1SS O0D322-2480
UDK. 536.2
Izvirni znanescven Slanek (1.01)

ISSM O0O3g9-2480
uDC 536.2
Original scientific papar (1.01)

THERMAL CONVECTION OF VISCOELASTIC FLUID
WITH BIOT BOUNDARY CONDUCTION

Demir Huseyin
Department of Mathematics
Arts and Science Faculty
Ondokuz Mayis University
55139 Kurupelit-Samsun,
TURKEY

ABSTRACT:

Two-dimensional unsteady natural convection of a non-
linear fluid represented by Criminale-Erickson-Filbey
(CEF) fluid model in a square cavity is studied in the fluid
for Rayleigh Benard convection case. The govemning
vorticity and energy (ransport equations are solved
numerically cither simple explicit and A.D.I. methods
respectively. The two-dimensional conveclive motion is
generated by bouyancy forces on the fluid fluid in a square
cavity, when the vertical walls are either perfectly insulated
or conducted with Biot boundary conduction condition.
The contributions of the elastic and shear dependent
characteristics of the liquid to the non-Mewtonian
behaviour are investigated on the temperature distribution
and heat transfer. The effect of the Weissenberg (which is a
measure of the elasticity of the fluid), Rayleigh and Biot
numbers on the temperature and streamline profiles are
delineated and this has been documented first time for the
viscoelastic fluid.

INTRODUCTION
Two dimensional natural convection heat transfer

of a non-linear fluid in enclosures of rectangular
cross section is encountered in many practical
situations due to its wide application in various
engineering devices, which involve heat transfer
across double glazing windows, solar energy, the
clectrical and nuclear indusiries, sterilisation of
foods, building insulation. Such flows are also of
interest in geophysics and can be applied in the
circulation of the atmosphere and of magma in the
Earth's upper mantle. Many fluids exhibit non-
Newtonian behaviour in industrial applications, but
there are very few studies reported for natural
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convection based on non-Newtonian fluids in the
literature for both wviscoinelastic or viscoelastic
fluids. Therefore concerning the natural convection
of visco-elastic fluids are almost non-existent
Review of the literature for two dimensional free
convection in rectangular enclosures can be found in
references (Shoney, 1988), (Gebhard et.al., 1988),
(Demur, 1996) and (Demir et.al., 2000).

In this work, we examine two dimensional
Rayleigh-Benard convection for visco-elastic fluid
namely CEF fluid in a horizontal enclosure of cross
section heated from below is smdied when two
vertical sides are insulated or conducted with Biot
boundary condition with shear-frce boundary
conditions. Rayleigh-Benard convection one of the
best known problem of fluid mechanics and has
been subject of theoretical research and this problem
has been investigated by many researchers with
various aims due to its practical applicability.

In this paper we present numerical results for
Rayleigh-Benard convection conducted with Biot
boundary condition in a honzontal cavity with
heating from below. In general, the use of this type
of model would give realistic results in motions
with small strain rates. In free convection ,although
the strains may be large, the strain rates are
relatively small. In most buoyancy driven motions
is also slow due to moderate temperature gradient.
Therefore, CEF model is ideally suited for the study
of this class motions. This provide the motivation
for the present work where the effect of the
Weissenberg number on the flow field explored
numerically first time. For calibration of the code,
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firstly two dimensional plane natural convection of
the Mewtonian fluid in a square cavity is solved.
Excellent agreement is found with the work of (De
Vahl 1983), (Torrance&Turcotte, 1971) and
(Mckenzie, 1974). Then for further calibration of
the code, two dimensional plane natural of a viscous
pseudoplastic flow in a square cavity is studied. The
recirculating flow are depicted properly in detail
along with the temperature distributions which has
not been given before in detail. Following this, to
test the capabilities of the code Weissenberg effect
on the flow field for CEF fuid is studied. Finally,
the dependence of the Nusselt number on the
characteristics is investigated.

MATHEMATICAL FORMULATION

We consider the flow regime in a two dimensional
square cavity as discussed reference (Demir, 1996).
The two end walls are kept at different temperatures
T,>T, and the remaining walls are insulated or

conducted with Biot boundary conditions. The
square enclosure considered is assumed to be very
long in the third dimension. Then the povemning
differential equations subject to Boussinesq
approximation are

DT
pc,E:kvzna Vau=0 (2.1)
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where 8 is the extra stress and ¢ is the reduced
pressure field, ¢=p—p,, p,= static pressure .
P2, @ and k are the density, and the coefficient of

thermal expansivity and thermal conductivity
respectively, all evaluated at some average
temperature. The operators D/ Dr is the material
time derivative &/ &1 +u.V.

For the CEF model, the extra stress can be written as

Sk =2, (r)dy +42(r)dyd
ik | -L: i 2.3)
_ié'[?‘}dﬁ
where 4, is the first rate of strain tensor given by
: L[ﬂ;&]

b = 2.4
LAl gl 9

!J',[J'-’] is known as solvent viscosity and 15 a
function of the second rate-of-strain invariant

yz = 2d, d, . For our case we find that
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In general the viscosity function n ;[}-’J should be

(2.5)

continuous, well defined and able to attain a finite
zero shear-rate viscosity. Consequently the
viscosities are calculated using the Cross model

= 1
q q = (2_6}

s ¥ wli-n) *
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where 77 5 and 17 , refer to the asymptotic values of

viscosity at very low and very high shear rates
respectively A is a constant parameter with the
dimension of time 1 is a dimensionless constant,

Here, _z[?) and .;[y] generally are defined as

szlr)=mlr) 27 )= w7 )

where Nj(;:f] and NI(;;—) are material functions

27

known as the primary and secondary normal stress
coefficients, respectively. However, in this work, we
use the following forms of this

{’?n —’?w)

(§) My=24 7+ (2.8)
1+(,1r)

(i) N, =0,
and upper convected derivatives in equation(2.3) is
defined as

v D .

d i =Ed‘* -Ld, -d, L, (2.9)
where
L=vv, and LT =(v¥) . (2.10)

Now, substituting Sy, = 2, (¥ )d, +0y in Egs.(2.2)-
(2.3), the stress constitutive equation and stress
equation of motion in the form of Elastic- Viscous
pseudoplastic-Split-Stress (EV®SS) which is simular
to the Elastic Viscous Split Stress{EVSS) form of
(Rajagopalan et al., 1990) can be written as

(2.11)

Sp=2n,(r)dy+oy,
where
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For a 2-D planar case, if the velocities are defined
as

Ay’ Ay’ v bu
= S =— , = Eaaral | 2--'-5
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and non-dimensional variables are introduces as
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Then, taking the curl of the equation of motion
which eliminates the unknown reduce pressure
gradient, the resulting differences of the local
velocity gradients can be abbreviated by the
vorticity function @. Thus .the partial differential
equation for stream function, vorticity, stresses and
energy equation can be written as

n_—v*w (2.18)
0
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On taking the non-dimensionalised form of the
governing equations we have several non-
dimensional parameters namely the Grashof

number{ Gr ), the Prandil number{ Pr), the Eckernt
number (Ec).and Weissenberg number(¥e). The
Grashof number is a measure of the ratio of
buoyancy force to viscous effects within the flow
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Prandt] number is a measure the ratio of the Muid's
kinematic viscosity to the thermal conductivity

constant k and defined as Pr = C"%. The Eckert

number is a measure of the viscous heating or the
viscous dissipation part of the energy equation and

F 4
defined as Ec=U . Th
ined as Ec A‘]{Tl_%} ¢ product of Pr

and Gr gives the Rayleigh number Ra. The We
number is the measure of the elasticity of the flmd

Fi
and is defined as '% and NV is a dimensionless
2Amg = n.)
y I=m -
l+{1r)

The dimensionalles boundary and initial conditions
that correspond to our problem are

r <0 wholespace # = =¥ =0U=F =0
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Also we have @=0at ¥=1, #=1at ¥=0 and

a0 a8
—= Bi{T-T)at X=1and —=-Bi(T-T;
X ( n) @ an X ( o)

=W

2We

at X' =0. Here T; used as the temperature of the
cold wall and Bi used as Biot number. The lacal
Musselt numbers can be calculated from the
temperaiure distribution as follows:

Nu=|ﬂ|
Y wall

METHOD OF SOLUTION AND GRID INDEPENDENCE
The modified equations were solved on a square
mesh by a finite difference method; second -order
ceniral differences were used for all space vanables
and a fully implicit scheme for evaluating the time
derivatives as described (Doughlas etal., 1966) In
the present work, the mixed egs (2.1)-(2.2) are
solved by the Alternating Direction Implicit (ADI)
method  developed by  Peacemann-Rachford
(Scraton, 1987) and (Mortom etal., 1994) and
tridiagonal matrix algorithm for solving the
discretized equations. The elliptic stream function 15
solved iteratively using the Successive-Over-
Relaxation (SOR) procedure, ADI method was used
for this investigations because of carlier experience
with this method in problems of buoyancy induced
flow and heat transfer(e.g. De Vahl Davis,
1983).Richardson’s extrapolation has been used ;
this leads to the high accuracy bench mark solution
as described in (Rajagopalan et al., 1990). Grid and
time independence are carefully tasted as shown in
Fig. 1. We also tested our computer code against the
carlier published numerical result of (De Wahl,
1983), (Torrance et.al., 1971) and (Mc Kensie et.al.,
1974) for accuracy and excellent agreement was
found.

(2.25)

RESULTS AND DISCUSSION

In order to compare our original results, we present
the streamline structure and temperature distribution
for viscous pseudoplastic and CEF fluid together for
the problem under consideration. In the results
presented, Rayleigh ,Eccert and Weissenberg
numbers are set at 10° < Ra<10°, 0 and
0= We < 0.01 respectively. Despite, the evident
progress over the last few years, obtaining accurate
numerical solutions{or worse, any solution at all) at
high values of the Weissenberg number(We)
remains a challenge. The high Weissenberg number
problem, i.e. the divergence of conventional
iterative schemes beyond some critical value of the
Weissenberg number, has been reported in virtually
all published works (Charles et.al., 1989). There are
several reason for this as discussed in{Charles et.al.,
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1989). Despite, our work limited to the small values
of the Weissenberg number, we found interesting
structural changes in both streamline and
temperature  profiles as Weissenberg number
increased from zero and as Biot number increased
from zero.

For a viscous fluid, it was found one cell filled

whole cavity at Ra = 10" which can be seen in Fig.
I and it i3 symmetric both horizontally and
vertically for Bi=0, but while the Bi number
increases the flow produce to two mirror image
counter rotating rectangular cells for viscous fluid as
shown in Fig. 3. The comresponding temperature
profiles are shown in Figs. 2-4 respectively. In Fig.
2 warm fluid rises near the bottom wall and cold
fluid descends along the top and in Fig. 4, the colder
fluid descends near the cavity’s centre while the
warm fluid rises nn convective motion near the
walls. As Weissenberg number increases, in this
case, the CEF fluid flow results show that the fluid
exhibit similar behaviour when We number is used
with or without the Bi number, we have one vortex
with the direction of rotation as shown in Figs. 5-7.
The corresponding temperature profiles are shown
in Figs. 6-8 respectively, where warm fluid rises
near the bottom and left walls and cold fluid
descends along the top and right walls. The last one
of them indicates that the left of cavity always
warmer than right and warm fluid rises near the left
wall. We are unable to get stable solution for
Wez0.01, therefore we indicate the this value of the
We number asWe_, and it is appeared to be

impossible (as far as we know) to have stable
solution beyond that value, This conclusion also
indicate that the critical Weissenberg number is not
artefact of our method,

We have one cell vortex at Ra =10" in Fig 9 for
viscous fluid and it is show that the steady solution
gives one large vortex which fills almost the whole
cavity for Bi=0, but while the Bi number increases
the flow produce to two mirror image counter
rotating rectangular cells for viscous fluid as shown
in Fig. 11. The corresponding temperature profiles
are given in Figs 10-12. In Fig(10) the temperature
throughout most of the cavity is uniform obtaining a
value which average of the top and bottom walls.
The second Fig. 12 indicates that. the colder fluid
descends near the cavity's centre while the warm
fluid rises in convective motion near the walls. As
Weissenberg number increases, in this case, the CEF
fluid Now results show that the flow emerged as two
unequal cells and they were not symmetric and one
vortex dominant to other vortex for viscous fluid as

shown in Fig. 13 with Bi=0. When Bi increases, the
flow pattern becomes one vortex only and it is more
compact as shown in Fig. 15. The corresponding
temperature profile is shown that it is almost
symmetric vertically and warm fluid rises near the
bottom while colder fluid located near the top wall
as shown in Fig. 14, The corresponding temperature
profiles are shown in Fig. 16, where warm fluid
rises near the bottom and right walls and cold fluid
descends along the top and left walls. The last one
of them indicates that the left of cavity always
colder than right and warm fluid rises near the right
wall. In this case, the CEF fluid flow results show
that the fluid exhibit different behaviour when We
number is used with or without the Bi number when

Ra number increases to 10° \We are unable to get
stable solution for We 20,01, therefore we indicate
the this value of the We number as Wem :

We have observed one cell structure at Ra = 10°
for a viscous fluid and one vortex only and it is
more compact as shown in Figs. 17-19. Fluid flow
results show that the fluid exhibit similar behaviour
with or without the Bi number is used. The
corresponding  temperature profiles are given in
Figs. 18-20, and the temperature throughout most of
the cavity is uniform obtaining a value which
average of the top and bottom walls. As We number
is used there is no much difference between the CEF
and viscous pseudoplastic fluids with or without Bi
number is used. The corresponding streamline and
temperature profiles are shown in Figs.21-23 and
Figs. 22-24 respectively. The effect of the Nusselt
number on the heat transfer are given in Fig. 26 for
the CEF fluid and comparison with the viscous
pseudoplastic fluid cases which is shown in Fig. 235.
There is no relationship berween them. We believe
that experimental resulis are necessary to clear the
this phenomena.

CONCLUSION

In this paper, we have attempted to determine the
effect of the conduction of Biot boundary condition,
Shear-thinning and elastic (the first normal stress
difference) for shear-free thermal convection in a
square cavily differentially heated and filled with
fluids, have a influence in shaping the flow field and
determining the heat transfer characteristics . The
two-dimensional unsteady convective motion
generated by buoyancy forces on the fluids,
Investigation was made numerically by using a
second order accurate scheme for viscoelastic
namely CEF model when A, is in the form of eq.
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(2.8) and finite difference method was vsed for the
discretisation of time and space respectively. A
range of Ra and We up to 10° and 0.001 has been
investigated for both vertical walls maintained with
Biot boundary conduction or not. Their combined
effect (with Bi=0) acts to increase and decrease the
heat transfer as represented by the local Nusselt
number with the results that overall heat transfer for
the viscous and CEF fluid cases are quite close at

Ra=10°, Also Biot boundary condition effect acts to
increase the number of cells for the inelastic fluids

case at Ra=10" and 10°. Beyond the critical We
number, we have observed that instability ocours in
the flow and the system becomes unstable and loses
its equilibrium. We believe that more works needs
to be done in this subject such as pseudospectral
finite difference (PSFD) in order to explain
bifurcation phenomena which has been noted in
{Siginer et.al., 1994).The work already under the
consideration for the solid wall case as well as
shear-free boundary condition,
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