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The paper presents the methodology for multicriteria decision analysis based on negative-

positive-neutral (NPN) logic, which is an extension of both crisp and fuzzy logic. As the basic modeling 
framework we use fuzzy cognitive maps (FCM) which are a set of meaningful concepts, connected to form 
a network, with fuzzy weighted links measuring the strength and direction of effect of cause concept over 
target concept. Introducing NPN logic to FCM modeling framework provides the possibility to measure, 
the so-called, side effect of each decision-making path. This information additionally describes under 
what mutual conditions between concepts FCM settles down in equilibrium. An illustrative example from 
the real industrial environment related to metal cutting process planning parameters analysis 
demonstrates the potential of the methodology. 
©2010 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 

Decision-making about complex systems 
aimed to direct the appropriate actions to ensure 
their optimal operation is very demanding. So far 
numerous approaches have been proposed and 
presented for that purpose, enabling decision 
makers to create more or less reliable solutions. 
However, decision analysis and reasoning about 
potential effects of initially generated solutions 
(e.g. process plans, control actions, etc) remains a 
challenging and insufficiently explored research 
field.  One of the most important steps toward a 
complex systems decision analysis is proper 
description of relationships between various 
elements (concepts) of a system in order to 
provide knowledge representation and inference. 
Such description of a problem should utilize 
experts' beliefs and cognition about a problem, 
yielding thorough analysis, reliable forecasting 
and decision-making [2], [9], [15]. This kind of 
problem statement directs us to knowledge 
engineering methodology and development of 
expert systems. When modeling a complex 
system using expert system technology a 
complete, consistent, and unambiguous 
knowledge base is supposed to be developed 
among other components. Troubles arise during 
the knowledge elicitation process with a domain 
expert who provides us with facts, information, 

and data according to personal experience, 
cognition, beliefs, and tastes. The same holds for 
knowledge acquisition of a problem through 
analysis of literature sources, since some 
information, data and recommendations are 
subjective due to the complexity of a given 
system. Therefore, knowledge bases usually show 
inconsistency, leading to expert system failure. 
Another shortcoming that troubles conventional 
approaches to complex systems modeling is 
related to the type of relationships between 
system variables. These appear quite often to be 
rather causal than explicit IF-THEN rules. 
Depending on what kind of a system is being 
modeled, its dynamics can additionally bring 
difficulties in knowledge base development [7], 
[9], [17]. 

Advances in psychological studies, 
together with human abilities and habits to draw a 
crucial concepts and connections between them 
when analyzing complex problems, creating 
representational model, brought new powerful 
methodology called cognitive maps (CM), which 
are a graphical representation of causal relations 
of a problem [1], [14]. Cognitive maps (in 
decision making) were introduced in 1976 by 
Axelrod [1]. In 1986 Kosko suggested more 
general framework, fuzzy cognitive maps (FCM) 
[4], introducing fuzzy sets theory in a theory of 
cognitive maps, giving it additional power. 
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FCM is a network of nodes which are 
influential and meaningful concepts, objects, 
attributes or events of a system [1], [4-7], [11]. In 
general, nodes of FCM can be viewed as 
distributed (fuzzy) expert systems or DSS 
[16,17]. All these systems are designed to provide 
an optimal solution. However, “optimal” quite 
often means “idealistic” or “impossible”. 
Fortunately, “near to optimal” solution (parameter 
value) is satisfactory in most cases, after tuning 
values of all the system’s concepts to ensure 
stable or equilibrium state of a system under 
“near to optimal” concepts’ values. This policy 
saves time, increases the system’s resources 
efficiency and decreases costs.  

Providing a description of complex system 
behavior, based on experts’ experience and 
learned knowledge, FCMs enable thorough 
analysis and provide an answer to the what-if 
question. An if input vector of data is composed 
from outputs of DSS lower levels. An FCM 
output gives the answer what happens when an 
input vector affects a system, suggesting possible 
actions that bring an equilibrium or a stable state 
to a system. In other words, FCM is a qualitative 
tool, which cannot give an exact mathematical 
answer but rather points out the gross behavior of 
a system and shows global patterns of  behavior 
of expert beliefs [1,2], [4-7], [9-12], [16,17]. 

Traditional decision support systems DSS 
structure lacks at least three important features: 
(1) uncertainties handling and corresponding 
approximate reasoning abilities, (2) learning 
capabilities, and (3) decision analysis. Last 
decade brought significant progress and 
improvements related to the first two “missing” 
features [8], [13], [3]. However, no significant 
results have so far been reported on the third 
feature. Real-world (e.g. industrial) practice 
shows that initially generated solutions usually 
require adaptation, adjustment and tuning, which 
refer to decision analysis and adaptation 
reasoning. Therefore, such a special module 
should upgrade DSS structure to support (post-
processing) adaptation decision-making. We 
present a part of both research work and 
preliminary results of testing in a real industrial 
environment. 

The paper is organized as follows. The 
next section briefly reviews the theoretical 
background of FCMs, particularly emphasizing 
negative-positive-neutral logic and relations 

based approach, employed in the presented 
methodology. The third section describes process 
planning decision analysis by FCMs. Illustrative 
example reports preliminary research results of 
FCMs applications in the field of machining 
parameters analysis and adaptation reasoning 
with respect to surface quality. The research has 
been conducted in both laboratory and the 
industrial environment. 
 

1 THEORETICAL BACKGROUND  
OF FUZZY COGNITIVE MAPS,  

NPN LOGIC AND NPN RELATIONS 
 

Modeling of large systems requires a high 
level of expertise in order to properly identify and 
present complex interrelationships between 
various elements. In addition to creating a map of 
system’s elements and their relationships, a very 
important contribution to understanding its 
behavior can be acquired from human experts. 
Naturally, humans express their experience and 
beliefs descriptively, emphasizing causal 
relationships between elements, and also 
descriptively (linguistically) evaluating their 
parameters’ values instead of precisely doing it. 
Based on this a graphical approach to model a 
system can be used and related knowledge can be 
captured. Such approach picture cause and effect 
relations creating system’s cognitive map as  
cognitive maps are a representation of 
relationships that are perceived to exist among the 
attributes and / or concepts of a given 
environment [16]. 

A fuzzy cognitive map is an extension of a 
cognitive map and also a graph-based structure. 
Graph nodes represent concepts or events or data 
points or objects. These are partially 
interconnected according to mutual influence and 
dependability. Links between nodes are directed 
to demonstrate causation course and if a mutual 
relationship exists, then the effect node influences 
the cause node too, providing the network with 
feedback. In other words, feedbacks show 
whether the effect node excites the cause node as 
well. That is, effect nodes may affect cause node, 
which turn them to be cause nodes as well, and 
cause nodes to be effect nodes. Furthermore, 
feedbacks introduce dynamics to FCMs enabling 
to model the dynamic world. Links have their 
weights showing the strength of cause node 
influence to target node. Unconnected nodes or 
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unrelated nodes have zero-strength links, which 
are usually not shown. Weights are signed since 
an increase of cause node value can demonstrate 
either an increase or decrease of target node 
value. Positive links indicate movement in the 
same direction: if the cause node value increases, 
the target node value increases, and if cause node 
value decreases, the target node value also 
decreases. Negative links indicate movement in 
the opposite directions: if the cause node value 
increases, the target node value decreases, and if 
cause node value decreases, the target node value 
increases. 

Formally, FCMs are signed, fuzzy 
weighted and directed graphs with feedback. The 
concept nodes Ci are fuzzy sets or even fuzzy 
systems. The links, or the so-called edges, define 
the rules or causal flows between the concept 
nodes. The directed link (edge) wij, from causal 
concept Ci to target (effect) concept Cj, measures 
how much Ci causes Cj. Connection n-by-n 
matrix W contains weights of all the edges 
representing weighted causation rules of system 
behavior. The edges’ weights wij take values in 
the fuzzy causal interval [-1, 1]. The edge weights 
wij are constant and only the node values change 
in time. In such a setting, FCM works by 
repeatedly passing state vectors Cj through the 
FCM connection matrix W, thresholding or 
nonlinearly transforming the result after each pass 
[4-7]. The output of FCM is an equilibrium state, 
which gives the answer to a causal what-if 
question: what is the equilibrium state for the 
system if excited by the stimuli. Thus, a set of if-
then rules is captured by the network structure, 
which causally describes a system or a situation. 
More precisely, such networked structure encodes 
(fuzzy) rules, which are fired upon a given set of 
initial conditions and on the underlying dynamics 
of the network, i.e., fuzzy cognitive map. 

The FCM modeling framework involves 
negative edge weights as well, i.e. edge weights 
in trivalent -1, 0, 1 or multivalent [-1, 1] 
interval, so an adequate logical and relational 
system to support reasoning with such values is 
needed. The extensions of classic crisp logic, 
fuzzy logic, crisp relations and fuzzy relations 
had been proposed by the end of 80’s through, the 
so called, NPN logic and NPN relations [16, 17]; 
NPN stands for “Negative-Positive-Neutral”.  

NPN logic variable (both crisp and fuzzy) 
may take value in a [-1,+1]. In addition to three 

individual values from [-1,0), {0}, (0,+1], NPN 
logic variable may also have three compound 
values: (N, 0), (0, P), (N, P). While the crisp 
value pair (x,y) = {-1, +1} carries little or no 
information, an NPN fuzzy logic value pair (x, y) 
may carry substantial information. This structure 
plays an important role in approximate reasoning. 
This approach provides possibility to count, the 
so-called, side effect of each decision-making 
path. Side effect measures under what mutual 
conditions between concepts FCM settles down in 
equilibrium. 

The third case of a value pair (a, b) is the 
most informational and fully describes the side 
effect since if lower bound value a = N is 
dominant over upper bound value b = P, i.e., N 
> P, when FCM comes to equilibrium, that will 
cause negative effect from i-th object to j-th 
object but will on the other hand also produce a 
positive effect to some extent. That means that 
equilibrium in the system can be reached only if 
object i negatively causes object j to some degree, 
and takes a positive effect from object j to some 
lower degree. Object i cannot cause object j with 
no harm from object j, i.e., without (positive) side 
effect. Similarly, if upper bound value b = P is 
dominant over the lower bound value a = N, i.e., 
N < P, that will cause a positive effect from i-th 
object to j-th object but also will oppositely 
produce negative effect to some extent. In this 
case object j produces a negative side effect to 
object i. No dominancy (N = P) resembles 
Newton’s action-reaction law. As much as we 
gain from one side, we lose from the other. 

Any NPN logic value can be represented 
as an ordered pair in [-1, 1]  [-1, 1]. The NEG, 
AND, and OR functions for both NPN crisp and 
fuzzy logics can be compactly described by the 
following three logic equations: 
 

NEG(x, y) = (NEG(y), NEG(x)) , (1) 

(x, y)  (u, v) = (min(x  u, x  v, y  u,  
y  v), max(x  u, x  v, y  u, y  v)) , (2) 

(x, y) OR (u, v) = (min(x, u), max(y, v)) . (3) 
 

The star operator () in Eq. (2) stands for 
a general conjunction operator that may be any T-
norm extended from the interval [0, 1] to [-1, 1]. 
The extension is made as follows: 
 

x  y = sign(x) sign(y)(x  y) , (4) 
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where x and y are singleton NPN values (fuzzy or 
crisp). In this paper we use  (dot or product) 
operator, but it should be noted that T-norm 
operator selection is domain depended matter. 

For the sake of briefness we will skip 
formal definitions of crisp and fuzzy NPN 
relations (one can look for it in [16,17]) and 
introduce the following two definitions of 
transitivity and (heuristic) transitive closure, 
which play an important role in reasoning with 
NPN relations. 

Definition: An NPN relation R (crisp or 
fuzzy) in X  X, where X = x1 , x2 , ..., xn is 
finite set, is NPN (max-) transitive if, for all i, j, 
and k, 0 < i, j, k  n, 

R(xi , xk)  
jx

max (R(xi , xj)  R(xj , xk) . (5) 

The (max-) composition of two NPN 
relations R  X  Y and Q  Y  Z, denoted by R 
 Q, is defined by 

y
QRμ max (R (x, y)  Q (y, z)),   

x  X, y  Y, z  Z   . 
(6) 

Definition: The transitive closure R


 of an 
NPN relation R (crisp or fuzzy) in X, is the 
smallest (max-) transitive NPN relation 
containing R. Since the NPN logics used for 
transitive closure computation can be considered 
as a set of rules (heuristics), such closure is 
called a heuristic transitive closure (HTC) of R. 

Using an heuristic path-searching 
algorithm [16] the possible and the most effective 
paths from one concept to another can be found. 
This means, that the paths between elements 
(concept nodes) of FCM with the strongest 
negative and positive side effects that constrain 
decision making according to the above two 
definitions can be found. 
 

2 PROCESS PLANNING NPN FCM 
 

In the majority of real-practice cases we 
are not able to strictly follow recommendations, 
which turn out to be unrealistic (to some degree), 
difficult to realize and therefore time-consuming. 
These constraints are caused by the nature (of a 
part) of information and data, their human 
interpretation and the inability to realize an 
optimal solution without loss of overall 
effectiveness and unacceptable or necessary 

increase of costs. Therefore, the previously 
generated solution, i.e. its influential parameters, 
needs to be adjusted. However, adjusting any of 
influential parameters usually affects others. Such 
an effect, i.e. a side effect, can be acceptable, 
unacceptable and more or less indifferent, 
depending on the ratio of negative and positive 
values of a compound NPN relationship.  

The human ability to distinguish slight or 
big differences in information and data patterns, 
classify them in approximate categories, and use 
them with the previously gained knowledge to 
provide intelligent and reliable solution, is 
depicted by an FCM. Using this scenario we have 
analyzed process plans and cutting parameters 
selection and tuning procedure, and finally asked 
experts to draw a scheme that reflects system 
behavior (Fig. 1). 
 

 
 

Fig. 1. NPN logic-based FCM of the machining 
parameters 

 
Usually the main objective in machining is 

to meet surface quality and accuracy requirements 
at low costs, respecting production and 
environmental constraints. This means that 
tooling and cutting parameters should be 
appropriately selected in order to achieve this 
goal. These parameters include, among others, 
cutting speed (v), cutting feed (s), depth of cut 
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(), average surface roughness (Ra), rake angle 
(), entering angle (), tool nose radius (r), 
cutting insert material quality (Q). Most of these 
parameters are easy to change and/or adjust and 
therefore the first to analyze. Although the 
selection of these parameters strongly depends on 
many other machining environment parameters 
e.g. workpiece material hardness or machine 
tool’s conditions, later they are considered as 
constants, which cannot be changed and adjusted 
and which were processed by computer aided 
process planning expert system (CAPP ES) or 
expert during generation of prior solution. 

Let us suppose that prior solution 
generated by CAPP ES is not optimal in a sense 
that the selected cutting tool and cutting 
parameters produce low surface quality (concept 
node 8), i.e. cause defective products. This means 
that changes in process parameters would have to 
be made in order to achieve the required surface 
quality. 

For the FCM shown in Fig. 1 we have the 
following corresponding connection matrix: 
 

0 .3 .5 .6 .3 .2 .6 .7

.2 0 .6 .5 .1 .3 0 .8

.5 .6 0 0 0 .1 .3 0

.6 .5 0 0 0 0 0 0

.3 .3 0 0 0 0 0 0

.2 .3 .1 0 0 0 0 .5

.6 0 .3 0 0 0 0 0

.7 .8 0 0 0 .5 0 0

W

      
    
  
 

   
 
  
     

. 

(7) 

 
Heuristic path searching algorithm 

identifies the most effective paths between any 
two concept nodes of NPN FCM. For critical 
node in this case (average surface roughness – 

Ra, concept node 8) we chose max-dot (max - ) 
transitivity composition defined by Eqs. (2) and 
(6). Identified heuristic paths are shown in Table 
1. 

The obtained results provide an answer to 
the question what should we do if the prior 
solution for cutting parameters disables quality 
machining. By introducing a restriction or 
constraint factor RF in the form of 

RF = f(N,P) , (8) 

where f is the function defined over compound 
values N and P, and compound value distance 
d(CV) = d(P, N) (Hamming distance) 

d(CV) = d(P, N) = N + P = P - N , (9) 

and restriction strength 

RS = RF  d(CV) , (10) 

the obtained results can be refined in order to 
identify the most influential relationships whose 
negative or positive relationship values are the 
most restrictive and thus, direct us to the most 
effective problem recovery procedure. For the 
purpose of this research work and the illustration 
of the approach we have defined an empirical 
restriction factor RF using industrial 
recommendations as 

max (| |, | |)
, min (| |, | |) 0

min (| |, | |)

max (| |, | |) 10 , min (| |, | |) 0

N P
N P

N PRF

N P N P

  
  

 . 
(11) 

These factors are summarized in Table 2. 

 

 
Table 1. Heuristic paths and compound values of heuristic transitive (max - ) closure 

Concept 
nodes C8  C1 C8  C2 C8  C3 C8  C4 C8  C5 C8  C6 C8  C7 C8  C8 

Heuristic 
paths 

(8 1) 
(8 6 1) 

(8 6 2) 
(8 2) 

(8 2 3) 
(813) 

(8 1 4) 
(8 6 1 4) 

(8 1 4 2 5) 
(8 1 5) 

(8 6) 
(8 2 6) 

(8 6 3 7) 
(8 1 7) 

(8 1 7 3 2 8) 
(8 2 8) 

Compound 
values of 
heuristic 
transitive 

(max - ) 
closure 

(-.7, .1) (-.15, .8) (-.48, .35) (-.42, .06) (-.105, .21) (-.5, .24) (-.015, .42) (-.06, .64) 
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Table 2. Restriction factors, compound values’ distances, and restriction strengths 

Concept 
nodes C8  C1 C8  C2 C8  C3 C8  C4 C8  C5 C8  C6 C8  C7 C8  C8 

Restriction 
factor (RF) 7.00 5.33 1.37 7.00 2.00 2.08 28.00 10.67 

Compound 
value 

distance 
d(CV) .8 .95 .83 .48 .315 .74 .435 .7 

Restriction 
strength (RS) 5.6 5.06 1.14 3.36 0.63 1.54 12.18 7.47 

 
 
NPN logic based prior solution analysis 

provides a very informative result, i.e. the answer 
to a given question. Cutting speed (C1) shows a 
very strong influence on surface quality (RS(v) = 
5.60), which also reflects the known physical 
dependency of cutting process. In addition, 
cutting feed (C2) is also very influential (RS(s) = 
5.06), in contrary to cutting depth (C3), entering 
angle (C5), and nose radius (C6), which have very 
low restriction strength factors (RS() = 1.14, 
RS() = 0.63, RS(r) = 1.54). High restriction 
strength factors of cutting insert quality (C7: 
RS(Q) = 12.18) and rake angle (C4: RS() = 3.36) 
point out the importance of their proper selection 
during initial process planning procedure.  

However, these parameters depend on a 
number of other factors thus changing them could 
increase machining costs and should therefore be 
changed only if cutting parameters’ adjustment 
and tuning cannot bring the required surface 
quality. In that case the whole process planning 
procedure should be repeated in order to select 
appropriate cutting parameters for a new cutting 
tool. Finally, surface quality node (C8) itself 
clearly shows (upper bound value set to P=0.64, 
obtained through path C8-C2-C8) that as the 
cutting feed increases, the value of average 
roughness also increases, i.e., surface quality goes 
down. This conclusion is also supported by a 
small lower bound value (N=0.06), obtained 
through path C8-C1-C7-C3-C2-C8, which asserts 
that interaction of cutting speed, insert quality and 
cutting depth with cutting feed will not 
significantly decrease surface quality, if the last is 
appropriately selected. Therefore, in case of low 
surface quality the accuracy of cutting speed 
should first be checked, and then cutting speed 
should be adjusted. 
 
 

3 CONCLUSIONS 
 

In our approach decision-making on 
essential parameters selection has been simulated 
and their (optimal) values upon relatively large 
number of interconnected influential process 
parameters have been determined. These 
influential parameters are usually context 
depended and the selection procedure is 
performed according to numerous imprecise and 
unreliable data and information, which are, to a 
great extent, empirical. In addition, process 
planners quite often make decisions upon their 
intuition, subjective experience and belief. 
Experts in the industry face these problems in 
their daily practice. However, accepting this 
situation as reality and taking into account the 
long-standing experience and learned (industrial) 
knowledge we propose to use it as power, instead 
of limitation, for generation of appropriate 
solutions.  

By using NPN logic and NPN relations 
theoretical background and introducing empirical 
refinement procedure some preliminary results of 
the research work related to the application of 
FCMs in metal cutting process planning decision 
analysis have been presented through testing the 
machining problem of low surface quality. The 
output provides in-depth information on the 
behavior of the system as a whole when the 
stimuli are introduced. Such information is 
strongly supported by the measure of a side-
effect, which directs subsequent actions by a 
decision maker. Since decision-making and 
control processes are parallel, i.e., when make 
decisions we control the system, and if we control 
the system we have to make decisions, the 
approach can be applied to control problems as 
well, although these kind of problems are not the 
main concern of this paper. 
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FCMs provide a modeling framework that 
successfully captures the gained knowledge and 
experience, enabling experts (process planners) to 
express their beliefs about (machining) system 
behavior. Additionally, an important and 
inevitable fact that makes FCMs so powerful is 
that when dealing with complex problems 
humans are apt to use more natural concepts, 
rather than only technical ones. Clearly, the 
results of the conducted research spur the need for 
special amelioration methodology for decision 
analysis and adaptation reasoning, which can 
successfully employ fuzzy cognitive maps. 
Further research also includes investigation of 
different types of FCM augmentation, learning of 
edge weights and their dynamical behavior. 
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