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ABSTRACT
This lecture outlines the basis for the entropy generation 

minimization method, and a series of key applications in 
power generation, refrigeration, and energy conservation. 
The lecture begins with a review of the concept of 
irreversibility, entropy generation, or exergy destruction. 
The proportionality between exergy destruction and entropy 
generation is used in the search for improved thermodynamic 
performance subject to finite-size constraints and specified 
environmental conditions. Examples are drawn from 
refrigeration, energy storage systems for sensible heat and 
latent heat, solar energy, and the generation of maximum 
power by using a stream of hot gas. It is shown that the 
physical structure of the system springs out of the process of 
global thermodynamic optimization subject to global 
constraints. This principle generates structure not only in 
engineering but also in physics and biology (constructal 
theory).

INTRODUCTION
In this lecture I review some of the changes that have 

occurred in engineering therm odynam ics, and the 
applications that stand to benefit from these changes. The 
focus is on the increasingly important role played by 
thermodynamics (especially the second law) in problem 
formulation, modeling and design optimization.

The methods of exergy analysis (EA), entropy generation 
minimization (EGM) and thermoeconomics (TE) are the most 
established changes that have taken place in modern 
engineering thermodynamics (Bejan et al., 1996; Moran and 
Sciubba, 1994; Feidt, I987; Stecco and Moran, 1990, 1992; 
Valero and Tsatsaronis, 1992; Boehm, 1997; Faghri and 
Sunden, 1998; Bejan, I996a,b; Bejan and Mamut, 1999).

The emphasis is now on identifying the mechanisms and 
system components that are responsible for thermodynamic 
losses (EA), the sizes of these losses (EA), minimizing the 
losses subject to the global constraints of the system (EGM). 
and minimizing the total costs associated with building and 
operating the energy system (TE).

The method of thermodynamic optimization or entropy 
generation minimization (EGM) established itself as a 
distinct field of activity at the interface between heat 
transfer, engineering thermodynamics, and fluid mechanics. 
The position of the field is illustrated in Fig. I, which is 
reproduced from the first book published on this method

Figure l: The interdisciplinary field covered by the method 
of thermodynamic optim ization, entropy generation 
minimization, or finite time thermodynamics (Bejan, 1982).
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(Bejan, 1982). The method relies on the simultaneous 
application of principles of heat and mass transfer, fluid 
mechanics, and engineering thermodynamics, in the pursuit 
of realistic models of processes, devices, and installations. 
By realistic models we mean models that account for the 
inherent irreversibility of engineering systems.

Thermodynamic optimization may be used by itself 
(without cost minimization) in the preliminary stages of 
design, in order to identify trends and the existence of 
optimization opportunities. The optima and structural 
characteristics iden tified  based on therm odynam ic 
optimization can be made more realistic through subsequent 
refinem ents based on global cost m inim ization. 
Thermodynamic optimization may be used especially in areas 
where the total cost of the installation is dominated by the 
low temperatures, where the power requirement is substantial 
cost due to thermodynamic irreversibility. The classical 
example of this kind is cryogenics, or refrigeration at very 
and proportional to the entropy generated in the cold space. 
Many other applications are found in power generation and 
energy conservation, as shown by the examples collected in 
this paper.

TH ER M O D Y N A M IC S C O M B IN E D  W IT H  HEA T 
TRANSFER AND FLUID M ECHANICS

Here is why in thermodynamic optimization we must rely 
on heat transfer and flu id  m echanics, not just 
thermodynamics. Consider the most general system- 
environment configuration, namely a system that operates in 
the unsteady state. Its instantaneous inventories of mass, 
energy, and entropy are M, E, and S. The system 
experiences the net work transfer rate W , heat transfer rates
(Q o .Q ......Q n )  with n + 1 temperature reservoirs (Tq,
T | .....T n), and mass flow rates (m in, rhom) through any
number of inlet and outlet ports. Noteworthy in this array of 
interactions is the heat transfer rate between the system and 
the environmental (atmospheric) temperature reservoir, Q0 , 
on which we focus shortly.

The thermodynamics of the system consists of accounting 
for the first law and the second law [13],

dE
dt

n

- w  + X rhh -  riih (1)
i=0 in out

Š =^gen
dS y
dt 2 -i t - x

ms + ms £ 0. (2)
i = 0 1 in out

where h is shorthand for the sum of specific enthalpy, kinetic 
energy, and potential energy of a particular stream at the 
boundary. In eq. (2) the total entropy generation rate Sgen is 
simply a definition (notation) for the entire quantity on the 
left-hand side of the inequality sign. We shall see that it is 
advantageous to decrease Sgen; this can be accomplished by

changing at least one of the quantities (properties, 
interactions) specified along the system boundary.

We select the environmental heat transfer Q0 as the 
interaction that is allowed to float as Sgen varies. 
Historically, this choice was inspired (and justified) by 
applications to power plants and refrigeration plants, 
because the rejection of heat to the atmosphere was of little 
consequence in the overall cost analysis of the design. 
Eliminating Q0 between eqs. ( 1 ) and (2) we obtain

i= l
W . - i ( E - T 0S) + X  I ' - F Q i +

X  m (h -  T0s ) ~ X  ™ (h -  T 0s) -  T0Sgcn (3)
in out

The. power output in the limit of reversible operation

Wrev= - A ( E - T°s) + X  ( i - ^ Ì Q ì +
i=l v i J

X  "> (h -  T0s) -  X  m (h -  T 0S) <4>
in out

In engineering thermodynamics each of the terms on the 
right-hand side of eq. (4) is recognized as an exergy of one 
type or another [2, 11-13], and the calculation of W rev is 
known as exergy analysis. Subtracting equation (3) from eq. 
(4) we arrive at the Gouy-Stodola theorem,

W rev -  W = T0Sgen (5)

In eq. (5) W rev is fixed because all the heat and mass flows 
(other than Qo ) are fixed.

Pure thermodynamics (e.g., exergy analysis) ends, and 
EGM begins with eq. (5). The lost power (W rev -  w ) is 
always positive, regardless of whether the system is a power 
producer (e.g., power plant) or a power user (e.g., 
refrigeration plant). To minimize lost power when W rev is 
fixed is the same as maximizing power output in a power 
plant, and minimizing power input in a refrigeration plant. 
This operation is also equivalent to minimizing the total rate 
of entropy generation. If W rev is not held fixed while the 
system design is being changed, then eq. (5) and the 
calculation of Sgen lose their usefulness.

The critically new aspect of the EGM method—the aspect 
that makes the use of thermodynamics insufficient, and 
distinguishes EGM from exergy analysis—is the
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minimization of the calculated entropy generation rate. To 
minimize the irreversibility of a proposed design, the 
analyst must use the relations between temperature 
differences and heat transfer rates, and between pressure 
differences and mass flow rates. The analyst must express the 
thermodynamic nonideality of the design Sgen as a function 
of the physical characteristics o f the system, namely to 
finite dimensions, shapes, materials, finite speeds, and 
finite-time intervals of operation. For this the analyst must 
rely on heat transfer and fluid mechanics principles, in 
addition to thermodynamics. Only by varying one or more 
of the physical characteristics of the system, can the analyst 
bring the design closer to the operation characterized by 
minimum entropy generation subject to size and time 
constraints. We illustrate this technique by means of a few 
very basic models.

HISTORY: LOW  TEM PER A TU R E  R EFR IG E R A ­
TION

To appreciate the eng ineering  origins of the 
thermodynamic optimization method (EGM), it is useful to 
recall that the field of low temperature refrigeration was the 
first where irreversib ility  m inim ization became an 
established method of optimization and design. As a special 
application of eq. (5), it is easy to prove that the power 
required to keep a cold space cold is equal to the total rate of 
entropy generation times the ambient temperature, with the 
observation that the entropy generation rate includes the 
contribution made by the leakage of heat from Tq into the 
cold space (Bejan, 1982, 1988). The structure of a cryogenic 
system is in fact dominated by components that leak heat, 
e.g., mechanical supports, radiation shields, electric cables, 
and counterflow heat exchangers (Fig. 2). The minimization 
of entropy generation along a heat leak path consists of 
optimizing the path in harmony with the rest of the 
refrigerator of liquifier.

Figure 3 shows a mechanical support of length L that 
connects the cold end of the machine (TL) to room 
temperature (TH). The rate of entropy generation inside the 
support shown as a vertical column is

gen - rj TL

H Q
dT (6)

where it is important to note that the heat leak Q is allowed 
to vary with the local temperature T. The origin of the 
integrand in eq. (6) is the infinitesimal element (shaded in 
Figure 3). in which the rate of entropy generation is dSgen = 
Q /T +  dQ /T  -  (Q + dQ)/(T + dT )=  Q dT /T 2 . The local 
heat leak decrement dQ is removed by the rest of the 
installation, which is modeled as reversible. The heat leak is 
also related to the local temperature gradient and conduction 
cross-section A,

Q  = (7)

where the thermal conductivity k(T) decreases toward low 
temperatures. Rearranged and integrated from end to end, eq. 
(7) places a size constraint on the unknown function Q(T),

_L
A

f Tu k4- dT 
Jt l Q

( 8 )

According to variational calculus, the heat leak function that 
minimizes the Sgen integral (6) subject to the finite-size 
constraint (8) is obtained by finding the extremum of the 
aggregate integral JjJ* FdT whose integrand F is a linear 
combination of the integrands of eqs. (6) and (7), F = Q /T 2 
+ Xk/Q and X is a Lagrange multiplier. The Euler equation 
reduces in this case to 3F/3Q = 0, which yields Qop( = 
(X k)1/2T. The Lagrange multiplier is determined by 
substituting Qopt into the constraint (8). The results are

Equation (6) was provided by thermodynamics and eq. (7) 
by heat transfer: together they prescribe the optimal design

Figure 2: Intermediate cooling of the main counterflow heat 
exchanger of a helium refrigerator (Bejan, 1982).
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(9, 10), which is characterized by a certain distribution of 
Q(T), will generate more entropy and will require more 
power in order to maintain the cold end of the support at TL. 
Quantitative and older examples are given in Bejan (1982, 
1996a, 1997). An important example is the main 
counterflow heat exchanger of any low-temperature 
refrigeration machine, which must be cooled optimally at 
intermediate temperatures (e.g., Fig. 2).

Together, eqs. (6) and (8) illustrate the backbone of the 
method of thermodynamic optimization subject to a physical 
constraint, as it was practiced in engineering before Bejan 
and Smith (1974) (this work was reviewed in the first book 
about the method: Bejan, 1982). In physics, the first 
application of the method is traced to Curzon and Ahlborn 
(1975), who rediscovered an optimization problem that had 
been solved 18 years earlier in engineering by Novikov 
(1957) and Chambadal (1957). Additional notes on the 
history of the method in both engineering and physics can 
be found in Bejan (1996c) and Bejan and Mamut (1999).

SENSIBLE HEAT STORAGE
The opportunity for minimizing the destruction of exergy 

during energy storage becomes evident if we examine the 
system shown in Fig. 4. The storage system (the left side of 
the figure) contains a batch of liquid (m, c). The liquid is held 
in an insulated vessel. The hot-gas stream m enters the 
system through one port and is gradually cooled as it flows 
through a heat exchanger immersed in the liquid bath. The 
spent gas is discharged directly into the atmosphere. As time 
passes, the bath temperature T and the gas outlet temperature 
T0ut approach the hot-gas inlet temperature, T„,.

If we model the hot gas (steam, products of combustion) as 
an ideal gas with constant specific heat cp, the temperature 
history of the storage system is expressed in closed form by 
the equations

T 0„,(t) Tg
T .  - T 0

= 1 -  y exp ( -  y0) (12)

where y and the dimensioniess time 6 are defined as

y = 1 -e x p  ( -  N,u ), N lu 0 = ™ L t  (.3)
mcp me

In these equations, Ab is the total heat-exchanger surface 
separating the stream from the liquid bath, and hb is the 
overall heat transfer coefficient based on Ab. Built into the 
model is the assumption that the liquid bath is well mixed, 
i.e., that the liquid temperature (T) is a function of the time (t) 
only. As expected, both T and Tout approach T„
asymptotically—the higher the N(U value, the faster.

Turning our attention to the irreversibility of the energy- 
storage process, Fig. 4 shows that the irreversibility is 
divided between two distinct parts of the apparatus. First, 
there is the finite-AT irreversibility associated with the heat 
transfer between the hot stream and the cold liquid bath. 
Second, the stream exhausted into the atmosphere is 
eventually cooled down to T0, again by heat transfer across a 
finite AT. Neglected in the present model is the 
irreversibility due to the pressure drop across the heat 
exchanger traveled by the stream m.

The combined effect of the competing irreversibilities 
noted in Fig. 4 is a characteristic of all sensible-heat storage 
systems. Because of it, only a fraction of the exergy content 
of the hot stream can be stored in the liquid bath. In order to 
see this, consider the instantaneous rate of entropy 
generation in the overall system delineated in Fig. 4,

Seen = rhcp In + —  + JL (m clnT ) (14)
8 T „  T 0 dt v '

T(t) -  T 0 
T~ -  T0

= 1 -  exp ( -  y0)
where Q0 = rncP (Tou, -  T 0 ). More important than Sge„ is 
the entropy generated during the entire charging-time

Internal External
irreversibility irreversibility/------------ ------------- \  /--------------- *--------------- \

Figure 3: Mechanical support with variable heat leak and 
intermediate cooling effect (Bejan and Smith, 1974).

Figure 4: Two sources of irreversibility in the heating phase 
of a sensible-heat exergy-storage process (Bejan, 1982).
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interval 0 -  t, which, using eqs. ( 11 )-( 14), can be put in 
dimensionless form as

—  f Šge„dt = ej In + xi + ln (l + r n I)-TT || (15) 
me Jo V ‘ ~ )

where the first-law efficiency rjj is shorthand for the right 
side of eq. (11), and where x = (T „ -  T0 ) / T0.

Multiplied by T0, the entropy-generation integral 
lo Šgcndt calculated above represents the bite taken by 
irreversibilities out of the total exergy supply brought into 
the system by the hot stream:

Ex = tÉ x = tmcp In [t ,*, -  T 0 -  T 0 In (T „  / T 0)] (16)

On this basis, we define the entropy-generation number Ns as 
the ratio of the lost exergy divided by the total exergy 
invested during the time interval 0 -  t:

NS (e ,x ,N tu) = J .  f ' s gendt = 
b x Jo

. -  -  "■ (; *  " I ; 1 ( .7 ,
6[x -  In (l + x)j

This entropy-generation number takes values in the range 0- 
1, the Ns = 0 limit representing the elusive case of reversible 
operation. Note the relation N$ = 1 -  fin. where T)jj is the 
second-law efficiency of the installation during the charging 
process.

Charts of the Ns(9, x, N,u) surface (Bejan, 1982) show that 
Ns decreases steadily as the heat-exchanger size (N,u) 
increases. This effect is expected. Less expected is the fact 
that Ns goes through a minimum as the dimensionless time 9 
increases. For example, the optimal time for minimum Ns 
can be calculated analytically in the limit x «  I, where eq. 
(17) becomes

Ns = 1 -  [l -  exp ( - y6)]2 /9  (18)

The solution of the equation 3Ns/30 = 0 is

9opt = 1.256 [1 -  exp (- Ntu)]-! (19)

In other words, for the common range of Ntu values (1-10), 
the optimal dimensionless charging time is consistently a 
number of order 1. This conclusion continues to hold as x 
takes values greater than 1.

Away from the optimal charging time (i.e., when 0 —> 0 or 
0 oo), the entropy-generation number Ns approaches unity. 
In the short-time limit (0 «  9opi), the entire exergy content

of the hot stream is destroyed by heat transfer to the liquid 
bath, which was initially at atmospheric temperature T0. In 
the long-time limit (0 »  0opt), the external irreversibility 
takes over. In this limit, the used stream exits the heat 
exchanger as hot as it enters (Tout = T^) and its exergy 
content is destroyed entirely by the heat transfer (or mixing) 
with the T0 atmosphere. The traditional (first-law) rule of 
thumb of increasing the time of communication between heat 
source and storage material is counterproductive from the 
point of view of avoiding the destruction of exergy.

LATENT HEAT STORAGE
A simple way to perform the thermodynamic optimization 

of the latent heat storage process was proposed by Lim et al. 
(1992), Fig. 5. The hot stream of initial temperature TTC 
comes in contact with a single phase-change material 
through a finite thermal conductance UA, assumed known, 
where A is the heat transfer area between the melting malerial 
and the stream, and U is the overall heat transfer coefficient 
based on A. The phase-change material (solid or liquid) is at 
the melting point Tm. The stream is well mixed at the 
temperature Tou,, which is also the temperature of the stream 
exhausted into the atmosphere (T0).

The "steady" operation of the installation of Fig. 5 
accounts for the cyclic operation in which every 
infinitesimally short storage (melting) stroke is followed by 
a short energy retrieval m is stopped, and the recently 
melted phase-change material is solidified to its original 
state by the cooling effect provided by the heat engine 
positioned between Tm and T0. In this way, the steady-state 
model of Fig. 5 represents the complete cycle—that is, 
storage followed by retrieval.

Figure 5: The steady production of power using a single 
phase-change material and a mixed stream (Lim et al., 1992).
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The steady cooling effect of the power plant can be 
expressed in two ways:

Qm ~ UA (Toui T m ) Q m — rhcp (T„, T oul) (20)

By eliminating Tout between these two equations we obtain

N„
Qm = mcp

1 +  N , (T. ( 21)

in which NIU is the number of heat transfer units of the heat 
exchanger surface,

UA
N„ ( 22)

Of interest is the maximum rate of exergy, or useful work 
( W in Fig. 5) that can be extracted from the phase-change 
material. For this, we model as reversible the cycle executed 
by the working fluid between Tm and T0

w  = Q m 11 -
‘ my

and, after combining with eq. (21), we obtain

(23)

(24)

By maximizing W with respect to Tm—that is, with respect 
to the type of phase-change material, we obtain the optimal 
melting and solidification temperature:

Tn.opt — (TooTq) 1/2 (25)

The maximum power output that corresponds to this optimal 
choice of phase-change material is

(26)Nm J H o

1/2'

1 + N,u T\ 00 /

The same results, eqs. (25) and (26), could have been 
obtained by minimizing the total rate of entropy generation, 
as in the preceding section. One way to improve the power 
output of the single-element installation of Fig. 5 is by 
placing the exhaust in contact with one or more phase- 
change elements of lower temperatures. This method is 
illustrated in Lim et al. (1992).

SOLAR COLLECTORS
The optimization of solar energy conversion has been 

studied under the banners of two fundamental problems. One

M l©inM lC€
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is concerned with establishing the theoretical limits of 
converting thermal radiation into work, or calculating the 
exergy content of radiation. The other problem deals with 
the delivery of maximum power from a solar collector of 
fixed size (Bejan et al., 1981). This problem has also been 
solved in many subsequent applications (Bejan 1996a, 
1997a), which are united by an important design feature: the 
collector operating temperature can be optimized.

This optimization opportunity is illustrated in Fig. 6. A 
power plant is driven by a solar collector with convective 
heat leak to the ambient. The heat leak is assumed to be 
proportional to the collector-ambient temperature difference, 
Qo = (UA)C(TC -  Tg). The internal heat exchanger between 
the collector and the hot end of the power cycle (the user) is 
modeled similarly, Q0 = (UA)j(Tc -  Tu). There is an optimal 
coupling between the collector and the power cycle such that 
the power output is maximum. This design is presented by 
the optimal collector temperature (Bejan, 1982)

1 c,opt ^max + j^£max 
1 + R

(27)

where R = (UA)c/(UA)j and 0max = Tc max/To is the maximum 
(stagnation) temperature of the collector. This optimum has 
its origin in the trade-off between the Carnot efficiency of 
the reversible part o f th e  power plant (1 -  T0/T u) and the 
heat loss to the ambient, Q0 . The power output is the 
product Q ( 1 — Tc/Tu). When Tc < Tc opl the Carnot factor is 
too small. When Tc > Tcop, the heat input Q drawn from the 
collector is too small, because the heat loss to the ambient 
Q0 is large.

Corresponding optimal couplings have been identified in 
solar-driven power plants of many power-cycle designs, 
extraterrestrial power plants, and refrigeration systems 
driven by solar power (Bejan 1996a, 1997a).

sun

collector

user

ambient

to reversible 
power plant

Figure 6: Solar power plant model with collector-ambient 
heat- loss and collector-power cycle heat exchanger (Bejan et 
al., 1981).



DISTRIBUTION OF HEAT TRANSFER AREA
Heat transfer principles combined with thermodynamics 

shed light on why energy systems are imperfect, and why 
they possess geometric structure— why their hardware is 
arranged in certain amounts, and in certain ways in space. A 
power plant owes its irreversibility to many factors, one of 
which is the transfer of heat across finite temperature 
differences. This effect has been isolated in Fig. 7. The 
power plant is the vertical segment marked between the high 
temperature TH and the ambient temperature TL. The heat 
input Qh (fixed) and the rejected heat QL must be driven by 
temperature differences: the temperature gaps TH - T HC and 
Tlc -  Tl account for some of the space occupied by the power 
plant. Heat transfer surfaces reside in these spaces. The rest 
of the space is reserved for the rest of the power plant: for 
simplicity, this inner space is assumed to be irreversibility 
free,

CH + c l = c (31)

where C is fixed. This constraint is adequate when the overall 
heat transfer coefficients of the two surfaces are equal. More 
general constraints, valid for unequal heat transfer 
coefficients, can also be used.

The analytical model is completed by the first law, written 
for the power plant as a closed system operating in steady 
state or in an integral number of cycles, W = QH -  QL. 
Combining this with the preceding relations, we obtain the 
power output as a function of the conductance allocation 
fraction x = CH/C,

t l / t h

l -  °» fl I Ì
t hc X

 
I H I X

(32)

Sge„ = ^  ^  = 0 (28)
1LC 1 HC

All the irreversibility o f this power plant model is 
concentrated in the two temperature gaps. The simplest heat 
transfer model for these is the proportionality between heat 
current and temperature difference,

Qh = Ch (Th - T hc) Ql = Cl (TUc - T l ) (29 ,30)

Each thermal conductance (CH, CL) is proportional to its area 
for heat transfer. This is why the simplest way to account for 
the finiteness of the heat transfer surface available to the 
power plant is to recognize the constraint (Bejan, 1988)

Figure 7: Model of power plant with two heat transfer 
surfaces, and the maximization of power output subject to 
Fixed heat input (QH) and fixed total heat transfer surface (C).

This expression can be maximized with respect to x, and the 
result is xop, = 1/2, or

Ch.oPi = Cl-opi (33)

In conclusion, there is an optimal way to allocate the 
constrained hardware (C) to the two ends of the power plant, 
that is, if the maximization of power output subject to fixed 
heat input (QH) and fixed size (C) is the purpose. Equation 
(33) also holds for refrigerating machines modeled in the 
same way.

The maximization of W is shown graphically in Fig. 7. 
Small conductances strangle the flow of heat, and demand 
large temperature differences. The power output is large when 
the temperature difference across the reversible compartment 
is large. The first and third frames of Fig. 7 show that when 
the two conductances are highly dissimilar in size, large 
temperature gaps are present, and the power output is small. 
The best irreversible performance is somewhere in the 
middle, where the conductances are comparable in size.

EXERGY EXTRACTION FROM A STREAM OF HOT 
GAS

Thermodynamics alone provides an unambiguous answer 
to the question of the maximum power that is theoretically 
available from a stream solely in the presence of the 
atmospheric temperature reservoir (T0): that answer is the 
'flow exergy' of the stream (Moran, 1989). It is helpful to 
review this result while looking at the upper part of Fig. 8 
and assuming that the stream is single-phase, for example, 
an ideal gas. If the hot stream ( m, TH) makes contact with a 
reversible device while reaching thermal equilibrium with the 
ambient before it is discharged, and if the pressure drop along 
the stream is assumed negligible, the power output is

grmfiätaJXMigixi] □  1 - a



W rev mCpT0 (34)

The actual power output will always be lower than W rev 
because of the irreversibility of the heat transfer between the 
hot stream and the rest of the power plant. A first step in the 
direction of accounting for the heat transfer irreversibility is 
the model of Fig. 8, where the heat transfer surface has the 
finite size A = pL, and p is the heat transfer area per unit of 
flow path length. The power producing compartment is a 
succession of many reversible compartments of the kind 
shown in the center of the figure. The infinitesimal power 
output is

dW (35)

where the temperature is plotted on the vertical in Fig. 8, and 
dQH = rhCpdT. The heat transfer through the surface A is 
assumed proportional to the local temperature difference,

generation rate Sgen is the total amount associated with the 
larger system, and is due to two sources: the temperature 
difference T -  Ts, and the finite temperature difference required 
by the external cooling rate Qc = m cp(T0Ut -  T0 ). These 
two contributions are represented by the two terms in the 
expression

CT h f i i i
rhCpdT +

(  rr
me In 0 + ÒS.Ì

H H
l 1 1 1L n 111

p TV. 1 oul T 0 J

To maximize W is equivalent to minimizing Sgen, 
because W rev is fixed. The entropy generation rate (39) is 
subject to the size constraint (38). There are two degrees of 
freedom in the minimization of Sgen: the shape of the 
surface temperature function Ts(x), and the place of this 
function on the temperature scale (i.e., closer to TH or T0). 
The second degree of freedom is alternately represented by 
the value of the exhaust temperature Toul. The optimization 
of the function Ts(x) is accomplished based on variational 
calculus (Bejan and Errerà, 1998):

dQn = [T (x) -  T s(x)]Updx (36)

where U is the overall heat transfer coefficient, which is 
assumed constant. Com bining these equations and 
integrating from x = 0 to x = L (= A/p) we arrive at the total 
power output and the finite-area constraint:

^s,opt (*) ßT H exp -  In —1
L T„

p = 1 ----- L  |n JÜ L

T opt(x ) = T H exp - - I n T H
L T,

-  T
out /

s.opt

^  max m CpT o T h  _  T o u t  L ]n T h

V T 0 T0 p Tou,

(40)

(41)

(42)

(43)

An alternate route to calculating the power output W is to 
apply the Gouy-Stodola theorem (5) to the larger system 
(extended with dashed line) in Fig. 8. The reversible-limit 
power output W rev corresponds to the reversible cooling of 
the stream from TH all the way down to T0. The entropy

Figure 8: Power plant model with unmixed hot stream in 
contact with a nonisothermal heat transfer surface (Bejan and 
Errerà, 1998).

At any x, the temperature difference (T -  Ts) is proportional 
to the local absolute temperature. This optimal distribution 
of temperatures is illustrated in Fig. 9.

The second step of the minimization of exergy destruction 
consists of maximizing numerically the expression (43) with 
respect to Tout. The result is the twice-maximized power 
output W max max reported in dimensionless form in Fig. 10,

^  mm — ^  max. max ((m CpTo) (44)

It can be verified that this rate of exergy production 
approaches the reversible limit (34) as the surface size (N,u) 
increases.

The deduced proportionality between (T -  Ts) and T (or Ts) 
means that this optimal configuration can be implemented in 
practice by using a single-phase stream (mcp) in place of 
the Ts(x) surface: this stream runs in counterflow relative to

|g n n (̂ä)bJi(Fji[i î>siil
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Figure 9: The optimal distribution of temperature along the 
stream and the heat transfer surface of Figure 8 (Bejan and 
Errerà, 1998).

the hot stream m. The counterflow is characterized by a 
certain, optimal imbalance (the ratio between the capacity 
flow rates of the two streams), which is the result of 
thermodynamic optimization, and is reported in Fig. 1 I.

Figure 10: The twice maximized power output corresponding 
to the model of Figure 8 (Bejan and Errerà, 1998).

t h / t 0
Figure 11: The optimal imbalance of the counterflow heat 
exchanger used in conjunction with the model of Figure 8 
(Bejan and Errerà, 1998).

G E O M E T R Y  S P R IN G S  O U T O F T H E R M O ­
DYNAMIC O PTIM IZA TIO N

In the preceding section, the maximization of exergy 
extraction (W j subject to fixed size (A) led to the physical 
structure of the flow system: the counterflow heat exchanger, 
and its optimal imbalance. The alternative is to minimize A 
subject to specified (w ) , and in this case the optimal 
structure turns out to be the same. In all the examples 
reviewed in this paper, the physical result of global 
optimization of thermodynamic performance was structure. 
This structure-generating principle deserves to be pursued 
further, in increasing ly  m ore com plex system 
configurations. The generation of structure in engineering 
has been named constructal method.', the thought that the 
same principle accounts for the generation of shape and 
structure in natural flow systems is constructal theory (Bejan, 
2000 ) .

The principle of organizing structure for the purpose of 
extracting and using maximum exergy from a hot stream is 
particularly relevant to the integrative conceptual design of 
energy flow systems for aircraft. The same principle applies 
to systems in which all the functions are driven by the 
exergy drawn from the limited fuel installed on board; ships, 
automobiles, military vehicles, environmental-control suits, 
portable power tools, etc. Additional support for this view is 
provided by the record on powered flight, engineered and 
natural. Figure 12 shows the cruising speeds of insects, birds 
and airplanes, next to the theoretical speed obtained by 
minimizing the power (exergy rate) destroyed during flight 
(Bejan, 2000).
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Figure 12: Cruising speeds of insects, birds and airplanes, and the theoretical speed for minimum rate of exergy destruction 
during flight (the solid line) (Bejan, 2000).

The performance record of the natural and engineered flow 
systems (e.g.,. Fig. 12) suggests that the constructai 
principle is important not only in engineering but also in 
physics and biology in general. In this theoretical 
framework the airplane emerges as a physical extension of 
man, in the same way that the body of the flying animal 
(e.g., bat, bird) developed its own well adapted extensions. 
All such extensions are evolutionary, discrete marks on a 
continuous time axis that points toward the better and the 
more complex. This theoretical line of inquiry is explored in 
a new book (Bejan, 2000).
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