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Sestavi kovine in elastomerov so pomembno orodje za zmanjšanje mehanskih nihanj. Pri upogibu 
nihajoči sestav lahko dušimo z dodatkom primerne plasti dušilnega materiala, na primer elastomero, kjer 
je  plast izpostavljena ciklični deformaciji in na ta način tudi izgubi energije. Vendar pa prisotnost elastomero 
pomeni, da je  sestav odvisen od frekvence, zaradi tega težko natančno napovedujemo, saj je  težko izračunati 
rešitev ustreznega problema lastnih vrednosti. V prispevku je  predstavljena metodologija za modeliranje 
sestavov kovine in elastomerov z uporabo metode končnih elementov. V nadaljevanju je  obravnavana 
računska metoda določitve približne rešitve frekvenčno odvisnega problema lastnih vrednosti. Številčne 
rezultate vztrajnosti smo primerjali z  rezultati preizkusa običajnega “sendvič” sestava grede. Metodo smo 
razširili na model in tako optimirali Stockbridgove dušilnike, ki so uporabljeni za dušenje zračnih nihanj 
dejanskega električnega daljnovoda. Namesto uglasitve dušilnika na neko določeno frekvenco, smo z 
uporabo genetskih algoritmov določili ciljno fukcijo in optimirali fizikalne izmere dušilnika. S takim 
postopkom smo analizirali celoten problem brez uporabe modalnega pristopa napetost-energija, kar pomeni, 
da ta tako modeliranje zadosti načelu vzorčnosti. Metoda je  uporabna kot orodje za načrtovanje in 
modeliranje sestavov kovine in elastomerov.
O 2007 Strojniški vestnik. Vse pravice pridržane.
(Ključne besede: kompoziti kovine - elastomeri, modeliranje strukture, metode končnih elementov, dušilniki 
vibracij)

Metal-elastomer composite structures are an important tool fo r  the reduction o f  mechanical vibra­
tions. A structure that vibrates in flexure can be damped by the appropriate addition o f a layer o f  damping 
material, fo r  example, an elastomer, where the layer undergoes cyclic strain and thereby dissipates energy. 
However, the presence o f  the elastomer means that the structure is frequency dependent, which is a difficult 
case fo r  obtaining accurate predictions since the solution o f  the corresponding eigenvalue problem is hard 
to compute. In this paper a methodology fo r  modelling metal-elastomer composite structures using a finite- 
element approach is presented. In addition, a calculation scheme to approximate the solution o f the fre­
quency-dependent eigenvalue problem is discussed. The numerical results fo r  the inertness were compared 
with the experimental results fo r  a classic composite sandwich beam. The method is extended to model and 
optimise Stockbridge absorbers used to suppress the aeolian vibrations o f an actual electrical transmis­
sion line. Instead o f  tuning the absorber to some particular frequency, an objective function is defined and 
the physical dimensions o f  the absorber are optimised by means o f  a genetic algorithm. In this approach, the 
complete problem is analysed without using the modal strain-energy approach, implying that this model­
ling satisfies the causality principle. The method appears to be useful as a tool for designing and modelling 
metal-elastomer composite structures.
© 2007 Journal o f Mechanical Engineering. All rights reserved.
(Keywords: metal elastomer composite, structure modelling, finite element methods, Stockbridge dumpers)

Metal-elastomer composite structures are an 
important tool for the reduction o f mechanical vibra­

0 INTRODUCTION tions. A structure that vibrates in flexure can be 
damped by the appropriate addition o f a layer of 
damping material. As the whole system vibrates, the 
layer undergoes cyclic strain and thereby dissipates



energy. Since the first successful modelling of a 
metal-elastomer composite presented by Ross et al. 
[1], considerable attention has been paid to the pre­
diction of the dynamic behaviour of such structures. 
For many years, the finite element method has been 
used for modelling structures, and several of its ap­
plications have been shown to be quite accurate. 
Soni [2] has presented a finite element analysis of 
viscoelastically damped sandwich beams, which 
uses a combination o f shell elements and three di­
mensional solids for the viscoelastic part. Another 
approach is to use shell elements with spring ele­
ments to model the elastomer [3]. This methodology 
has been shown to increase the speed of the calcu­
lations o f the stiffness and mass matrices. Lumsdaine 
et al. [4] have reported a method using multi-layer 
elements, which has been proven to be very accu­
rate. Although the modelling using three dimensional 
solid elements is the most complete alternative to 
solve this kind of problem, sometimes the computa­
tional cost of formulating and solving the equations 
can become prohibitive.

The viscoelastic materials o f greatest practi­
cal interest for damping applications are plastics and 
elastomers. An elastomer is a soft substance that 
exhibits thermo-viscoelastic behaviour. Viscoelastic 
materials possess both elastic and viscous proper­
ties. For a purely elastic material, all the energy stored 
in a sample during loading is returned when the load 
is removed. Furthermore, the displacement o f the 
sample responds immediately, and in-phase, to the 
cyclic load. Conversely, for a purely viscous mate­
rial, no energy is returned after the load is removed. 
The input stress is lost to pure damping as the vi­
bration energy is transferred to internal heat energy. 
All the materials that do not fall into one of the above 
extreme classifications are called viscoelastic mate­
rials. Some o f the energy stored in a viscoelastic 
system is recovered upon removal of the load, and 
the remaining energy is dissipated by the material in 
the form o f heat.

In a metal-viscoelastic-metal structure, the 
bending of the composite produces not only bend­
ing and extensional strains in all three layers, but also 
shears, primarily of the middle (viscoelastic) layer. The 
shear-strain energy storage tends to dominate the 
damping action of the constrained viscoelastic lay­
ers. Many practical applications operate on the prin­
ciple of constrained layer damping. The shear forces 
in the constrained viscoelastic layer cause the en­
ergy of the vibration to be converted into heat.

Undamped metal structures normally have a 
very low loss factor, typically in the range 0.001 to 
0.01. Using a viscoelastic layer can increase this loss 
factor. This means that the amplitude o f the reso­
nant vibration when the structure is subjected to 
structure-borne sound or vibration will be much lower 
than for an undamped structure. A reduced ampli­
tude o f vibration means less radiation o f sound, and 
also a reduced risk of fatigue failure [5].

A characteristic o f viscoelastic materials is 
that their Young’s modulus is a complex quantity, 
having both a real and imaginary component. Fur­
thermore, this complex modulus varies as a function 
of many parameters, the most important of which are 
the frequency and temperature of a given applica­
tion. Consequently, this results in a corresponding 
eigenvalue problem in which the stiffness matrix 
depends on both the frequency and the tempera­
ture. The moduli typically take on relatively high 
values at low temperatures and/or high frequencies 
but take on comparatively small values at high tem­
peratures and/or low frequencies. It is therefore 
necessary to establish an accurate understanding 
of the influence o f these parameters in order to de­
sign effective damping treatments.

In general, the vibration analysis o f a system 
that is frequency independent can be accurately 
achieved by classical techniques. It is much more dif­
ficult to obtain accurate predictions when the equa­
tions o f motion are frequency dependent. This is be­
cause the solution of the corresponding eigenvalue 
problem is difficult to compute. Methods based on 
the modal strain energy have been used to approxi­
mate the solution of the problem [2]. However, they 
are not accurate when the frequency and temperature 
ranges are increased, and when they include the tran­
sition region, where the variations of the dissipation 
and the stiffness of the viscoelastic material are quite 
pronounced. The greatest loss factors occur in the 
transition region at intermediate frequencies and tem­
peratures. On the other hand, some of the assump­
tions used by these methods do not fit the principle 
of causality for physical systems [6],

The final aim o f this paper is to present a 
methodology to model metal-elastomer composite 
structures by using a finite-element approach. The 
method was experimentally tested for a classic com­
posite sandwich beam. Then, an application to model 
and optimise a Stockbridge absorber used to sup­
press the aeolian vibrations of an electrical trans­
mission line is presented.



1THEORY

The theory o f finite element methods has 
been clearly presented by several authors ([7] to 
[9]), so it will not be repeated here. However, a 
method to avoid inverting matrices of a large size 
will be discussed in this section, since it is quite 
useful to speed up the numerical solution.

As a result of the modelling using finite ele­
ments o f a metal-elastomer structure, a frequency- 
dependent equation o f motion is obtained. The equa­
tions o f motion as a function o f  frequency for a 
forced multi-degree-of-ffeedom system and its as­
sociated eigenvalue problem can be written as:

[ - n 2M + K (n ,r ) ]q ( f i ,r )  = f(n ) 0 ),

and

K (n ,r )(p (n ,r ) = a(fi,r)M <p (n ,r) (2),

where Q is the angular frequency, T  is a fixed tem­
perature, M  is the mass matrix, K(Q,7) is the stiff­
ness matrix, q(Q,7) is the modal displacement vector, 
f(Q) is the vector o f external forces, cp( Q,7) is an 
eigenvector associated with the vibration modes, 
and o(Q,T) is an eigenvalue associated with a natu­
ral frequency.

In general, a direct solution of Eq. (2) will in­
volve an expensive and inefficient method because of 
the large size of the matrices. Therefore, a proposed 
algorithm to simplify the task can be summarized as:
1) Solve the eigenvalue problem o f order n for an 
arbitrary fixed frequency Q0, and for a value o f tem­
perature T, given by:

K (n 0,r )(p (n 0, r )  = a ( n 0,r)M (p(Q 0, r )  (3)

Now, the modal matrix d>0 has the following
properties:

® orM 0 0=I„ (4),

and
<S>T0K (n 0,T)<t>0 = X0 (5),

where the superscript T  denotes the transpose, In is 
the rvxn identity matrix, and =diag(cr) is a diago­
nal matrix of eigenvalues.
2) Let ó f be an nx fi truncated matrix of the n 
eigenvectors associated with the minor eigenvalues 
( « < « ) .  For a frequency Q  ̂  Q (), the following prod­
uct is calculated:

ò 0rK ( n , r ) è 0 = i : ( n , r )  (6),

where the matrix Z(Q,7) is not necessarily diagonal, 
but it is an fix  fi matrix. Then, the new eigenvalue 
problem can be stated as:

s ( n ,7 ’)»|/(£2,r) = /i(n ,7’) i|/(n ,r )  (7),

'Fr (n ,r )> p (n ,r )= iÄ (8),

and

' p r ( n , r ) 2 ( n , T ) ' P ( n , r )  =  A ( n , r )  (9 ) ,

where M i\T )  and V|/(Q,7) are the eigenvalue and 
eigenvector, respectively, I ■ is the fix  fi identity 
m atrix , lP (Q ,r )  is a m odal ‘m atrix , and 
A(Q,7)=tr(l.(Q,7)) is a trace matrix of eigenvalues. 
The new eigenvalue problem is still frequency de­
pendent, but it is a problem of smaller size and con­
sequently requires less computation time.
3) Consider the following transformation of coordi­
nates:

q (n ,r )= ® 0r ( n , r )  (10),

and
r(n ,7 ,) = Y ( n ,r )p (n ,r )  (n ) .

Substituting Eq. (10) and (11) into Eq. (1), 
and pre-multiplying by [fl>0f'(fi,7 ’)] gives

[ - q2i, + A(n,r)]p(Q,r) = [ è 0v(n ,r)]rf(n) (12).

Thus, the nodal displacement vector is given by:

q (fi, T) = 0>0<F (a, T) [-fi2I . + A (fi, T)J ‘ [0 0<P (fi, T)J  f(fi)
(13) .

Therefore, the receptance matrix is obtained from 
Eq. (13) as:

a (fi,r )  = è 0'F (f i ,r ) [ -n 2i.  + A(n,7’)]"1 [ è 0T ( n ,r ) ] 7'
(14) .

Defining the matrix product S (fi,7’) = <t>04'(Q,7’),Eq. 
(14) can be re-written as:

a(Q ,t ) = s ( n , r ) [ - n %  + a (ci,t )]"‘ s r (q ,t ) ( i 5),

where X(Q,7) = A(Q,7) for all Q and T. Consequently, 
the inertness matrix is:

-n 2a(n,r)=-fi2s(n,r)[-n2i.+A(fi,r)]"'sr(D,r)
(16).

Then, the corresponding elements o f  the 
receptance matrix a(Q ,7) are:

« , ( a r )  =
^ Sik(n,T)sJk(n,T)
h  24(n ,r) -n 2 (17),



where s is an element of the matrix S(Q,7), and 
= o-/Q,7).

Therefore, the h x h matrix E(Q,7) can be as­
sumed to be a projection of the stiffness matrix into 
an approximated subspace of the space formed by 
the real eigenvectors. So the quality of the approxi­
mation depends on the subspace, or span {<por.. tp0h}.

An important detail for stating the problem 
o f Eq. (1) is the construction of the stiffness matrix 
K(Q,7). This construction can be done by using the 
finite element method for each frequency. If K(Q, 7) 
is a matrix of large size, it can be computed for sev­
eral frequencies by means of a Taylor series expan­
sion in the neighbourhood of a transition frequency 
Q( as:

K( T>, 7 >f j K— (18),

where

K <->(n,r) = ̂ p ^ !  (19).

It is then relatively easy to compute the de­
rivatives K("°(E!,,7) since only the elementary stiff­
ness matrices o f the viscoelastic part are frequency 
dependent, while the derivatives of the stiffness 
matrices o f the metal part are not. The use ofM=3 for 
the series expansions shows that the results are quite 
exact for a narrow frequency band in the neighbour­
hood of a transition frequency.

2 RESULTS

2.1 Composite Sandwich-Beam

The first example of the application o f the 
theory presented above is a simple clamped-free 
composite sandwich beam. This kind of structure is 
commonly used as a study object. The sandwich 
beam is made o f two metal layers o f steel 1020 and a 
viscoelastic core made o f DYAD 601 m aterial 
(Soundcoat Co.). The viscoelastic core was attached 
in between the metal layers by means of an epoxic-

structural adhesive. The properties o f  this 
viscoelastic material were presented in reference [10]. 
The beam was 211.85 mm long and 11.97 mm wide. 
The thickness of each metal layer was 2.14 mm and 
the thickness o f the viscoelastic core was 0.5 mm. 
All the dimensions of the sandwich composite beam 
are in accordance to the requirements of the ASTM 
E 756-98 standard [11],

The composite sandwich beam was divided 
into 114 two-dimensional Lagrangian solid elements 
on a plane state of stress. Along the beam 19 ele­
ments were selected at equal intervals and each layer 
was divided into two elements, resulting in a total of 
507 nodes, having two degrees of freedom at each 
node, so «=1014 for this application. The above pa­
rameters o f the structure were selected because they 
assured the determination of the first four modes 
and the modal damping produced by the shear de­
formation of the core.

An experimental set-up was devised to per­
form a dynamic test to measure the frequency re­
sponse of the beam. The beam was excited using a 
magnetic actuator (B&K MM0002). The signal fed 
to the actuator was a chirp excitation between 0 to 
1600 Hz, i.e., a sine wave of linearly increasing fre­
quency, and amplified by a power amplifier (B&K 
2706). The response of the beam was measured by a 
small accelerometer (B&K 4375). The signals were 
analysed using a two-channel FFT analyser (HP 
3567A). The experimental set-up was placed inside a 
chamber in which the temperature could be control­
led in the range between -30  and 60°C. The preci­
sion of the chamber was ±1°C. The excitation was 
applied at 59.64 mm from the clamped edge, which 
corresponds to node 143 in the finite element mesh, 
and the response was measured at 37.95 mm from 
the clamped edge, which corresponds to node 91 in 
the finite element mesh (see Fig. 1).

Computation o f the inertness was developed 
for different temperatures ranging between -30  and 
60°C, and they were compared with the results ob­
tained experimentally. In the computation h =50 was 
used for the theory presented in Section 1. Figures 2

Response (91) Excitation (143)

Fig. 1. Finite element model for the clamped-free sandwich composite beam



to 4 show the results o f the inertness for three differ­
ent temperatures.

From the results the effect on the natural fre­
quencies caused by the increase in stiffness of the 
elastomer in the transition region (-10°C < T< 20°C) can 
be seen. In fact, in this region, the value of the fourth 
natural frequency increased so much that it fell out of 
the frequency range of the measurement. There is rea­
sonable agreement between the numerical and experi­
mental results for the inertness frequency responses 
presented in Figures 2 to 4, although it is observed that 
the numerical results seem to underpredict the natural 
frequencies when compared with those obtained from 
the experimental set-up. The differences are on aver­
age about 6%. Nevertheless, the differences between 
the numerical and experimental approaches can be due 
to imperfections in the experimental fixture, the small 
size of the structure under test, the contribution of the 
off-resonant modes, and the measurement uncertainty 
produced by the environment inside the chamber. The 
effect o f the chamber should be more pronounced in 
the transition region, where small variations of tem­
perature will cause large variations on the elastic prop­
erties o f the elastomer. The value o f the humidity inside 
the chamber was not accurately controlled during the 
experiment. This fact was reflected as noise in the meas­
ured inertness frequency-response curves, as seen in 
Figures 2 to 4.

2.2 Stockbridge Dynamic Vibration Absorber

In this section the theory will be applied to a 
more complicated case, i.e., a Stockbridge dynamic

vibration absorber. The vibration absorber will be 
viscoelastically modified in order to increase the 
dissipation o f vibrational energy.

A dynamic vibration absorber, also called a 
v ibration  neutralizer, is a device or structure 
(secondary system) that is attached to another 
device (primary system) to reduce vibration levels. 
It acts on the primary system by applying reaction 
forces and dissipating vibration energy. Vortex- 
induced or aeolian vibrations o f overhead electrical 
transmission lines, also referred to as conductors, 
are very common and can lead to fatigue damage. 
These vibrations are usually  caused by winds 
ranging in velocity from 1 to 7 m/s and can occur at 
frequencies from 3 to 150 Hz with peak-to-peak 
displacement amplitudes o f up to one conductor 
diameter. In conventional transmission line systems, 
one or more Stockbridge absorbers may be attached 
to a conductor in an effort to suppress the aeolian 
vibrations ([12] and [13]).

The classic theory introduced by den Hartog
[14] for a viscous vibration absorber, called MCK, 
and their extensions to a viscoelastic absorber, 
presented by Snowdon [15], are difficult to apply. 
This is because for complex mechanical systems 
many modes can contribute to the total response of 
the primary system. Interesting methods to optimise 
dynamic vibration absorbers have been presented 
by Brennan and co-workers ([16] to [19]). Kidner 
and Brennan [17] used a multi-degree-of-freedom 
beam neutralizer with piezoceramic patches as active 
elements, and they analysed the improvement on 
the performance of the absorber considering the rigid

Fig. 2. Comparison o f the experimental and numerical results fo r  the inertance frequency response
o f the beam at -30 °C
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Fig. 3. Comparison o f  the experimental and numerical results fo r  the inertness frequency response

o f the beam at 10 °C

Fig. 4. Comparison o f the experimental and numerical results fo r  the inertness frequency response
o f the beam at 60 °C

body mode and the first mode o f the beam in their 
analysis. Brennan and Dayou [ 18] used an equivalent 
damper to represent the dynamic stiffness o f the 
absorber assuming a very low damping. Then, they 
were able to model the problem without adding 
degrees o f freedom, but by using all the modes of 
the primary structure. More recently, an experimen­
tal verification o f the optimum tuning method has 
been presented [19]. An interesting finding is that 
the absorber can be as effective as active control in 
reducing the global vibration of the structure. On 
the other hand, Espindola and Silva [20] introduced 
the concept o f generalized equivalent quantities. The 
basic idea o f their technique is to transform the 
mechanical impedance o f the absorber’s coupling 
point to the prim ary system , into generalized

quantities o f mass and damping that are frequency 
dependent. Using the generalized quantities it is 
possible to formulate the compound equations of 
motion simply in terms of the generalized coordinates 
of the primary system. After the equations are written 
in the principal coordinates, and retaining those that 
correspond to the frequency band of interest (where 
the prob lem  o f  high response residua), the 
computations are made in a modal subspace, which 
includes just a minimum number of equations.

2.3 Finite-Element Model for the Secondary 
System

In simple terms a Stockbridge absorber is 
composed o f  a mass at the centre, two attached



sandwich (metal-elastomer-metal) beams, and two 
attached tuning masses, as shown in Figure 5. The 
mass at the centre is attached to the primary system. 
The finite element method is used to model the 
absorber’s behaviour. The corresponding eigenvalue 
problem, which is frequency dependent, can be 
solved using the technique presented in Section 1. 
The finite element model of the absorber is shown in 
Figure 5. Now, for a fixed temperature the equations 
o f  motion for the secondary system are:

Mii + K(Q)u = f(0  (20).

After modification of the order o f rows and 
columns in order to appropriately place the control 
node, as shown in Figure 5, we can define:

« = (21), 

f (0 = [0, o, • • •, 0, / ( o f  = [o, /(O f (22),

and then Eq. (20) can be written in partitioned matrix 
form as:

M, M2‘ q _i_
"K,(fi) k 2(Q)_ q 0

m 3 m 4_ y . k 3(0 ) k 4(£1). y .

where Mj is an «-1 xn-1 mass submatrix, M2 is an n-  
1X1 mass submatrix, M 3 is an 1 x « -l mass submatrix, 
m 4 is an lx l  mass submatrix, K,(Q) is an n - lx n -1  
stiffness submatrix, K 2(Q) is an « - l x l  stiffness 
submatrix, is an lx « - l  stiffness submatrix,

K4(Q) is an lx l  stiffness submatrix, u is the total 
displacement vector, q is the displacement vector 
w ithout considering the control node, y  is the 
displacement o f the control node, and/(f) is the force 
applied to the absorber by the primary system. Now, 
in the frequency domain, Eq. (23) can be expressed 
as the system o f equations:

[ - n 2M, + K, (Q)] Q(Q) + [ - n 2M 2 + K 2 (£2)] Y(Q) = 0 

[ - n 2M 3+ k 3 (n>] Q(Q)+ [ - q 2m 4+ k 4 (Q)] Y (n )= f (£2)

(24).
After solving Eq. (24), we obtain the dynamic 

stiffness o f the system as:

* (« )  = = X<(n) "  X3 ( W  (0)X2 (£1) (25),

where:

X,.(£2) =  -£ 2 2M , + K ,.(Q ) , fo r  i = l ........4  (2 6 ) .

Now, the inverse o f  X | can be computed 
approximately by using Eq. ( 15), as:

X“1 (Q) = + K,(£2)]"' s  S(£2)[-£2% + A(Q)] ' Sr (£2)
(27).

From the dynamic stiffness we can obtain 
the dynamic impedance

Z(£2) = ®  (28),
J&

where j~ 4 - \ , and the apparent mass

f i t)

s \

Detail of control node



M ( f i )  =
K( fi)
- f i 2 (29).

Consequently, the equivalent damping and 
equivalent mass are

ce,(n)=9?{z(n)} po)
and

meq(n)=m{M(ci)} (31))

respectively.
Then, the model of the absorber is replaced 

by an equivalent mechanical system composed of 
an equivalent mass connected to the primary system 
and an equivalent damper connected to the ground, 
where both are frequency dependent. In this way 
there are new physical degrees o f freedom in the 
mechanical system, but there are no new degrees of 
freedom in the model. This formulation is equivalent 
to the simple model of a Stockbridge absorber, which 
makes use of the Euler-Lagrange equations.

2.4 Optimisation of the Stockbridge Absorber

Now, the secondary system (Stockbridge 
absorber) is attached to a primary system (electrical 
transmission line) resulting in a compound system. 
In order to optimise the physical dimensions of the 
absorber, an objective function has to be proposed. 
Here, the objective function will be defined from the 
maximum absolute values of the principal coordinate 
functions of the compound system. Assuming that 
the prim ary system has a very low and almost 
constant hysteretic damping, the equations o f 
motion for the primary system in the frequency 
domain are:

[ - f i 2M p,+ K „ ] q pr(fi) = f(fi) (32),

where Mpr is the mass matrix of the primary system, 
K is the complex stiffness matrix of the primary 
system , q (Q) is the displacem ent vector o f 
generalized coordinates, and f(Q) is the force vector. 
Using the theory o f the equivalent generalized 
quantities [20], the com pound system  can be 
modelled as:

[ - f i2 [M pr + (fi)] + yfiCe, (fi) + Kpr ] qpr (fi) = f (fi)
(33),

where M  (Q) is the equivalent mass matrix and 
C e (Q) is the equivalent damping matrix.

I f  p  absorbers are attached to the primary 
system, at the generalized physical coordinates qkl,

qkV ... , qtp, the equivalent generalized mass and 
damping matrices are:

M  T f i )  =

0 0
0 "% (%  
0 0
0 0
0 0

and

0 0
0 0
0 0

(ft)* 0
0 0

(34),

C„(fi) =

0
0
0
0
0

0

0
0
0

respectively.
Using the transformation:

0 0

0 0

0 0

( f t ) * 0

0 0

(35),

q „ (« )= < iV M Q) (36)>
where O is the matrix of the eigenvectors associated 
with the eigenvalues of the primary system in the 
frequency band of interest, and p;„ is the vector of 
the principal coordinates of the primary system, Eq. 
(33) can be written as:

[ - f i2 [I + M ,(fi)] + yfiC,(fi) + E„ ]ppr (fi) = n(fi)
(37),

where M ,( Q ) = 0 ^ ( Q ) 0 pr, C ,(Q )= ® /C /Q)<b ,  
n(Q)=<J> rf(Q), and I  = 0  TC O =tr(cr) is a trace 
m atrix o f  eigenvalues o f the prim ary system. 
Consequently:

ppr (fi) = [ - f i2 [I + M , (fi)] + ja C A (fi) + J '  n(fi)
(38) ,

and the receptance matrix can be calculated by:

«(fi) = «V [ - ^ 2 [I + M, (fi)] + yfiC , (fi) + £ pr J ' <
(39) .

Then, in order to solve the optimisation 
problem it is possible to define an objective function 
/  as the modulus of a vector formed by the maximum 
absolute values o f  the generalized  p rincipal 
coordinates of the primary system [20], This can be 
expressed by the equation:

|p;r(x,fi)|| (40),

where Q, and Q, are the lower and upper limits of 
the frequency band o f interest, respectively, x is a 
design vector of project variables to optimise, and 
z'=l,..., N, where N  is the total number o f degrees of 
freedom of the primary system.

/00  =

m ax 

f i ,  < f i <
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Fig. 6. Definitions o f  the physical dimensions to optimise fo r  the Stockbridge absorber

The project variables to optimise are the 
physical dimensions o f  the absorber. Therefore, the 
design vector is defined as:

X=[A ,i2f A A ’KK’t f  (41),

where the elements o f x are the physical dimensions 
shown in Fig. 6. The constraint functions are defined 
for each element o f x as:

x - <Xl<xf  (42),

where xf- and x f  are the lower and upper limits for 
each element, respectively. For the force vector, a 
unit force at each excitation point o f the primary 
system can be used, i.e., f=[l, 1,..., 1,1 ]T.

A numerical example was performed for a real 
compound system. A total o f  four Stockbridge 
absorbers were attached to the primary system. In 
this example o f  a Stockbridge absorber the two 
sandwich beams are designed from two metal layers 
o f steel 1020 and a viscoelastic core DYAD 601 
(Soundcoat Co.). The finite element model o f  the 
absorber is shown in Fig. 5. The beams were divided 
into 114 elements. For the length and thickness of 
the core, 19 and 2 elements were used, respectively. 
This choice w as found appropriate  fo r both, 
representing efficiently  the internal shear and 
determining the first four modes in the frequency 
band used. The mass at the centre was divided into 
32 elements and the tuning masses were divided into 
24 elem ents each. This choice is because the 
mechanical purposes o f  the masses do not require 
high discretization. All the elements are two-dimen­

sional lagrangian and quadratic solids, o f nine nodes, 
and they are in a plane state o f stress. This gives a 
total o f  308 elements, 1319 nodes, and a total of 
«=2638 degrees o f freedom. For simplicity, the 
temperature is assumed to be a constant.

The prim ary system  considered was an 
ACRS partridge cable, 30.2 m long, clamped at both 
extremes and subjected to a tension o f 9000 N. The 
cable was divided into 81 equally spaced elements. 
The central masses o f the absorbers were attached 
at nodes 5, 35, 46, and 76 o f  the cable. These 
positions were selected in order to be far from the 
nodes o f the cable, allowing the absorbers to control 
a large number o f modes o f the primary structure. 
Figure 7 shows the physical model of the compound 
system and its corresponding generalized equivalent 
quantities model.

Since the finite elements were in a plane state 
o f  stress, t does not change a lot during the 
optimisation process, so it was fixed at a value o f  10 
mm. The lower and upper limits for each x. were 
chosen such that: 1) the weight and size o f the 
absorbers should not be excessive, and 2) the 
thickness o f the elastomer should be small in order 
to have shear deformation from the vibration o f the 
sandwich beams. The frequency range used to 
optimise the Stockbridge absorber was 40 to 60 Hz. 
The temperature was fixed at 10°C. Because o f its 
nature, the objective function has a large number of 
local minima so a genetic algorithm was used to per­
form the optimisation. The theory and applications 
o f  the genetic algorithms in optimisation problems



Table 1. Results o f  the optimisation o f the physical dimensions for the Stockbridge absorbers

Xi xi optimised
mm mm mm

h 0 200 10.321
h 0 1000 210.002
h 0 200 30.024
hx 0 100 10.096
h2 0 10 2.013
h 0 5 2.000
h4 0 400 30.102
t - - 10.000

ACSR Cable

Node 5 Node 35 Node 46 Node 76

Fig. 7. Diagram o f  the compound system (cable plus Stockbridge absorbers): a) the physical model and
b) its generalized equivalent quantities model

were explained in detail in the literature [21] to [23]. 
The numerical results o f the optimisation process 
are presented in Table 1.

Figure 8 shows the results of the receptance 
at the mid point o f the cable, when no absorber is 
attached, and when the absorbers are attached to 
the cable before and after the optimisation process. 
It can be seen that after their dimensions were 
optimised, the Stockbridge absorbers reduced the 
vibration level o f the cable in a very effective way. 
Most o f the peak values of the receptance frequency 
response were attenuated and for the peak value at 
around 60 Hz an attenuation o f 30 dB was achieved 
after the optimisation.

3 CONCLUSIONS

The modelling of a metal-elastomer compos­
ite structure based on a finite element method has 
been presented. In addition, a methodology to re­
duce the computation time when dealing with fre­
quency dependent matrices has proven to give good 
approximate results. It has to be noted that the pre­
cision o f  the approximation presented in Section 1

depends on the subspace. The factors that deter­
mine the behaviour of the algorithm are: a) the di­
mension h o f the subspace (a larger value of the 
dimension will produce a better approximation), and 
b) the variation of the complex shear modulus of the 
viscoelastic material with both frequency and tem­
perature. It can be expected that in the transition 
zone the errors will be increased. As a result, the 
distance between the subspace generated by the 
truncated modal matrix and the space generated 
by the modal matrix d> is increased. Obviously, this 
implies that the initial frequency Q() plays an impor­
tant role in the computations since the difference 
between K(Q0,7) and K(Q,7) increases with the 
change o f temperature. However, it can be concluded 
that the method used in this work seems to be quite 
efficient when compared to the subspace iteration 
method [8] and the Lanczos method [25], since these 
require the calculation o f the inverse of the stiffness 
matrix for each iteration. In addition, a theory to de­
termine the generalized equivalent quantities for a 
Stockbridge dynamic absorber has been presented. 
The use of these quantities does not add more de­
grees o f  freedom to the primary system and the
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Fig. 8. Comparison o f  receptance frequency responses at the mid point o f the primary system, with and

without an optimised Stockbridge absorber

theory could be extended to other kinds o f absorb­
ers. Moreover, the use o f generalized equivalent 
quantities allows one to define an objective func­
tion o f the maximum absolute values of the principal 
coordinates o f the primary structure. This objective 
function is independent of the geometry o f the pri­
mary system and it is dependent on its modal param­
eters. The application o f the method to Stockbridge 
absorbers used to suppress the aeolian vibrations 
o f a real electrical transmission line shows that the

reduction in the response of up to eleven modes is 
achieved after the dimensions of the absorbers are 
op tim ised  using  a genetic  algorithm . The 
optimisation process can be quite slow when com­
pared to other techniques reported in the literature 
[18] and [19]; however, the results presented in this 
work seem to be encouraging. Further work will be 
conducted regarding the computational costs and 
detuning o f the absorber due to the presence of tem­
perature changes in the elastomer layer.
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