparing the results shown in Figs. 6 
and 8 for 610Da  and 810Da , respectively, 
representing the permeability variation of the porous 
medium, it can be noted the emphasis on the preferential 
flow through the gap towards the exit (i.e. greater 
contribution to the edge flow effect). In this case, the 
main pressure decrease occurs closer to the inlet region, 
with the global dimensionless pressure difference 
assuming a value of 7

* 2.4 10p . As the interior of the 
porous medium remains essentially without flow, the hot 
region increases both in area and temperature level, 
where the global dimensionless temperature difference 
becomes 4

* 4.8 10T .

Figure 6. Dimensionless streamlines, isobars and 
isotherms for 0.04d H , 610Da , 1Re  and 1000Pr .

The influence of the Reynolds number was studied for  
Re=1 and Re=0.1 with d/H=0.04, Da=10-6, and Pr=1000. 
Both figures present similar behavior in what concerns 
the flow field (isobars and streamlines), however the 
global dimensionless pressure difference is considerably 

higher for Re=0.1 than for Re=1, and is equal to 
6

* 3.1 10p .
  The isotherms do not exhibit a hot spot and the 
temperature rise is quite uniform along the bed. However, 
a lower Reynolds number leads to higher temperatures, 
with the maximum global dimensionless temperature 
difference reaching a value of 6

* 2.2 10T .

Figure 7. Dimensionless streamlines, isobars and 

isotherms for 0.02d H , 610Da , 1Re  and 1000Pr .

Figure 8. Dimensionless streamlines, isobars and 
isotherms for d/H=0.04, 810Da , 1Re  and 1000Pr .

Figure 9. Dimensionless isotherms for 0.04d H ,
610Da , 0.1Re  and 1000Pr .

In what concerns Prandtl number, it should be noted from 
Fig. 10, that a rise of this parameter to 10000 from 1000 
(Fig. 6) infers a significant fall on the temperature level 
along the interface i.e * 565T vs. 4

* 3.5 10T . The 
combination of higher Prandtl number with lower 
Reynolds number (Fig. 11), where the fluid assumes, as 
compared to the situation depicted in Fig. 6, a greater 
heat removal capability and lower mass flow rate, 
respectively, becomes evident from the isotherms, where 

4
* 3.5 10T .
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Figure 10. Dimensionless isotherms for 0.04d H ,
610Da , 1Re  and 10000Pr .

Figure 11. Dimensionless isotherms for 04.0Hd ,
610Da , 0.1Re  and 10000Pr .

Conclusion 

    The present work reviews a detailed physical model for 
situations involving fluid flow and heat transfer in fluid 
domains partially filled with a porous medium. Special 
attention was given to the boundary conditions at the 
interface between the open and porous domains, and to 
the situations of steady volumetric heat generation.   In 
addition, the physical justification for the model is 
reported along with an illustrative testing example.  The 
results were obtained for a set of governing 
dimensionless parameters relevant to the LCM processes. 
The analysis of the results highlights the influence of the 
gap width over the flow and thermal fields. In what 
concerns the thermal field, the temperature distribution is 
highly affected by the range of the governing parameters. 
It was found that large regions in the mold are susceptible 
to become subjected to deficient wetting and poor heat 
removal capability due to building up of high temperature 
levels within the component. The predictions identify 
conditions that may lead to the production of components 
of inferior quality, which, in extreme cases, have to be 
rejected. 
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