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The aim o f the paper is to demonstrate, based on the results o f  respective numerical simulations o f a 
drawing process, how springback o f a steel sheet drawn part is affected by stiffness degradation, which 
results from the material damage evolved during the forming process. For the purpose o f the presented paper 
the GTN (Gurson-Tvergaard-Needleman) damage constitutive model coupled with Mori-Tanaka approach 
has been implemented in ABAQUS/Explicit via VUMAT user material subroutine, while integration o f the 
constitutive model is performed with a numerical scheme developed recently by the authors. Parameters o f 
the constitutive model are identified, for authenticity o f the paper, from the measurement data obtained from 
classical tensile tests ofcold rolled stainless steel E N 1.4301, as well asfrom the measured stiffness degradation, 
as afunction ofthe plastic strain. From a comparative analysis ofnumerical results ofthe springback behaviour, 
investigated on the Demeri springback cup test under assumption o f different constitutive models, it can be 
concluded, that stiffness degradation shoidd be incorporated in simulations o f sheet metal forming. Its influence 
on a predicted final shape o f a steel sheet drawn part is namely too significant to be neglected.
© 2008 Journal o f Mechanical Engineering. All rights reserved.
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0 INTRODUCTION

A great concern in sheet metal forming 
design is devoted to aa appropriate prediction of 
the final shape o f  a formed part, or actually to 
springback, which plays a key role in a formation 
o f  this shape. Springback, a phenomenon that is 
related to the elastic strain recovery after removal 
o f forming loads, is physically governed by the 
stress state achieved at the end of the forming 
process and by the elastic response of a formed 
part. R esearchers dealing  w ith  sp ringback  
prediction are m ostly focused on the accurate 
prediction of the final stress state after forming. In 
this context many improvements were proposed 
from  a numerical point o f  view, resulting in a 
development o f finite elements that are capable to 
cover stress behaviour in a sheet more precisely 
[1] to [5]. A nother wide attention and intense 
research, related to springback, was paid to the 
mathematical modelling o f constitutive laws of 
respective materials, in which a special attention 
was paid on Bauschinger effect [6] and [7], strain 
dependent hardening [8] and plastic anisotropy [9],

Despite all that and though it was reported several 
times that effective Young’s modulus drops with 
the increase of plastic strain [10] to [14], the elastic 
response o f the formed part associated with the 
form ing too ls rem oval is in the m ost o f  
computational analyses still performed according 
to Hooke’s law using initial elastic properties. In 
fact, Young’s modulus degradation can be noticed 
w ith  several experim en tal techn iques, like 
unloading o f  the p restrained  specim en [10], 
ultrasonic testing [11], acoustic technique [12] and 
nano-in d en ta tio n  testing  [13]. E xperim ental 
evidence, as well as theoretical results obtained 
from consideration of corresponding mathematical 
models, shows that the mechanism causing the 
degradation of stiffness of material is appearance 
of cavities and cracks in materials [12] and [14],

1 EXPERIMENTAL OBSERVATIONS AND 
MEASUREMENTS

Though in this paper the importance of 
considering stiffness degradation in the calculation 
o f  the final shape o f  a draw n part w ill be
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demonstrated comparatively by numerical means, 
i.e. by simulating springback under assumption of 
different constitutive models, the research will be 
performed by respecting macroscopic material 
behaviour and associated m aterial data to its 
greatest extent. Thus, for the investigated stainless 
steel EN 1.4031 the yield curve and Young’s 
modulus degradation have been measured on a 
sheet specimen. In addition, also microstructure of 
the stretched sheet has been observed in order to 
better understand physical background o f the 
stiffness degradation.

Before proceeding we find necessary to 
explain the term “effective” which will be used 
regularly in a description of some quantities associated 
with material response. In the context followed in this 
research “effective” means that respective response is 
considered macroscopically, possibly hiding the actual 
reasons for evidenced behaviour. Thus, in a 
homogeneous material stiffness is directly correlated 
to Young’s modulus of the material, and it is actually 
from the stiffness measurements that magnitude of 
the elastic modulus can be uniquely evaluated. The 
situation is not so straightforward when we consider 
a porous or damaged m aterial. Namely, 
experimentally we can only evaluate stiffness of the 
considered material structure as a whole, i.e. including 
all possible inclusions and voids. In this case we will 
refer to effective Young’s modulus which will 
definitely depend not only on the intrinsic material 
properties of the matrix, but in particular on the 
properties specifying departure from a homogeneous 
solid material.

1.1 Yield Curve

The effective yield curve of stainless steel 
EN 1.4031 has been obtained upon measurements

Fig. 1. Effective yield curve

from a standard tensile test that was performed on 
the Tira 2300 tensile test m achine. The 
experimental results were fitted according to 
Ludwig’s law which was found to be appropriate 
to fit experimental data (Fig. 1).

1.2 Effective Young’s Modulus Degradation

To measure effective Young’s modulus 
degradation as a function of equivalent plastic strain, 
which is for uniaxial stress case £pq = In (L/Z^), 
standard specimens were first plastically prestrained 
in the tensile test machine to a certain degree of 
equivalent plastic strain. After that the thickness and 
width of each specimen were precisely measured in 
order to evaluate the respective cross-sectional area. 
Each specimen was then clamped again in the tensile 
test machine, with a dynamometer measuring force 
range up to ±10 kN and accuracy class being 1 
(IS0376-EN10002-3). The guaranteed accuracy 
class of the strain transducer, which was mounted 
on the specimen as shown in Figure 2, is 0.1, its 
nominal displacement range being ±2.5 mm.

From the measured force-displacem ent 
relationship registered by elastic loading and 
unloading of the plastically prestrained specimen the 
effective elastic modulus was calculated considering 
Hooke’s law, using interpolation of the measurement 
data of length, cross-sectional area and force. In 
order to retrieve Young’s modulus degradation as a 
function of equivalent plastic strain the described 
procedure is repeated for different plastic prestrains. 
As it can be clearly seen from the plotted graph in

Fig. 2. Measurement o f the elastic elongation



Fig. 3. Effective Young’s modulus degradation

Figure 3, it is beyond all question that the evidenced 
degradation o f the effective Young’s modulus is 
directly correlated to the degree of plastic prestrain. 
The fact that in our experiment plastic prestraining 
was achieved under condition of uniaxial stress state 
certainly does not affect the general statement.

1.3 Observation of Microstructure

In order to gain a better insight into a cause 
o f the proved stiffness degradation the plastically 
stretched m aterial was inspected by electronic 
microscope JEOL KSM-5610. Small specimens of 
dimensions 10x10mm were cut out with plate 
shears from the prestrained steel specimens forthat 
purpose. In the sequel we give some comments on 
findings o f the observed microstructure.

First, we observe a specim en that was 
stretched until rupture, which happened at the 
magnitude o f 0.55 of the equivalent plastic strain.

Fig. 5. Revealed voids at the edge o f specimen at 
Ep = 0.55 (microscope view)

Figure 4 shows the detail o f a fracture area and the 
respective material appearance along of it. The front 
(rolled) surface of the specimen does not give us 
m uch inform ation  about any dam age in the 
material, even in the immediate vicinity of fracture. 
In the fracture area, however, this is observed to 
be surprisingly different. From inspection of this 
region it can be concluded that the main mechanism 
o f occurred ductile damage in the investigated 
material is voids appearance. Since microstructure 
o f  a homogeneous stretched sheet metal must 
exhibit a certain level o f continuation through its 
domain, one can assume, that microstructure in the 
inside o f the deformed sheet metal should be similar 
to the microstructure in the fracture area.

Figure 5 shows the photography o f the 
material internal structure at the cut edge of a same 
specimen as shown in Figure 4. By cutting a small 
piece o f material was nipped off the surface because 
o f  a sm all defect in plate shears blade, thus



revealing fortunately the internal microstructure. 
From that surface, which is distinctively visible in 
Figure 5, damage in the form of voids may be easily 
perceived. Based on this evidence it can be 
concluded, that voids in material appear throughout 
the volume.

Let us now observe what is happening in 
the sheet m etal before rupture. A gain the 
microstructure at the cut edge of a specimen, this 
time prestrained to the magnitude of 0.20 of the 
equivalent plastic strain, was observed, where 
cutting again nips off a small piece of material and 
thus reveals the in ternal m icrostructure. 
Appearance of voids in microstructure can be seen 
in considerable smaller amount. From comparison 
of Figures 5 and 6 it can be concluded, that voids 
evolution in material depends on stretching. Their 
presence is obviously the main mechanism of 
ductile damage and the true reason of progressive 
stiffness degradation.

2 CONSTITUTIVE MODELLING AND
NUMERICAL IMPLEMENTATION

For the purpose of this research we have 
adopted the isotropic GTN model which establishes 
the respective constitutive laws for the evolution 
o f ductile damage in porous materials [15]. This 
model considers void nucleation due to plastic 
deformation and void growth due to hydrostatic 
stress, i.e. two essential elements o f  damage 
evolution besides void coalescence. In order to 
perform our investigation we have coupled the 
GTN model with a respective model considering 
stiffness degradation.

2.1 Plastic Potential

Plastic potential associated with the GTN
model reads:
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Above, a  is Mises equivalent stress, aM is 
yield stress of the matrix material, o H = o i:k / 3 is 
hydrostatic stress, q , q1 and qs are parameters of 
the damage model and/  is void volume fraction or 
porosity in the material. Here, it should be reminded 
that due to porosity in material the effective yield 
stress o eff, which is obtained experimentally, does 
not equal the yield stress of the matrix material.

2.2 Evolution of Porosity

The law governing the porosity evolution 
considers two mechanisms, void growth and void 
nucleation, respectively:

d / = df groMh + dfnuclauion (2).

The first term on the right hand side can be 
formulated by considering mass conservation:

dfSrow,h = ( ! - / )  de« (3),

w hereas the nucleation o f  voids due to 
microcracking and decohesion of particle-matrix 
interface is related to plastic deformation of the 
matrix material:

d L - ,  = A, d£mp
(4).

Above, An follows a normal distribution 
about the mean nucleation  strain  e w ith a

n
standard deviation sn. Parameter/^ is maximum 
nucleated  void volum e fraction  and e p ism
equivalent plastic strain  o f m atrix m aterial, 
obtained from the following equivalent plastic 
work expression:

( l - f ) a Mdep =crde,; (5).

In this study decrease of strength of material 
due to extensive void coalescence is omitted.

2.3 Stiffness Degradation

For the characterization of the stiffness 
degradation due to damage Eshelby’s equivalence 
principle and his solution of the elastic field of an 
ellipsoidal inclusion in an infinite elastic medium
[16] can be used. As it was verified several times 
for different materials [17] to [19] Eshelby’s 
principle is best combined with M ori-Tanaka’s 
concept of average stress in a matrix [20] and [21], 
Combination of the GTN model with Eshelby and 
M ori-Tanaka approach builds an appropriate 
constitu tive model for a sim ula tion  o f  the 
measured material response. Here, linear and 
isotropic elastic law (J:j = Cijue‘u will be used, with 
degradation o f stiffness taken into account. 
According to Mori-Tanaka approach effective 
Young’s modulus E and effective Poisson’s ratio 
v are related to porosity for m aterial which 
contains spherical voids:
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w here E0 and v0 are Y oung’s m odulus and
effective Poisson’s ratio o f undeformed material.

2.4 Numerical Implementation Procedure

The above presented constitutive model has 
been im plem ented in a general purpose finite 
element code ABAQUS via VUMAT subroutine. 
In the implementation a new explicit integration 
scheme, developed recently by the authors, is used, 
its task being to find an appropriate increment of 
the plastic multiplier A l from given total strain 
increments Aeft. . This is achieved by expanding the 
consistency condition, w hich is practically  a 
condition o f  fulfilled yield criterion, 0  = 0 , that 
m ust be respected  through all the integration 
process during the evolution o f plastic strains, into 
Taylor series, where higher order differentials are 
neglected. The numerical scheme is thus based, 
provided the values of state variables are known at 
the beginning o f  a considered increm ent, on 
imposing:

O + dO = 0 (8)

to be fulfilled in a considered increment. When 
considering (1) this leads to:
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With regard to the forward-Euler approach, 
which uses the differential form of the consistency 
condition, i.e. dO = 0 , our approach considers the 
additional term O . Though this term should be 
zero, because it represents a function whose value 
should obey the consistency condition 0  = 0 , 
numerically this is usually not true. This small 
difference between the two explicit schemes is, 
according to our experience, the key reason for a 
considerable im provem ent o f  the stability  o f  
numerical integration.

The remaining equations o f the GTN model 
are the evolution equations, here expressed in the 
incremental form:
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Considering the above evolution equations 
in (9) yields the increment of plastic multiplier:
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Let us remind that according to explicit 
approach all the state variables appearing in 
equations (10) to (12) are written at the beginning 
o f the increment. When the increment o f plastic 
multiplier AA is calculated (11), the respective 
increments o f  the other state variables can be 
readily calculated using (10).

3 INVERSE IDENTIFICATION

3.1 Identification of the GTN Model Parameters

Since yield condition o  = 0 is fulfilled 
during plastic loading, the ratio o / o M in the case 
of uniaxial loading remains almost independent of 
the magnitude o f  the yield stress o f matrix material. 
Therefore, the GTN model param eters can be 
identified separately from the yield curve.



Parameters qt , q2 and are essentially an 
improvement of the basic Gurson’s constitutive 
model upgrading thus the original plastic potential. 
Values of those parameters are similar for all metals 
[22], so we adopt them accordingly, taking #, = 1.5, 
q2 = 1 and q3 = q[ = 2.25. The remaining three 
parameters describing void nucleation, f  e and 
sn, can be estimated from the observed porosity 
evolution. The latter may be thus deduced by using 
equation (6):

-5 v 0

2 (7 -5 v 0) + “ ( l3 -2 v 0 -15v02)
1 — •where E is measured effective Young’s modulus 

at different loading stages and v0 =0.3 .
From observation of the measurements it 

can be concluded first, that the porosity evolution 
does not follow a normal distribution (Fig. 7), and 
second, that a linear trend of the porosity increase 
is reasonable to be assumed. In that case only one 
parameter is needed for the description o f  the 
evolution law instead of three:

V„udeation= \  de: (H ).

Inverse identification of the parameter An is carried 
out using Gauss minimization method, in which 
the cost function, defined as a sum of squares of 
the differences between calculated and measured 
values of porosity, is iteratively minimized [23], 
The inverse identification procedure gives as the 
final result \  = 0.1458 .

3.2 Identification of the Yield Curve of Matrix 
Material

From the measured force F, elongation AL 
and initial cross-sectional area A,, effective (true)

(  e   ̂
1-  —

(13),

stress oeff, total logarithmic strain e and equivalent 
plastic strain Epeq were calculated, assuming that 
total strain can be additively decomposed into 
elastic and plastic strain eij=£‘J+£?. For the 
identification of the yield curve of matrix material 
a rather simple method, based on a numerical 
simulation of the performed experiment, was used. 
The identification method consists of the following 
steps. In a computer simulation of the tensile test 
two geometrically equal specimens, say A and B 
as depicted in Figure 8, but having different 
material properties or obeying different constitutive 
laws, are considered. The specimens are completely 
separated in the analysis, but in order to provide 
for both the conditions of the experiment they are 
exposed to the same loading conditions, i.e. to a 
prescribed edge d isplacem ent in each time 
increment.

Specimen A follows the Mises constitutive 
model with yield curve being expressed by effective 
yield stress which corresponds to a classical 
continuum mechanics approach. For specimen B, 
on the contrary, a damage mechanics approach is 
applied with the GTN model prescribed. But to use 
the latter model yield curve of matrix material a M 
has to be known. Considering that from the 
experiment we have only effective yield curve the 
procedure of identifying yield curve of matrix 
material follows this iterative path. Assuming at 
the beginning that we expose both
specimens to the prescribed loading conditions and 
trace the respective response, i.e. resultant axial 
force F (AL)and effective stress o eff, during 
loading. Because of the porosity, which evolves in 
accordance with the assum ed GTN m odel, 
specimen B exhibits smaller effective stress and 
resultant force than specimen A. Also, since the 
effective yield curve of the model A is calculated

Fig. 7. Growth o f void volume fraction
Fig. 8. Schematic representation o f models for 
identification o f yield curve o f  matrix material



directly from the measured dependence F  (AL), 
the latter should intrinsically perfectly fit the 
response of specimen A. The task is now to equalize 
curve F(AL) o f  specim en B w ith the one of 
specimen A, the latter being actually identical to 
the measured one. This is done so that the yield 
curve of specimen B is correspondingly scaled for 
the simulation in the next iteration. The scaling 
should however take into account that difference 
between the two curves may depend on loading, 
therefore, in each increment scaling must be done 
by considering the actual forces. Accordingly, for 
a specific increment the yield curve of specimen B 
to be used in the next iteration should be scaled up 
for the same factor as it is evidenced between the 
calculated forces of the two specimens:

r ( i )
CT(W) =cr(o £ a_ (15).

S ince the y ie ld  curve o f  specim en B 
considered in the next iteration is higher, the 
resultant force should be closer to the resultant force 
of specimen A. The described procedure, which can 
be repeated until the difference between curves 
Fa (AL) and FB (AL) becomes small enough, gives 
the yield curve of matrix material, which we were 
looking for. The procedure has proved to be very 
effective since its convergence is fast. The final
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Fig. 9. Effective yield stress and yield stress o f 
matrix material

result, which is depicted in Figure 9 and is obtained 
in only three iterations, is characterized by the 
maximum relative difference betw een curves 
Fa (AL) and FB (AL) being smaller than 4-10"4 in 
any point of the measured force.

4 SIMULATION OF DEMERI SPRINGBACK 
CUP TEST (ASTM, WK8010)

For the research of how Young’s modulus 
degradation affects calculation o f springback in 
steel sheet drawing the Demeri springback cup test 
may be considered [24]. The test consists o f a ring 
sample taken from the sidewall of a cylindrical deep 
draw n cup. The stress sta te  in the ring  is 
characterized by residual hoop stresses that evolved 
during deep drawing process in the wall o f the cup. 
W hen the ring  is sp lit, large ring  opening 
displacem ent appears due to release o f  those 
stresses (Fig. 10). The evidenced displacement can 
be considered as a measure of the actual springback.

In the numerical simulation a steel circular 
blank o f200 mm diameter and nominally 0.88 mm 
thick is considered. Geometry of the tools is as 
follows: diameter o f the die is 110 mm and diameter 
o f the punch is 100 mm with 10 mm radii on the 
die and the punch. Nominal depth of the drawn cup 
is 56 mm. The forming rate in simulation is lm/s 
and the holder force is constant, its magnitude being 
600 kN. To obtain a ring the cup wall is cut 11 mm 
and 26 mm below  the cup’s upper edge. Two 
material models have been used in simulations to 
study the influence o f stiffness degradation and 
damage in material, the classical isotropic Mises 
model with yield curve being effective stress o eff 
and the GTN damage model with the material data 
identified as described in the previous sections. In 
addition, also effect o f  degradation o f  elastic 
properties is considered.

In the FEM simulations 2776 four-node 
linear shell elements with reduced integration were 
used for the sheet blank, while the tool is assumed

Fig. 10. Numerical simulation o f  Demeri springback cup test, a) circular cup, b) splitted ring



Table 1. Ring opening -  comparison o f the models
Used model Ring opening [mm]
a) Mises model + initial elastic properties 156.2
b) GTN + initial elastic properties 165.0
c) GTN + degradation of elastic properties 177.2

to be rigid. The results of springback, which is 
defined with a ring opening displacement, are 
tabulated in Table 1. It is interesting to observe that 
even if  in the considered Demeri cup test the 
maximum porosity in the ring reaches about 4%, 
the difference between the computed results is 
around 14%.

5 CONCLUDING REMARKS

From the comparison of numerical results 
o f the springback behaviour, performed upon 
corresponding com puter sim ulations o f  the 
considered sheet forming case and subsequent 
Demeri springback cup test, it can be concluded, 
that stiffness degradation  in m aterial has a 
significant influence on the final result of elastic 
strain recovery, and consequently on the final shape 
o f  the form ed part. T herefore, the stiffness 
degradation  in term s o f  Y oung’s m odulus 
degradation and damage occurrence cannot be 
neglected in calculations of springback. One way 
to take those effects into account is the approach, 
presented in this paper.
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