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Konstruiranje izdelka s pomočjo tehnike optimizacije stika

Product Design Using a Contact-Optimization Technique

Istvän Päczelt - Attila Baksa - Tamàs Szabó 
(University of Miskolc, Hungary)

Znano je, da v inženirski praksi nastajajo velike napetosti zaradi oblik in obremenitev teles v stiku. 
Porazdelitev napetosti običajno ni enakomerna, singularnosti pa skrajšujejo dobo trajanja strojnih elementov. 
Zato je  pomembno z ustreznim oblikovanjem stikov odpraviti omenjene singularnosti. Eden od ciljev prispevka 
je  predstavitev metode, ki rešuje problem singularnosti v stikih. Z nadzorom dotikalnega tlaka lahko dosežemo 
enakomerno porazdelitev dotikalnega tlaka. Postopek optimizacije upošteva mejne napetosti materiala. V 
prispevku obravnavamo dva tipa dotikalnih problemov. Najprej analiziramo dotikalne probleme s 
predpostavko o linearni elastičnosti in majhnih deformacijah ter ustaljeno obrabo. Dva numerična primera 
pojasnjujeta ta postopek. Obravnavani so tudi parametri nadzorne funkcije, ki omogoča največjo nosilnost, 
kar je  uporabno za konstruiranje zavor in ležajev. V drugem delu prispevka obravnavamo rešitev dotikalnih 
problemov za velike pomike in deformacije. Za primer je  zračna vzmet, pri kateri primerjamo računske 
vrednosti krivulje nelinearnega pomika z rezultati meritev.
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It is well known that in engineering practice high stresses occur and that these stresses depend on 
the shapes and the loads o f  the bodies in unilateral contact. The stress distribution is often not smooth and 
has some singularities, thereby decreasing the lifetime o f the machine elements. It is an important objective 
to obtain a smooth stress distribution when optimizing the shape o f the elements. One o f the goals o f this 
paper is to present a method that resolves the above problem. By controlling the contact pressure a prescribed, 
smooth contact-pressure distribution can be achieved. The optimization problems take into account the 
limit stress constraints o f the material. In the present paper two types o f contact problems are investigated. 
Firstly, contact optimization problems are analyzed assuming linear elasticity and small displacements, 
including steady-state wear process. Two numerical examples are presented on this topic fo r  a rolling 
machine element: a punch optimization and a shape optimization. We also investigated which parameter 
values o f the controlling function result in the maximum loadability. This can be useful in the design o f  
brakes or bearings. In the second part o f the paper the solution o f the contact problem fo r  large displacements 
and deformations is investigated where an air-spring is analyzed by calculating the nonlinear load- 
displacement curve and comparing it with measurements.
© 2007 Journal o f Mechanical Engineering. All rights reserved.
(Keywords: finite element methods, product design, mechanical contacts, contact optimization, 
iterative methods)

0 INTRODUCTION

In engineering practice, connections between 
machine elements are frequently modeled as unilateral 
contact problems. Comparatively few studies can be 
found in the literature for contact optimization [1]. 
Nevertheless, a thorough mathematical investigation 
of the subject can be found in [2], and in [3] the contact 
problems of wearing processes are investigated in an 
analytical way.

The elimination of stress singularities is an 
important engineering task. In order to overcome 
this problem, the application o f contact-pressure 
control is recommended, since this ensures a smooth 
contact-pressure distribution as well as a zero value 
on the part of the border of the contact zone.

The papers [4] to [6] provide solutions for 
2D and 3D problems in which the contact-pressure 
distribution is partially controlled by minimizing 
the maximum contact pressure. The authors o f [6]



took  into account the stress limit in the case of 
solving contact-optimization problems for axially 
sym m etrical bodies. The equivalent von Mises 
stress (7 must be under a prescribed limit (<r ). The 
p re se n t paper extends the load cases for the 
exam ined numerical examples; in addition to the 
external force load here the kinematical loads can 
a lso  be  applied  on the con tac ting  partic les. 
Discretization of the domain with /^-version finite 
elements is advantageous [7], since it results in rapid 
convergence, and high-order mapping ensures an 
accurate geometry for the shape optimization.

The lifetime of a roller bearing is influenced 
by many parameters, e.g., the type and the shape of 
the rollers, the number of rows, the shapes of the 
tracks o f the bearing rings, the bearing dimensions, 
the m aterials and their treatment, the quality of 
manufacturing, etc. A number of papers, e.g., [8] to 
[ 13] are devoted to the issue of the roller’s rounding- 
off. In these papers, except the last one, the radius of 
the rounding-off that results in a generally non­
smooth contact pressure distribution is given.

D ifferent rounding-off techniques, e.g., 
cylindrical or conical rollers, have rounding-off 
w ith a given radius at the ends, but it is also possible 
to  m ake rounding-off a logarithmic function of 
radius, as published in [14] and [15]. The problem 
o f  ro u n d in g -o ff  is also analyzed  in  case o f  
elastohydrodynamic lubrication in [16] and [17]. 
T he question o f  rounding-off is exam ined in 
references [4] and [6] for roller bearings without 
restrictions for the stress limit. The constraint for 
the equivalent stress limit is not taken into account 
in  the papers referenced above, but due to the 
loadability it is required.

In the present paper the equivalent stress 
lim it is considered through the optimization process 
as a constraint. The optimal shape is achieved by 
an iteration-based algorithm (see [ 18]). A numerical 
example is presented in Section 2.6.

Sub-section 2.3 of this paper deals with the 
w ea r problem  o f the re la tive  slid ing  o f  two 
contacting bodies. The transmittable torque with a 
clutch and frictional power loss in the case of brakes 
are important quantities during the design process, 
and  due to wear the shapes o f  the bodies are 
changing . There are num erous algorithm s to 
describe the transient wear process ([19] to [21]). 
T hese algorithm s have huge processing-tim e 
requirements. There is also the question o f how we 
can determine the shape o f the bodies and the

contact pressure distribution in the case of steady- 
state wear without using the algorithms for a time- 
dependent wear process. One investigation [18] 
suggests a technique for the previous problem. The 
present paper gives a formulation for calculating 
the wear of disk brakes in steady-state based on the 
modified Archard law.

Recently, the classical springs used in 
vehicles for suspension have been replaced by air- 
springs. The advantage of an air-spring compared 
to a classical spring is its nonlinear behavior, which 
can be controlled by the inflation pressure. In 
addition to the force displacements of the diagram, 
the designer is interested in determining the stresses 
and strains in the reinforcing fibers. Accurate results 
can be obtained by a /»-extension of the finite- 
element method, but its application for problems 
with large displacements requires much more work. 
Therefore, a simplification is performed, i.e., the 
contacting element sides are kept in a straight line, 
which made it possible to use the algorithm given 
by Crisfield [22] for the /»-extension elements. A 
numerical example is presented in Section 4 to 
demonstrate the working process of an air-spring.

1 TREATMENT OF THE CONTACT

Without the restriction of generality let us 
consider the contact problem o f two elastic bodies 
( a =  1,2). The surfaces of the bodies are separated 
into three regions: S'“ denotes the part of the body 
where displacem ents u0 are given, in S f  the 
traction t0 is applied, while S " represents the part 
o f the bodies where the contact is expected. The 
S “ part o f the body is called the proposed zone of 
the contact. The bodies are loaded with the body 
force ba. We are in te rested  in find ing  the 
displacement vector field the strain A“ and stress
T“ tensor fields.

1.1 Contact kinematics \

The contacting surfaces are described in 
parametric form (see [23]): The contacting surface 
of the body labeled a  = 1 (or a  = 2) is written in 
terms of the parameters (£ = (£ ’, <̂2)) (or t] = ( q 1, t]2)). 
In the im plem entation the param eters w ill be 
associated with the element surfaces using optimal 
approximations based on the Babuška points.

Let X ‘(^) and X2(^) represent the possible 
contact points of bodies 1 and 2, respectively, in



the reference coordinate system. The position 
vectors o f these points at time t can be written in 
terms o f the displacement u \^ ,t)  for body 1 :

X1 =  x 1^ ,* ) =  X x( 0  +  u 1^ )  (1)

and the penetration function for the penalty method 
is written as:

d~ =
n c if ( X2 — X1 ) ■nc <  0

0 otherwise (6).

and similarly for body 2 : 1.2 Contact conditions

X2 =  x 2(r],t) = X 2(£) +  u 2(r],t) (2),

where u2(ry )  is the displacement function o f body
2. Therefore, the gap between the two bodies is 
given by:

(X2 — X1 ) • n c >  0 (3),

w here nc is norm al to body 1 at point x 1 and 
intersects body 2 at point x2. The minimum distance 
between a fixed point o f body 2 corresponding to 
parameter rj and body 1 is given by

IX2 (77, t) -  x 1^ ,  f)| =  m m  IX2(77, t) -  x \Z ,t) \  (4).

The points corresponding to body 1 that 
satisfy Equation will be identified by an overbar 
in the fo llow ing : x1 =  x1^ ,^ )  and the 
corresponding normal will be denoted by nc , see 
Figure 1.

The in eq u a lity  co n stra in t o f  the n o n ­
penetration condition is defined as:

d =  (x 2 — X1 ) • n c >  0 (5)

The normal stress along the surface 5 “ =  ft 
is er“ =  n“ • T“ • n", where n“ is the outer normal 
of the body a, T “ is the stress tensor and ‘ • ‘ means 
the scalar product. For small displacements after 
the deform ation the gap can be calculated as 
d = u l -  u\ +  g , where w“ =  11“ • n c and g  is 
the initial gap. By introducing the notation of 
con tac t p ressu re  pn =  =  —cr2 there is
contact if  d = 0 ,p n> 0 ,x  e Q and there is gap if 
d> 0 ,p  = 0 ,x e  Q .,i.e.p  d=  0 ,x e  Q = Q u£2„.

Coulomb dry-friction models are examined 
henceforth. The boundary value problem is solved 
by v a ria tio n a l p rin c ip les  using  a m odified  
com plem entary energy and the total potential 
energy with an augmented Lagrangian technique 
([4] and [23]).

1.2.1 Control o f the contact pressure

The resulting contact stress distribution and, 
th ere fo re , the con tac t p ressu re , are m ainly 
influenced by the shape of the bodies that are in 
contact, and the initial distance between them. The 
aim is to ensure the contact o f the bodies on a sub-

-o

Fig. 1. Notation



domain, indicated by Qc (here is only a line), and 
on that contact surface the pressure varies as a 
p resc rib ed  function. This is achieved by the 
modification of the shape of the contacting parts. 
The rest o f the supposed contact domain Sc = ft, 
w hich is £2nc where the pressure distribution is not 
know n, but it must be less than a prescribed 
function.

In our optimization problems it is supposed 
that the bodies are in contact on the whole sub- 
domain £2 of the contact zone S = £2. The contactc c
surface is modified in a way that the following 
function holds true for the contact pressure

Pn < X' =  vi X) pmax, X e n c =  [s,f =  0] (7),

where the chosen control function must satisfy the 
condition 0 < v(x) < 1, and

7W  =  m ax p„( x ) , x =  [s,i] (8),

where s and t are surface coordinates in the region 
£2 . In the sub-domain Q = (Q = Q u  Q ) thec nc v c ncJ
fulfillment of the following inequality is required

X(x) = v ( x )  pmax -  pn (x )  > 0, X e Qnc (9).

The definition o f the control function is 
arbitrary. In order to avoid the singularities in the

stress distribution practically, it is defined in such 
a way that not only the value of the function must 
be zero at the end of the control zone but also the 
first derivative in a sort of direction as well.

Therefore, let us define a function v(s) of 
class C1 in the sub-region £2 (see Figure 1). The 
normal shape variation is assumed to be specified 
by a function v(s) of class C' in the sub-region £2 
We introduce the functions depending on the 
coordinate s :

-  ^2
=  h  +  (/a -  /2) 

/2 >  0, /3 >  0
~  ^2 ( 10)

and
V(s) =  0,

v(«) = r w

V(fi) =  V ( s ) ,

v w  = r w -

V(») = 0 ,

3(
s — Xj 
Li * Li

)2 -  2(
» - A

L l—Ly

l-3( 8 - L 3 

L<1 — L' f +  2( s ~ L3 

L a — L a

( 11),

where some of the p a ra m e te rs ',^ , L., I  = 1,...,4 
are fixed, while the others are specified in the 
optimization process. For 2D problems it is assumed 
that v(^) = V(s). Since =  0 holds true,
at these points the pressure is zero and their 
derivatives also vanish, so there are no singular
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Fig. 3. The geometry o f the punch problems

values in the stress distribution. In the 3D problems 
in paper [24] it is supposed that the upper body has 
a rigid translation and rotation, Q is a line and 
the rotation vector is perpendicular to this line. The 
control function along direction t is v(t) =  1, i.e.

vex) = V  cs) v(t) (12).

2 SHAPE OPTIMIZATION FOR SMALL 
DISPLACEMENTS

2 .1  P u n c h  p r o b le m s
Axially symmetrical machine elements are applied 
in m any in d ustria l constru c tio n s. The force 
distribution between the bodies gives a strong 
influence on the stress state o f the construction. A 
designer always endeavors to avoid singularities 
within the contact region in order to keep stresses 
at a lower level. I f  the control pressure function is 
used, the contact stress can be easily achieved 
without a stress singularity.

In our investigation the same examples are 
given for different object functions with the control 
o f the contact pressure distribution. The geometry 
o f  the punch construction is shown in Figure 3.

In [6] a couple o f  contact-optim ization 
problems can be found for punches. Here, some 
new, ad d itio n a l op tim iza tio n  p rob lem s are 
formulated.

2 .2  A d d it io n a l o p t im iz a t io n  p r o b le m s

In engineering practice rotating particles 
usually transmit torque. The torque is defined as:

re

M t =  p j 2 i r r 2pn dr (13),
n

where p  is the coefficient o f friction.
Let us denote the angular punch velocity by 

co and specify the dissipation power due to frictional 
sliding at the contact surface by:

rc
DF =  J t„ ■ uT = o jp J27tr2pn dr =  Mtuj ( ^ ) -

sc n
Assume now that the punch rotates with 

respect to its axis with the angular velocity co, and 
the uniform vertical displacement w() is prescribed 
on the top surface o f the punch.

C onsider the prob lem  o f  torque 
maximization, assuming the parameters L l and L2 
are unspecified and Ly L4 and L2-  L t are fixed. 
Maximize the torque M T by determining the initial 
gap function g = g(s), so that g(s.) = gmm = 0, where 
s = r - r .  and r. is the internal punch radius, thus the 
optimization problem is 
P P 1 :

m ax -f Ad'f I pn > 0, d 0, Qmm 0, 
sW-L 1 1  (15).

X =  x ( s ,P n ,h )  = 0, cre < o u >



In order to minimize the dissipation power 
or torque, assume that L, = 0, L2 = 0 and Z4 -  L) are 
fix ed ; how ever, L4 and L3 may vary. The 
optimization problem is now formulated as follows 
PP2 :

m in \D F \Vn > 0 ,  d =  0, 2min =  0,
1 (16).

X =  X (s,Pn,L4 ) =  0, cre < au >

Using the optimization problems PP1 and 
PP2 different initial shapes of the punch surface 
are obtained.

2.3 Investigation of the wear process

Sliding particles that are in contact are 
continuously losing some material, i.e., wear occurs. 
Practically, it is important to know the rate of wear 
and the contact-pressure distribution during the wear 
process. When steady-state occurs during operation 
the information about the shape o f the bodies and 
the stress distribution between them is significant.

Firstly, let us formulate the problem of the 
minimization of the wear volume rate at the contact 
interface. Assuming the specific wear rate w to be 
dependent on contact pressure, the relative slip 
velocity vr = ||ur || and the contact shear stress 
T„ = ||t„ II, i.e. w = w(pn,Ilur ||,||t„ II), the total 
wear volume rate is:

W  =  J 'w d S  (17)
Sc

and the wear dissipation power at the contact 
surface S  is equal to:

D,„ == Jp„w dS (18).

The optim ization problem  can now be 
form ulated as follows. Assume that the punch 
rotates with respect to its axis with the angular 
ve locity  co, and the uniform  vertical traction 
az =  —p is exerted on its top boundary with the 
resulting force F0 =  7r ( re2 — j f  ) p . Then the gap 
function must be determined in order to minimize 
W  or D , thus 
PP3 :

min \ W, D,.
Pn  >  0,

d = 0, Fp -  F0 =0,

X = X ( s , P n , h )  = 0, 5min = 0 } (19),

where Fp — 2tt f  pnr dr is the contact force.

Assume that the wear rule satisfies the 
modified Archard law [25]:

W  = ß ( p p n )b V r  = ß p b P n  <  =  0  P n  V “ (20),

where a, b, ß  are the wear parameters, u is the 
friction coefficient, p n is the contact pressure, 
ß  =  ßfib , and the re la tive  velocity  is 
Il ur II =  vr = no . The shearing  stress in the 
contact surface xn calculated from the contact 
pressure by the Coulom b dry friction law is 
T = u p  .

In [18] it is demonstrated that the wear 
dissipation power at the contact surface is minimal 
in the steady sta te  o f  the w ear process and 
corresponds to the uniform wear rate. However, the 
minimization o f the wear volume rate and the 
friction dissipation pow er is not suitable for 
describing the steady-state wear process.

Using the minimum of the wear dissipation 
power the contact pressure is:

F r*
pn =  where I D = 2 n  / r 1-  ̂ dr (21).

In. w J

The wear rate is uniform along the radius

[ IDW
ßuja = const (22).

The wear volume rate is

W  =  J 'w d S  =  2-7T
•e

P ‘
.a { F 0 r dr

= ßuja A .
. I D „ ,

(23).

W n

When the upper body, e.g., a disc brake o f a 
vehicle, is a segment of a rotationally symmetrical 
body with angle <t>, then Equations to remain valid, 
replacing b w with I'd :

'e

jw  =  $  J r 1-* dr (24).

PP4 : Here the optim ization problem  is the 
following:

[D w j pn > 0, d = 0, Fp — F0 =  0,

P n  =  0, (25)

min

X = x(u P n )

9 m i n  Ü }

A r-i/■(■*■)
1 D „.

from which the shape of the bodies belonging to 
the steady state can be determined.



The importance o f  these results is that the 
shape o f  the contacting bodies and the contact 
pressure after wear are determined in the case of 
steady-state processes w ithout solving the time- 
dependent wear problem.

2.4 Solution of the optimization problems PP1 -  
PP4

After the discretization o f the optimization 
problem  a no n -lin ear program m ing  problem  
evolves, w hich is solved by a special iteration 
process. We distinguish two types of iterations. In 
the first one, which was introduced in [4], the 
optimal shape is determined with the prescribed 
control parameters f 2, f v L., i = 1,...4. The second 
type o f iteration is an extension o f the first one, 
with the stress constraint prescribed for the von 
Mises equivalent stress cr, <7 < (7, where cr is the 
ultimate stress [6],

When the stress constraint max a  < a  is
e  u

imposed at any Lobato integration points the values 
o f  the parameters assumed as fixed or specified in 
the first type iteration, should be updated in order 
to satisfy the stress constraint. Denote collectively 
the parameter that should be updated in the second 
type o f iteration by f .

The “loading” process is characterized by 
the variable istep. The value o f/  is calculated using 
the following formulae:

/  =  /o +  A /  (istep + 1) (26),

where /j and A/'are chosen in advance. For instance, 
for the Problem PP1 f=  = r ,  and Af=  0.1 (r - r).
The optimization problem is solved by the first type 
o f  iteration at the fixed f .  At each /stcp a new shape 
is determined for the upper body.

The effective stress value a  is calculated at
e

the Lobato integration points o f the finite quadratic 
elements. We assume that for the value f = f  the 
effective stress is cr* < au and at the next loading 
i the parameter f - f *  and the effective stress 
exceeds the ultimate value a** > cru -

The optimal value o f / = / 'pt<‘) is searched for 
in the interval /  < / p,(0 < / *  using the following 
linearization process:

j-opt(i) _  j*  _|_  ̂ 1) (27),

w here/*(0) = /* ,  a**^ = a*e* . At each step of the

second type o f  iteration  the contact shape is 
specified in the first iteration-based process. The 
second type o f iteration proceeds until

k  - o r (i)|
<  0.01 (28).

rrr u
2.5 Example for PP1

The follow ing m aterial param eters are 
assum ed: Y oung’s m odulus E  = 2 1 0 5 MPa, 
Poisson’s ratio v = 0.3, ultimate stress o  = 250 
MPa and friction coefficient /1  = 0.25.

The geometrical parameters are defined as 
re(1) =  120 mm ,r.a)

> )
r.(2) =  rj =  20 mm ,
140 m m , bm = ba> = b = 50 mm (see Figure 

3). The boundary conditions are prescribed as 
follows: the cylindrical surfaces r = r. and r  =  re<a) 
are traction free tj-/1 ’ =  0 , the bottom surface z = 
0 o f the body B2 is constrained, u = v = w = 0 and at 
the upper surface z = 2b o f punch B, is loaded by 
the axial displacement w(| and is subjected to the 
rotational motion v = rcot.

The value o f  w0, which is the prescribed 
displacement of the upper body, is determined in 
order to achieve the same specific strain in the 
cylindrical bodies with the height of bm + ba>. It 
means that: ]00Wf|

-7TT------ 7PT =  0.1%.
6(1) +  6(2)

If  the radius of the cylindrical bodies is the 
same and the Young’s modulus E = 2-105 MPa then 
this specific  stra in  w ill p roduce a 200 MPa 
compressive stress. Since the outer radius o f the 
lower body is greater than the upper body’s, i.e., 
r j2) =  140 mm > , the  stress d is trib u tio n
shows a singularity in the position. The
aim of the optimization is to avoid this singularity, 
which can be achieved by using the O  continuous 
control function defined by (10) to (12).

Using the iteration defined under Section 2.4 
the problem PP1 is solved and the results of these 
solutions are summarized in Table 1. The results 
are calculated for different values o f b = bm = bn\

In order to obtain very accurate results a 
graded mesh in geometric progression is applied 
along the direction z with the common factor 0.15 
[7]. In d irection  r, both  sides o f  the contact 
bordering small elements are given with the size 
L - L ]. Due to re-meshing, the oscillation o f stresses 
does not occur. The polynomial order of the finite 
elements is p  = 8 .



Mesh of the bodies, wQ=0.12 mm

r [mm]

Length L1
50

1 2 3 4 5 6 7 8 9  10
Number of solution

Effective Mises stress maximum 
1400. ...................................... ...............

1200

1 2 3 4 5 6 7 8 9  10
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My'p/106 -  300 moment in Nmm

1 2 3 4 5 6 7 8 9  10
Number of solution

Fig. 4. Numerical results o f PP1 optimization with A geometry
Mesh of the bodies, wQ=0.20 mm 
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r [mm]

Length L1

1 2 3 4 5 6 7
Number of solution

Effective Mises stress maximum

1 2 3 4 5 6 7
Number of solution

M^^/106 -  300 moment in Nmm

600

1 2 3 4 5 6 7
Number of solution

Fig. 5. Numerical results o fP P l optimization with B geometry

From Table 1 it is clear that for lower values 
o f  b and w() in case of max MT the maximum of the 
equivalent stress is lower than the ultimate stress, 
i.e., a  < o  and the condition a  = o  is ensured 
only by increasing the distance Lv but it results in

a lower torque between the contacting bodies.
It is also obvious that for the original 

construction (without optimization) the a max is 
substantially over the allowed value o f <7, which 
means, in practice, the yielding of the material.



r[mm] r [mm]

Fig. 6. Stress distribution o f PP1 optimization for the A geometry

r [mm] r [mm]

Fig. 7. Stress distribution o f  PP1 optimization fo r  the B geometry

In Figures 4 and 5 the finite-element mesh 
and the values o f L { and M fp  during the iteration 
are illustrated. The resulting stress states are shown 
in Figures 6 and 7, with <7 as the radial stress; T. as 
the tangential shear stress, <7 as the normal stress

and <7 as the equivalent stress (Mises type). The 
tangential stress onto the lower surface o f the upper 
body is defined as |r_ I = p \cr_ [ according to 
Coulomb’s law o f dry friction. The top surface of 
the upper body has a rigid-body-like displacement.



b=60 mm, wQ=0.12 mm, mesh 7*5, istep=1 (-),istep=2(- -)

b=100 mm, wQ=0.20 mm, mesh 7*5, istep=1(-),istep=2(— )

Increasing the value o f b  on the top surface, using 
St. Venant’s theory, there is a linear distribution in 
the radial direction.

The optimal shapes o f the lower edge o f the 
upper body are drawn in Figures 8 and 9. This shape

represents the initial gap function between the 
contacting bodies. The definition o f i s t e p  = i# 
can be found in Section 2.4. The curve designated 
by o belongs to the solution that is fulfilled by the 
additional condition o  = o . The labels i s t e pemax u



Table 1. Numerical results o f  the optimization problem PP1

Original
Const.

By Maximum M T O W  = 0 ,,  =  250  MPa

b Wo ° Cmax [MPa] L x [mm] M  T [mm] ■ 1 0 9 a emax Lx [mm] M  T [mm] • 1 0 9
50 0.10 1340.2 10 0.6941 222.27 56.82 0.5930
60 0.12 1386.3 10 0.7046 221.53 46.09 0.6629
70 0.14 1420.4 20 0.7209 234.76 38.74 0.7048
80 0.16 1446.3 20 0.7354 239.58 33.88 0.7317
90 0.18 1466.4 - - - 25.66 0.7510
100 0.20 1482.1 - - - 20.96 0.7599
120 0.24 1503.8 - - - 16.46 0.7707
140 0.28 1516.9 - - - 14.11 0.7791

= 6 and i s t e p  = 4 indicate that the stage in the 
iteration-based process belongs to <r** >  au (see 
Section 2.4). To resemble Figures 8 and 9 it is clear 
that a little change in the gap generates a notable 
difference in a  , w hich rem inds one o f  the 
importance o f accurate manufacturing.

2.6 Optimal shape design of the rollers

Rolling elements can be found in many types 
o f  engineering equipment. Their requirement for a 
long lifetime means keeping the stresses smooth 
and at a low value.

The roller is loaded by the force F(), which 
gives a resultant vector couple: the resultant force 
F  and torque M(). The geometry and the load o f a 
roller can be found in Figure 10. On the surface of 
the half-space z -  0 and the rectangular contact 
region (Scl x S J  is divided into small rectangles 
(Z)( X D ). Elements o f the influence matrix are 
computed by applying the unit-intensity normal 
load or the tangential load in direction t in the sub- 
region ('D X D ). The formulae can be found in [27]. 
In order to eliminate shearing stresses at the ends 
o f  the roller the mirror technique is taken into 
account.

For the case when the load is not applied to 
the center o f the roller two types of problems were 
investigated in an earlier investigation [13].

In this study we analyzed the case when the 
stress constrain t is taken into account in the 
optimization process.

Examples. The radius of the roller is R0 = 
60 mm. The roller is subjected to loads of F0 = 5000 
N in the middle. The proposed contact region (1 x 
35 mm) is divided into kt-ks = 40 x 100 rectangular 
e lem ents along the d irec tions t and s. The 
parameters of the control function are L{ = 0, L2 = 5 
mm, L4- L 3 = 5 mm, L4 = 35 mm, f 2 = f  = 0.

The von Mises equivalent stress is calculated 
in the lower body at the coordinates ,s' = (is -  l) Dt, 
t — (it— 1 ) Dt,z  = - ( i s -  1)-D7, where is = l , . . . ,fe +  1; 
it=  1 ,...,kt+  1; iz=  1,..., 10, 0 =  0.025 mm.

The follow ing m aterial param eters are 
assum ed: Y oung’s m odulus E  = 2 1 0 5 M Pa, 
Poisson’s ratio v = 0.3, ultimate stress <x = 250 
MPa. The equations o f the equilibrium related to 
the roller are:

f  =  fn - fp dS = 0
n

m =  m 0 -  J r  x p dS = 0
(29),
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Fig. 11. Equivalent stress distribution at z = 0 mm

ca

e

Fig. 12. Equivalent stress distribution at z = 0.15 mm

where r  is the position vector, p is the vector of 
contact stress, f  is the resultant force and m0 is the 
moment o f the external load.

The distributions of the equivalent stress cr 
at z  = 0 and its maximum value are found at 
z  =  -0.15 mm, as shown in Figures 11 and 12.

In the optimization process the lengths L2 
and L} are calculated because the control function 
is symmetrical, i.e., AL = L2 -  L] = I 4 -  L}, and 
L, = 0, L = S = 3 5  mm. The control function is1 ’ 4 cs
calculated using Equations (10) to (12).
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Fig. 13. The equivalent stress distribution at z  = 0 mm after optimization

s [mm]

Fig. 14. The equivalent stress distribution at z = -0.25 mm after optimization

2.6.1 Optimization problem at a given load

The optimization problem at a given load is 
formulated as:

min
A  L ^̂ max

P n  > 0, d >  0,
„ l e d ,  

pn d =  0 , X  >  0, (30)

from which AL = 3.5 mm is obtained.
Therefore, the solution is L2 = 3.5 mm and 

L} = 31.5 mm. The minimization problem is solved 
by using the above-mentioned iteration process,



w hich is briefly described in Sub-section 2.4. The 
radius o f the roller is R = R(s), which is used to 
determine the initial gap g(x) = g(s, t) between the 
bodies.

The distribution of the equivalent stress is 
demonstrated at z = 0  mm and z =-0.25 mm, as shown 
inFigures 13 and 14. Comparing the stresses in Figures 
12 and 14, the influence of the optimization is obvious, 
i.e., <Tmax is significantly decreased.

2.6.2 O p tim iz a tio  t p r o b le m  fo r  c a lc u la tin g  th e  
lo a d a b i l i ty

From the pr vious optimization problem the 
stress equality o"max = <7 can be achieved by different 
rounding-offs o f tl e rollers at different loads, i.e., 
the rounding-off < epends on the load. Since the 
control function is i uni-value, only a unique roller 
shape exists for a given load. Namely, after the 
numerical calculati ons the designer can select from 
the round-offs in order to achieve the maximum 
loadability.

The optimization problem can be written in 
the following form:

Pn >  0, d >  0, 
m ax \ P 'n , „

Pnd ~- 

f =  0, m

0,

= 0, <x„ <
'  cT nax —

(31).

For the different load levels the change in radius 
along the roller axis can be seen in Figure 15 and 16.

The load value for a different geometry 
(problem ) is dem onstrated in Figure 17. The 
calculation was made with different meshes (kt, ks). 
The modification o f the mesh does not affect the 
results. In all cases L, = 0, L = 36 mm and because 
of the symmetry i ,  = Z,4 — L , the change in L 
influences the loadability.

On the basis o f the numerical results the 
round-off obtained for the third problem (see Fig. 
17) provides the best performance for high loads.

The loadablity  in the case o f  constant 
pressure along the meridian is approximately 4850 
= 4900 N (case No. 1), while in the case of problem 
No. 12, because o f the 5.5-mm-long transition cubic 
section the loadability is only = 4650 N.

3 CONTACT WITH A LARGE 
DISPLACEMENT AND DEFORMATION

In this section the air-spring shown in Figure 
18 is analyzed. Air-springs are frequently used in 
heavy vehicles because of their favorable features, 
for example, the nonlinear spring characteristics can 
be controlled by the inflation pressure.

The designer is in terested  in having a 
computational tool that helps in analyzing an air-

Fig. 15. Gap along the roller axis at different round-offs
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Fig. 17. Load distribution versus different geometries
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spring before it is manufactured. One can determine 
its spring characteristics, the quantitative influences 
o f  the geometrical modifications, as well as the 
stresses and strains in the fiber-reinforced rubber 
com posite. A finite-elem ent program  has been 
developed, which is based on the following theory.

The axially symmetrical problem is strongly 
nonlinear due to the contact problem, the large 
displacem ents and the incom pressibility o f  the 
rubber.

U sing  the no ta tio n  o f  F igure 1 the 
deformation gradient tensor is given as:



_ dxa 
~  dX a (32),

it is modeled with the Hu-Washizu functional, see 
[26], and the fiber-reinforced layer (/3 = 0) is 
hom ogenized by the so-called  H alpin-Tsai 
equations [28]:

nH W [u , J , p )  =  ß

JW(C)dV + f u ( j ) d V
V  V

+ f p ( j - J ) d V  — J u  • npdA
V St

+( l - ß ) l j E .-D-.EdV
(37),

where means the double dot product o f two 
tensors, p is the prescribed pressure and W  is the 
Mooney-Rivlin strain energy density:

W ( C )  =  pw ( h e  -  3 ) +  /%  ( h c  -  3). (38)

in which jU0], /i]0 are the Mooney-Rivlin constants, 
invariants o f the Cauchy-Green strain tensor:

h e  =  C u  +  C 22 +  C 33 (39)

h e  = \ ( h c - C - -  C ) (40)

where X“ denotes the undeformed configuration, 
while xa belongs to the current configuration. In 
the examined problem the lower body is a rigid one; 
therefore, “ will be omitted in the following.

In order to trea t the incom pressib ility  
condition we introduce the deformation gradient in 
a decomposed fonu:

F =  FKoiF (33),

where the volumetric part of the deformation 
gradient is defined as:

FVol = J 1/ 3! (34),

and the Cauchy-Green strain tensors are defined 
by the different deformation tensors

C =  F F (41),

where 1 denotes the transpose of a tensor,

C =  F J F (42).

The II. Piola-Kirchhoff stress tensor for the 
rubber is given by:

S =  2 ^  +  iVC->

and the fiber-reinforced layer is assumed to be linear

where I is the unit tensor. The deviatone part o f the 
deformation gradient is obtained as:

F  =  J -1/ 3 F (35)»

and the volumetric change is:

J  = d e tF  (36).

The incompressibility condition is fulfilled 
when J  = 1.

In our investigation the rubber (ß = 1) is 
assumed to be a nearly incompressible material and

S =  D E (43),

where D is the constitutive tensor and E is the 
Green-Lagrange strain tensor

E =  i ( F r F - I )  (44).

The incom pressibility is enforced by a 
penalty function, as was proposed by [29]:

u ( j )  = ^ ( j l + r s - 2 ) .

The fin ite-elem ent com putations were 
perfo rm ed  by /»-extension elem ents. The



polynom ial degrees o f  the displacem ents were 
chosen as p  = 1 ,..., 4, while the independently 
app rox im ated  vo lum etric  change J  and the 
hydrostatic pressure p were approximated with an 
order o f one degree lower than the displacement 
according to [30].

The con tact p roblem  is trea ted  w ith a 
simplified approach. The contacting boundary is 
approximated by a polygon, i.e., the edge of the 
contacting element is forced to be a straight line, 
also when a high-order displacement approximation 
is used. In practice, three-node contact elements 
were implemented, as detailed in [22],

The fiber-re in fo rced  rubber com posite 
consists o f  four layers, i.e., a rubber inner liner, a 
ru b b er ou ter cover and tw o hom ogenized  
orthotropic fiber plies, which are oriented at angles 
o f ±45°. The thicknesses o f the rubber layers and 
the fiber plies are 1 mm and 0.5 mm, respectively. 
The inflation pressure is p — 4 ba r . The finite- 
element computations simulate the working process 
o f  the air-spring. Assuming a constant inflation 
pressure the deformations, stresses and resultant 
forces were determined in 19 positions.

Three deformed shapes, i.e., the 1st, 10th, 19th 
o f the airspring are shown in Figure 19.

The v e rtica l d isp lacem en t versus the 
resultant force curve, i.e., the characteristic curve, 
is shown in Figure 20, together with the measured

values (see [31]). It is also clear that on the working 
area, i.e., 1 5 - 4 5  mm the calculated and the 
m easured  values show  good agreem ent, so 
validating the proposed method.

Numerical examples showed that accurate 
global results, like the force-displacement curve, 
can also be obtained for low-order displacement 
polynomial degrees p  = 1, 2. When a high-order 
approximation is used, i.e.,p = 2 ,3 ,4 , stress peaks 
may arise at the comers of the polygon o f the contact 
border. However, at the other side where the 
inflation pressure is exerted, the boundary condition 
is satisfied very accurately for the high-order 
displacement polynomial degrees p  = 3, 4.

4 CONCLUSIONS

It is well known that the stress state of 
m achine elem ents is highly  sensitive  to the 
geom etry  near the stress peaks. This is a 
requirem ent to avoid stress peaks. The second 
section o f the article shows an effective method for 
accom plishing it. Nam ely, a sm ooth contact- 
pressure distribution can be achieved by using an 
appropriate control function on the controlled sub- 
domain.

Highly accurate results may be realized 
using /»-extension finite elements for the solution 
o f  the con tac t p rob lem s, com bined  w ith a

E
JE
N

r [mm]

Fig. 19. Deformed shapes in three positions



Fig. 20. Characteristic curve o f the air-spring; solid line: numerical results, dots: measurements

positioning technique and special re-meshing. 
T he p rov ided  exam ples dem onstrate  the 
effectiveness o f the proposed algorithms for the 
determination of the initial shape, i.e., the initial 
gap, by observing the stress constraint. The method 
is also applicable for designing a clutch to maximize 
the transmissible torque.

The applied optim ization procedure is 
applicable for designing highly loaded rollers, 
which are characterized by a smooth contact-stress 
distribution along the contact surfaces. Two types 
o f  optimization problems were investigated. Firstly, 
the round-off (AL) is determined for a given force 
load (see Equation 30). Secondly, the force load is

calcu lated  for the p rescribed  round-off (see 
Equation 31). The maximum force load can also be 
determined with a modification of the round-off. 
The p-extension finite elements are also very 
applicable for large-displacement problems when 
the contacting element’s edge is kept as a straight 
line. The global results are accurate enough at a 
low order of approximations, i.e., the measured and 
calculated results show good agreement.
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