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High lift-to-drag ratios of the contemporary sailplanes make them the most energy efficient flying 
vehicles. On the other hand, this capability may become their serious disadvantage during the landing, if 
their aerodynamic deceleration devices become inoperable in flight. Not being able to dissipate the 
excess energy quickly when close to the ground, they may fly over the available landing ground and finish 
up in front of the obstacles, with still too much energy to land and not enough to fly over them.  

Beside the sideslipping flight in final, where energy is dissipated through the increased sideforce 
drag, another solution to this problem has been offered in a number of papers. By numerical analyses 
they have shown that landing distance in such cases could be minimized using rather complex oscillating 
flight paths in vertical plane. Although relevant distance reductions could be achieved through them, 
performing such paths in practice would require exceptional piloting skills. Instead of that, in this paper 
much simpler approach profiles have been analyzed, based on two types of cosine speed variations with 
constant periods and amplitudes, which could be flown by pilots of average flying experience. After 
establishing a quick convergence algorithm, numerical solutions for several typical cases, belonging to 
two general speed variation types, have been presented. The same initial and terminal reference energy 
states have been used. Although the distance reductions are smaller than obtained by distance-minimizing 
techniques, operational simplicity of presented techniques and some specific advantages prove them 
valuable within this category of problems. 
©2010 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 
Modern sailplanes have very high glide 

ratios, and due to that they are able to fly very 
long distances without a power plant, loosing 
proportionally small height at the same time. This 
makes them extremely energy-efficient flying 
vehicles. Since the available landing grounds 
(runways, or sometimes just long enough 
countryside fields) are often limited by obstacles 
on both ends, sailplane pilots generally perform 
their final landing approaches at much steeper 
angles than during the gliding flight. This is 
normally done with spoilers extended, which 
increase drag, partially reduce lift and increase 
the dissipation of energy. Quick reduction of 
height is achieved without remarkable increase of 
the sailplane's speed. But the final approach can 
be one of the most critical phases of a sailplane 
flight if, for any technical reason, spoilers or other 
available aerodynamic deceleration devices 
become inoperable (cases which do not happen 
often, but are known in practice). With the nose 

pointed rather steeply down to clear an obstacle 
and aim for the beginning of the landing ground, 
a sailplane will very rapidly gain too much speed 
and simply "refuse to land". Forcing it down to 
the ground at too high speed will make it bounce-
off and, at worst, may lead to a crash landing. On 
the other hand, if patiently waiting for a sailplane 
to slowly decelerate above the ground, a pilot 
may fly over the available landing area and finish 
up facing the obstacles, neither being able to land 
in front of them, nor to fly over them.  

One of the known operational techniques 
that can be used to face this problem is the 
sideslipping during the final approach phase. 
During such an intentionally uncoordinated flight, 
additionally generated sideforce will increase the 
overall drag. Principally like with spoilers, this 
drag component will also dissipate additional 
quantity of energy and shorten the approach 
distance. But this technique requires a certain 
amount of skill. For example, in case of a not too 
experienced pilot forced to land on a narrow 
countryside field, improper estimation of the 
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actual flight direction while watching over his 
shoulder, in this maneuver may finally place him 
in front of a wrong field, with no engine to help 
him go around and correct the error.  

Beside this classical technique, in a certain 
number of papers the oscillating final approach 
patterns without sideslipping, performed in a 
vertical plane, have been considered as another 
potential option with an aim to minimize the 
landing distance in case of the aerodynamic 
decelerating devices failure. In order to 
emphasize a rather high complexity level of such 
kind of calculations, one of them performed for 
the Vuk-T sailplane [1] will be described very 
briefly. It treated the problem of minimizing the 
landing approach distance as an optimal control 
problem, where the initial and the terminal states 
were based on recommendations from [2]. In 
these papers the lift coefficient variation was 
established as a variable of the control function 

( )u t  according to [3] and the maximum lift 

coefficient value of 1.78 for the Vuk-T. Since the 
total time of the final approach, originally 
denoted as kt , is initially unknown, calculations 

were done in normalized time  , introducing 
another control parameter  , where t    , 
0 kt t  , and 0 1  . Path for the minimum 

landing distance was obtained through an iterative 
calculation process, were the point was to 
determine such function ( )u t  and an   that will 

minimize the so called performance index I , 
which is subjected to the dynamic, initial and 

terminal state constraints. Index I  included  the 
integral interior penalty functions [4] for the 
minimum speed and the height constraints, 
combined by the empirical fixed constraint 
factors. The problem was solved using a gradient 
projection algorithm [5], which incorporated 
conjugate directions of search for a rapid 
convergence of the solution. Those calculations 
were done in Fortran 77 in double precision 
mode. Flight path of the so minimized approach 
distance and the appropriate lift coefficient are 
shown in Fig. 1.  

Advantages of such an approach are the 
effective reduction of the approach distance and 
the fact that, during this phase of flight, the nose 
of a sailplane is permanently pointed in the 
direction of intended landing area. On the other 
hand, this obviously quite complex calculation 
gives as a result an unevenly oscillating flight 
profile. Such approach path could be rather 
difficult both for memorizing and for performing 
under the operational flight conditions. If several 
errors were accumulated during such final 
approach (and hoping that the sailplane would not 
be accidentally stalled in the final stages, flying at 
very small speeds in the vicinity of the ground), 
the sailplane could land further from the initially 
estimated touchdown point. If a pilot is forced to 
land on a rather short field, this might be equally 
critical as a potential directional misjudgment, 
mentioned in case of the sideslip landings on 
narrow fields. 

 

 
Fig. 1. Example of a rather complex approach profile for the minimized approach distance and the 

corresponding lift coefficient, calculated for the Vuk-T sailplane [1] 
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As a contrast to previously described 
method, the aim of this paper is to investigate 
very simple periodical flight path changes in the 
vertical plane without sideslipping, and the final 
approach distance reductions that could be 
achieved through them, also assuming that 
spoilers are inoperable. The primary goal is that 
such flight paths could sufficiently accurately and 
easily be flown by the pilots of average flying 
skills, using just two instruments that are always 
on board: a speed indicator and a stop or a wrist 
watch. The predefined cosine harmonic approach 
speed variations, divided in two general 
categories, all with constant amplitudes and 
periods, have been selected as a good 
mathematical resemblance of the pilot's natural 
control inputs in attempt to evenly "pump" the 
flight speed up and down. In order to preserve 
compatibility with the previous example, the 
Vuk-T sailplane has also been selected for actual 
calculations, subjected in all cases to the same 
initial conditions and input parameters as in [1].  

Another very important aim of this paper 
is to keep the calculation model as simple as 
possible, but efficient and sufficiently accurate 
for the required purposes. It is clear that the 
potential end users of this calculation model 
would mostly likely be the amateur sailplane 
pilots - who are generally not experts in advanced 
programming, rather than highly trained 
engineers. Thus, if these calculations are kept 
simple enough, they could be incorporated in 
some of the available commercial software, like 
spreadsheet programs, which do not require 
highly sophisticated coding or recompiling. In 
that case, a pilot with only the general knowledge 
of informatics could perform even major program 
editing, for example, by experimenting with the 
different laws of speed variations, or making 
combinations of several simple paths in one 
approach, etc. Necessary input data could be 
obtained from the sailplane manufacturers, 
operation manuals supplied with the sailplanes, or 
from other available sources.  

Such calculations should help pilots to 
define parameters of several possible final 
approach paths for the sailplane types which they 
fly, considering possible field position and length, 
general obstacle distribution, etc., and estimate in 
advance the approach distances in case that 
spoilers become inoperable. Memorizing the 
speed amplitudes, periods and expected approach 

distance reductions, chances of making 
misjudgments considering the direction or 
distance in final approach should be much 
smaller. On the other hand, the price for increased 
safety using the techniques that will be presented 
in the following chapters is that the approach 
distance reductions will most probably be smaller 
than in case of the other two mentioned 
techniques.  
 

1 ALGORITHM OF CALCULATIONS 
 
The sailplane configuration in final 

approach for these calculations is gear-down and 
spoilers-in. According to the flight test 
measurements performed on the Vuk-T sailplane 
prototype, at the Flight Test Center VOC-
Batajnica (which just slightly differed from the 
production sailplanes such as the one shown in 
Fig. 2), polar for this configuration is defined by 
equation: 

20.01756 0.0095 0.021D L LC C C   , (1) 

where DC  and LC  are drag and lift coefficients, 

respectively.  
 

 

Fig. 2. Vuk-T of the Ljubljana aero-club 
 

As in [1], in this paper it is also assumed 
that the nominal mass of the sailplane in flight is 

320m  kg, and that the air density is 
1.225  kg/m3. Aerodynamic wing area of this 

sailplane is 12S  m2. Using these values and Eq. 
(1), it can be easily calculated that maximum 
glide, or /L D  ratio for this sailplane 
configuration is max( / ) 34.59L D   at the speed of  

77.99V  km/h (values for gear-up configuration 
are different; also, this velocity is additionally 
influenced by the assumed mass). For the default 
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glide regime, which will be used for comparison 
with approaches based on cosine velocity 
variations, the rounded value of 80V  km/h will 
be applied, for which / 34.52L D  . 
 

Fig. 3. Forces and velocity components in descent
 

Neglecting the rotation dynamics and 
assuming that the wind speed is equal to zero, 
equations of motion [6] for the purpose of these 
calculations (see also Fig. 3) can be written as: 

cos sinXdV
m D L

dt
    , (2)

sin cos
dW

m mg D L
dt

     , (3)

X

dX
V

dt
 , (4)

dH
W

dt
 , (5)

tan
X

W

V
  , (6)

where: 

21

2LL C V S   , (7)

21

2DD C V S   . (8)

In this paper, the speed variations in final 
approach will be assigned as inputs that can be 
divided in two general categories,  depending on 
which of the following two equations is applied: 

2
cosAVV V V t

T

     
 

, (9)

2
cosAVV V V t

T

     
 

, (10) 

where AVV  represents the average speed, V  is 

the half-amplitude, T  is the period, while time t  
is the independent variable. For example, if we 
substitute 85AVV  km/h, 5V  km/h and 

17T  s in Eq. (9), the initial speed at 0t  s is 
80 km/h, at 8.5t  s speed increases to 90 km/h, 
while at the 17t T  s it is be 80 km/h again. In 
contrast to that, the application of Eq. (10) will 
lead to the initial speed decrease. 

In order to achieve quick convergence of 
the solution, calculations have been performed in 
several iteration steps, with complexity and 
accuracy levels increasing gradually from one 
step to another. Also, in calculations aimed for 
engineering and practical purposes, small angle 
approximations can be applied for values of the 
glide path angle o10  , but obtained solutions 

must be finally substituted into the full equations 
for the verification of the achieved accuracy. 
Thus, with  expressed in radians, Eqs. (2) and 

(3) can be written as: 

XdV
m D L

dt
    , (11) 

dW
m mg D L

dt
     . (12) 

It should be noted that all variables on the 
right hand-side of Eqs. (2) or (3), or (11) and 
(12), with the speed changing according to an 
assigned law, will also be time dependant (except 
the sailplane weight m g ). 

In the first iteration step, the lift 
coefficient variation with time along the flight 
path is initially estimated from the equation: 

2

2
( )

( )L

m g
C t

V t S
 


 

 (13) 

using Eq. (9) or (10) to define speed changes. 
After that, the time dependant drag coefficient is 
calculated using Eq. (1). Both in this and the 
following iterations, a time step of 0.1t  s for 
the numerical analyses proved to be quite 
satisfactory. It should be noted that the Eq. (13) is 
actually obtained from Eq. (12), omitting the 
product D   and assuming that / 0dW dt  . In 

usual sailplane descents, products sinD   are 



Strojniški vestnik - Journal of Mechanical Engineering 56(2010)7-8, 436-446 

 

Stefanović, Z. – Kostić, I. 440

about 1000 times smaller than cosL  , thus 

omitting D   does not affect the accuracy 

noticeably. On the other hand, for here applied 
cosine speed changes, the assumption 

/ 0dW dt   is not true, but has been taken as an 
intentional "sacrifice" in the initial stage of the 
calculations. 

Lift and drag forces are then calculated 
using Eqs. (7) and (8). To a first approximation, 
we can say that / /XdV dt dV dt . Since the 

variation of ( )V t  is a known differentiable 

function, /dV dt  can be obtained both 
numerically and analytically (doing it both ways 
and comparing the results might be one of the 
verifications whether t  is selected adequately). 
The initial estimate of the flight path angle   can 

now be obtained directly from Eq. (11): 

( / ) ( )
( )

( )

m dV dt D t
t

L t
 

  . (14)

Knowing these values, the velocity 
components are determined as: 

( ) ( ) cos ( )XV t V t t  , (15)

( ) ( ) sin ( )W t V t t  . (16)

In the sense of numerical calculations, 
their time derivatives at the ith time step are 
obtained as: 

1 1( ) ( )

2
i i i iX

i

V V V VdV

dt t
        

, (17)

1 1( ) ( )

2
i i i i

i

W W W WdW

dt t
        

. (18)

In the second iteration step, the lift 
coefficient Eq. (13) is upgraded, this time 
including values obtained from (18): 

2

2 ( / )
( )

( )L

m g dW dt
C t

V t S
  


 

, (19)

while Eq. (14) is upgraded using the values 
obtained by Eq. (17): 

( / ) ( )
( )

( )
Xm dV dt D t

t
L t




  . (20)

Lift, drag, and the velocity components 
with their derivatives are then recalculated 
applying the same algorithm as in the first 
iteration step, but including the refined values 
obtained using Eqs. (19) and (20). 

In the third iteration step the whole 
procedure is repeated, this time using dVX/dt  and 
dV/dt  from the second step, etc; this calculation 
process can be repeated as many times as 
necessary, until the desired accuracy is achieved. 

The X(t) and H(t) coordinates, which 
determine flight path profile, are calculated by 
numerical integration of the VX(t) and the W(t) 
from the last iteration step with respect to time 
(coming out from Eqs. (4) and (5)), using initial 
conditions X(0) = 0 m and H(0) = 50 m for all 
cases considered in this paper. The length of the 
flight path P(t) is obtained by numerical 
integration of the total velocity V(t).  

To quantify the obtained accuracy, results 
from the last iteration step were substituted in full 
Eqs. (2) and (3). Differences between the left and 
the right-hand sides, calculated at each time step, 
were then compared with the calculated drag 
force in case of Eq. (2) and lift force in case of 
Eq. (3). Limit for so defined relative errors, which 
could be accepted for practical considerations, 
was established at the order of 1% or smaller. The 
presented algorithm has shown very high 
convergence rate, since practically all analyzed 
cases with the cosine speed variations have 
fulfilled this requirement after only three iteration 
steps. The only exception was case denoted as "I-
2" (see Chapter 2, Fig. 7), where the fourth step 
was introduced to reduce the maximum relative 
error from 2.2 to 1.2% in Eq. (2). Since the 
differences between the calculated X  and H  
values in the third and fourth step in this case 
were of the order of centimeters, it has been 
assumed that any further accuracy improvements 
would not be necessary.  

Terminal state is reached at the 1H  m 
and 72V  km/h. Thus, beside the final approach, 
the round-out phase and the hold-off phase (Fig. 
4) also had to be calculated for the default case 
and case I-3 (chapter 2, Figs. 5 and 8). For all 
other approaches the velocity amplitudes and the 
corresponding periods have been selected in a 
way that the round-out phase is an integral part of 
the final approach path. 

For usual landings ((A) in Fig. 4), the 
round-out phase is often modeled as a circular arc 
i.e. R  const., through which the approach speed 

APV  changes are practically negligible. On the 

other hand, changes of the load factor 
/( )n L m g   are not. 
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Fig. 4. Usual landings (A) consist of: (1) the final approach with  ≈ const., (2) the round-out phase,  
(3) the hold-off phase and (4) the landing run (not considered in this paper); in here analyzed cosine 

approaches (B), phase (2) is integral part of the phase (1) for which  ≠ const. 

Radius of such modeled round-out phase 
can be determined from the equation: 

2 1

cos
APV

R
g n 

 


, (21)

where n  is the load factor at the end of this 
phase. For both mentioned cases, 1.05n   has 
been assumed. Total variations of the height and 
the horizontal distance through the round-out 
phase are: 

(1 cos )H R     , (22)

sinX R    . (23)

The hold-off phase has been modeled in 
the same way for all analyzed cases, through 
which the speed is gradually reduced to the 
intended touchdown value of 72TV  km/h. (For 

320m  kg, the Vuk-T's stalling speed is 
55.7stallV   km/h; it should be noted that, for 

many sailplanes, decelerating to stallV  would lead 

to the tail-first touchdowns, which can cause 
damage to the structure). Although under 
operational conditions there is usually a small 
loss of height through this phase and strictly 
speaking vertical velocity component 0W  , for 
practical analyses the equation of level flight with 
center of gravity at a constant average height 

1H  m can readily be used. Substituting 0o   

in Eq. (2), it becomes: 

XdV dV
m D m

dt dt
   , (24)

and thus: 

2

2
DV C SdV

dt m

   
  . (25) 

Initial condition is defined by V at the end 
of round-out phase (in the next chapter 
parameters at this point will be denoted using the 
symbol "(*)"), and for each consecutive time step 
speed reduction is calculated using Eq. (25). The 
new LC  for the reduced speed is obtained from 

the equation of level flight, while the 
corresponding DC  is calculated using Eq. (1). 

The calculation continues until 72TV  km/h is 

reached. Distance X  flown in this phase is 
obtained by the integration of speed with respect 
to time, and for this phase horizontal distance is 
equal to the path length, X P . The ground roll 
after touchdown has not been considered because, 
after the common terminal state parameters have 
been reached, ground roll for all analyzed cases 
would be the same for the same terrain categories 
and qualities. 
 

2 SELECTED CASES AND RESULTS 
 

It is usual to assume that, before 
commencing a final approach, the sailplane 
would most probably fly at the speed close to that 
of the maximum glide ratio. As derived in the 
previous chapter, this value for the Vuk-T in the 
gear-down and spoilers-in configuration and 

320m  kg is about 80 km/h. The final 
approaches are usually commenced at about 

50H  m above the terrain, so these values, 
similarly as in [1], will define the initial (energy) 
state for all considered cases. Also, based on the 
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sources mentioned in the introduction, the speed 
of 20 m/s, i.e. 72 km/h for the same sailplane 
mass, and the center of gravity height of 1 m 
above the ground, have been selected to define 
the terminal (energy) state for all cases. 
 

Fig. 5. Default path - steady glide 
 

As a reference, or a default case for all 
comparisons, a steady descent with linear 
approach path at a constant speed of 80 km/h has 
been selected (Fig. 5). On the other hand, it is 
well known that while flying at the speed of the 
best glide ratio, a sailplane will achieve the 
longest possible range from a certain height 
(which is, by the way, quite opposite from the 
pilot's intentions while attempting to land on a 
short field and the spoilers are not in function). At 
both higher and lower speeds, the range will 
always be smaller. So a question may arise - why 
select the best glide ratio speed for a reference, 
when all other constant speed approaches used as 
a reference would give steeper glide paths and 
more rigorous critics of here considered paths 
with cosine speed variations? Just partial, but 
hopefully sufficient answer could be that at the 
same height of 50H  m but different initial 
speeds, a sailplane will have the same potential 
energy, but different kinetic energies, or in other 
words, the different flight histories before 
reaching 50 m height. If we want to quantify the 
potentials of a certain flight profile to dissipate 
energy more effectively then some reference 
profile, both (1) their initial energy states, on one 
side, and (2) their terminal states on the other, 
must be the same for the comparison purposes. 
While many other reasonable reference speed 
choices can satisfy the second requirement owing 
to the deceleration (as much as necessary) within 
the hold-off phase, a steady reference path with 
the approach speed of 80 km/h is the only one 
that satisfies the first requirement. 

 

Fig. 6. Case I-1 
 

 

Fig. 7. Case I-2 
 

 

Fig. 8. Case I-3 
 

Several typical cases selected for the 
presentation and analyses in this paper are shown 
in Figs. 6. to 10. Those within the category "case 
I-..." are based on the application of Eq. (9), while 
those named as "case II-..." are obtained using Eq. 
(10). Numerical example from the previous 
chapter, with speed variations between 80 and 90 
km/h and 17T  s, corresponds to the flight path 
shown in Fig. 6. The reference path is marked 
with "(A)", while all paths with cosine speed 
variations are denoted as "(B)". The tree symbols 
represent standard 15 meters obstacles.  

The most important results, necessary for 
the discussions in the next chapter, are presented 
within the figures. Values (*)X  and (*)P  are the 

horizontal distance flown and the actual flight 
path length at the end of the round out phase, 
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respectively; AVD  is the distance-averaged drag 

force along the cosine final approach segment, 
not including hold-off; n  shows the range of the 
load factor variations in cosine approaches;   

denotes the extreme path angle variations, etc. 
Parameters of the cosine law speed variations, 
influenced by the sailplane type and its actual 
mass in flight, have been carefully selected as 
easy-to-remember rounded numbers considering 
the speed variations and the periods. They also 
had to satisfy the terminal height conditions with 
the round number of cycles for the paths based on 
Eq. (10), and round number +1/2 cycles when Eq. 
(9) was applied. In cases II-1 and II-2, only for 
theoretical considerations, the periods of the order 
of 20T   were spread to the first decimal 
accuracy in order match the terminal 1 m height 
with some ±5 cm accuracy obtained in other 
cases. 
 

Fig. 9. Case II-1 
 

Fig. 10. Case II-2 
 

Although the calculations considering here 
presented subject have initially been done using a 
custom written Fortan code, a parallel effort has 
been made to obtain the results in one of the most 
commonly used spreadsheet programs, the MS 
Excel. Owing to a reasonable simplicity and high 
convergence rate of the applied algorithm, the 

spreadsheet version has also proven to be highly 
functional. 
 

3 DISCUSSION OF THE RESULTS 
 

Let us first comment an issue which 
considers the oscillatory approach path profiles. 
Looking at the Figs. 6 to 10, it may seem that the 
length along an oscillating path between the two 
points in final approach should be substantially 
longer than the straight-line distance between 
them. Thus, the first impression might be that just 
by shrinking a straight line into an oscillating path 
profile could, by itself, contribute to the decrease 
of the landing distance. On the other hand, 
relatively small differences even between the 

(*)X  and the (*)P  shown in these figures, 

suggest quite opposite. It should be noticed that, 
for the clarity of the presentation, scales for X  
and H  had to be remarkably different (paths 
with   shown in figures would correspond to the 

/ 1.6L D  ), thus the true appearances of the 
sailplane paths are largely distorted. That could 
be understood better by comparing Figs. 8. and 
11, or by "manually" checking the default path 
length (neglecting the round-out phase curvature): 

2 2(*) 1706 49 1706.7P    m, while 

(*) 1706.0X  m (see Fig. 5). Thus the oscillating 

path profiles, by themselves, can not cause any 
relevant X  distance reductions in here presented 
cases (more detailed explanation, which can be 
generalized to all such flight paths, can be found 
in [7]), so attention should be focused primarily 
on the drag force. 
 

Fig. 11. True appearance of the case I-3, with H 
and X coordinates drawn in the same scale 

 
Dissipation of energy in sailplane descents 

is achieved through the work done by the drag 
force along the flight path. Since the prescribed 
initial and terminal energy states for all analyzed 
cases are exactly the same, an increase in the drag 
force with respect to a steady approach case must 
induce a proportional decrease of the flight path 
length P  and consequently the decrease of the 
horizontal distance X  between the initial and the 
terminal point. 
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Table 1. Review of the most important landing profile parameters 
1 2 3 4 5 6 

Case 
AVD  [N] A BX X X    [m] V  [km/h] ( / )L D  T  [s] 

Default case 90.9 0 0 0 / 

Case II-1 91.5 26.4 - 10 - 0.9  (-2.6%) 19.9 

Case I-1 93.1 56.7 + 10 - 1.8  (-5.2%) 17 

Case I-2 94.1 78.9 + 10 - 1.8  (-5.2%) 7 

Case II-2 95.2 96.0 - 20 - 5.3 (-15.4%) 20.6 

Case I-3 96.6   (103.9)* 101.8 + 30 - 8.5 (-24.6%) 26 
* Actually, the value denoted as 'AVD  is the true generator of X  for case I-3, since its second part is 

equivalent to the default path, just shifted to the left. 
 

For all cases the varying drag force has 
been integrated along the final approach and the 
round-out phases with respect to the path length, 
and then divided by the total path length of these 
two landing segments. This way, the distance-
averaged drag forces AVD  in approach have been 

obtained. The previously mentioned principle can 
be confirmed if these values are compared with 
the achieved distance reductions X , as shown 
in Table 1. 

From Table 1 it is also obvious that the 
larger speed deviations V  from the initial state 
velocity of 80 km/h generally correspond to 
higher X  values. Remembering that the 
selected initial speed is practically the maximum 
glide ratio speed for the given configuration and 
mass, any diverging from it must cause the 
decrease of the glide ratio (Table 1, col. 5). This 
causes increased drag for the same amount of lift 
and, as a final consequence, shorter flight path. (If 
some other speed is selected for the initial state, 
then varying the velocity in the opposite 
"direction" from the ( / )MAXL D  speed will lead to 

the decrease of the approach distance, and vice 
versa). Knowing that, a logical question might be 
- why the flight path should be oscillating at all, 
when a much simpler procedure, based on the 
continuous speed increase in final approach (let 
us say from 80 to 90 km/h), will decrease the 

/L D  ratio and probably also lead to the decrease 
of the landing distance? Such an approach has 
been analyzed in [7], setting the period to 

120T  s and using just half of the cycle based on 
Eq. (9). After the round-out and hold-off phases 
had been added, the X  reduction of some 33 m 
was achieved, compared to the default path. On 
the other hand, in cases I-1 and I-2, where speed 
variations were also between 80 and 90 km/h, the 

distance reductions were 56.7 m ( 17T  s) and 
78.9 m ( 7T  s), respectively. It implies that, for 
the same speed amplitude, shorter periods (more 
oscillations) generate larger landing distance 
reductions.  

In an attempt to explain this particular 
phenomenon, let us compare load factor 
variations about the value 1n   in Figs. 6 and 7. 
We can see that they are not symmetrical, i.e. the 
increase of n  at the local path minimums is 
slightly larger than its decrease at the local path 
maximums (this applies for all analyzed cases). 
Also, the shorter period of case I-2 induces larger 
overall variations of  the n  values then in case I-
1. Since larger load factors correspond to larger 
lift forces and consequently larger drag, and vice 
versa, the applied kind of speed variation 
generates the average drag increase through the 
asymmetrical load factor variations. Beside that, 
if the overall load factor variations are larger due 
to shorter periods, the average drag increase 
should also be higher, and thus case I-2 gives 
22.2 m larger landing distance reduction than case 
I-1, although their speed amplitudes are the same. 

A general conclusion might be that higher 
speed amplitudes (i.e. departing from the best 
glide ratio speed towards those that correspond to 
smaller /L D  ratios) and shorter periods of speed 
variation are actually the two influence 
parameters that both contribute to the landing 
distance reduction. In here presented final 
approaches they inherently go together, and they 
must be combined carefully. Too large speed 
amplitudes with too short periods can be very 
unpleasant for the pilot, locally overstress some 
parts of the sailplane structure and may generally 
be very dangerous in the vicinity of the ground. 
Such combinations should be based either on 
large amplitudes and long periods, small 
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amplitudes and short periods or moderate 
amplitudes and moderate periods.  

Let us now consider some other important 
practical aspects of here presented approach 
profiles. Cases II-1 and II-2, based on initial 
speed decrease, enable avoiding the 15 m 
obstacles at practically the same X  distances of 
about 1200 m from the starting point, as in the 
default case. This is their advantage when 
obstacles are close to the beginning of the landing 
ground, since for all cases based on the initial 
speed increase (I-1, I-2 and I-3) this distance is 
some 100 to 200 m smaller. On the other hand, 
the distance reduction obtained by case II-1 of 
only 26.4 m might be categorized as "too much 
trouble about nothing" (quite long period and 
very small departing from max( / )L D ), so this 

case is of rather small practical significance. 
Quite opposite to that, the case II-2 with almost 
the same period, gives the second best landing 
distance reduction of 96 m, owing to the 
substantial drop of /L D  at 60 km/h. It should be 
noticed that this speed is only some 4 km/h higher 
than the sailplane's stalling speed, and flying this 
approach would require caution.  

Paths of the cases I-1 and I-2 give 
moderate X  values of 56.7 and 78.9 m, with 
respect to the maximum achieved 101.8X  m 
in case I-3. Although the ground roll phase is not 
explicitly analyzed in this paper, it should be 
mentioned that these two profiles have an 
advantage over the other path profiles considering 
this aspect. Namely, in case of the high 
emergency landings on short fields, one of the 
usual procedures is to try to force the sailplane to 
the ground at higher speed than nominal (72 km/h 
in our case) and then start using wheel brake, as a 
very efficient energy dissipating device. For the 
Vuk-T sailplane it has been estimated that the 
speed of 90 km/h could be acceptable top speed 
limit for such a procedure to be successfully 
performed. Due to their profiles, cases I-1 and I-2 
could enable such forced landings at 90 km/h 
some 200 m earlier the other presented cases, 
supposing that the 15 m obstacles are not further 
than approximately one kilometer from the 
starting point of the final approach. 

The largest distance reduction of 101.8 m 
has been achieved in case I-3, which looks in a 
way like a simplified version of the minimized 
flight path from [1], shown in Fig. 1. It combines 
a curved path generated by cosine speed variation 

with large speed amplitude and long period, and a 
straight path similar to the default case. It is clear 
that this is just one of many possible 
combinations, where in this paper the constant 
speed of 80 km/h for the second portion of the 
approach has been used intentionally to present 
the pure contribution of a single path oscillation 
with such speed amplitude on quite noticeable 
approach distance reduction. It natural that some 
other profile choices for the first and second part 
of the path could give even larger X  values.  

The distance reductions of the order of 70 
to 100 m, compared with the here considered total 
X  distances of about 1.8 km, may not seem very 

spectacular at the first glance. On the other hand, 
it must be remembered that sailplane pilots 
sometimes have no other option but to land on a 
narrow and quite short countryside field 
surrounded by trees, power lines, telephone poles, 
houses, ditches, rivers, etc., and loosing the 
chance to extend spoilers in such situations makes 
the last minutes of the flight very critical. In such 
cases, using some of the relatively simple and 
quite safe procedures, such as examples given in 
this paper, to shorten the final approach for a 
distance which is close to or equal to a football 
field length, can make a substantial difference 
between the successful outcome and a disaster. 
Also, a pilot must not forget to extend the landing 
gear - not only because it is normal to land a 
sailplane with the gear down (except on very 
rough terrains), but also because the extended 
gear on modern sailplanes causes a drag increase 
which is far from negligible. If a sailplane pilot 
can not use spoilers when the approach distance 
shortening is an imperative, any source of 
additional drag is extremely valuable. 
 

4 CONCLUSIONS 
 

Two categories of simple cosine speed 
variations in final approach have been analyzed, 
as possible ways to reduce the approach distance 
in cases when spoilers become inoperable. The 
first category implies that the speed initially 
increases, and the second that it initially decreases 
from the reference staring value of 80 km/h at the 
height of 50 m. For actual calculations the Vuk-T 
sailplane has been selected. The input values for 
periods and speed variations have been chosen as 
rounded and easy-to-remember numbers for 
practical use, and applied in different ranges 
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within the two assigned cosine laws. Results were 
compared with the landing distance of the steady 
reference path flown at the same speed as at the 
initial state. Presented examples have been 
carefully selected to show the influence of those 
input parameters on possible landing distance 
reductions, ranging from very small, of the order 
of 20 m, over moderate 50 to 70 m reductions, to 
more than 100 m. For all presented cases the 
initial and the terminal energy states were the 
same. The oscillating path profiles, simply 
because they are curved, do not contribute 
remarkably to the landing distance reduction in 
any of the treated cases. The analyses have shown 
that the larger achieved landing distance 
reductions were actually proportional to the larger 
speed amplitudes and shorter periods of 
oscillations, both contributing to the increased 
energy dissipation. These factors must be 
combined carefully for operational conditions. 
Cases involving large speed amplitudes and short 
periods could be very unpleasant for the pilot and 
may cause local structural overloading, so this 
particular combination was not considered. 

The so called distance-minimizing 
techniques, known in literature, are based on very 
complex oscillating paths in final approach, 
which would require exceptional piloting skills. 
On the other hand, the goal of this paper was not 
to minimize the approach distance for any given 
sailplane, but to define general influential factors 
which could be combined within much simpler 
flying procedures, that can easily and quite safely 
be performed by pilots of average experience. 
Although the approach distance reductions 
obtained by here presented methods are smaller 
than obtained by distance-minimized approach 

for the Vuk-T sailplane, under operational 
conditions they can certainly make the difference 
between a successful landing and an undesired 
outcome. Presented principles can readily be 
applied to any other sailplane for which the 
required technical data are available. 
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