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Analytical Description of Polygonal Holes Boring - General 
Approach 

 
Miodrag Zlokolica* - Maja Čavić - Milan Kostić 

Faculty of Technical Sciences, University of Novi Sad, Serbia 
 

Equilateral polygonal holes can be manufactured on conventional machines such as lathes or drills 
using special tool. Tool has to rotate about its axis while its center simultaneously follows complex planar 
trajectory. Tool center motion can be achieved in several ways: by guiding tool with template which shape 
exactly matches the shape of the hole produced, using cam or planetary gears mechanism etc.  

To describe accurately polygonal hole boring process it is necessary to determine tool geometry, 
tool motion as well as realized hole geometry. In order to prescribe optimal boring regime time-history of 
tool cutting blade tip speed has to be obtained. Holes are, generally, produced with rounded corners so, 
having in mind further operations with work piece, it is important to know corner radius. 

Analytical approach presented in this paper enables easy and efficient forming of the 
mathematical model describing geometry and kinematics of polygonal hole boring process. 
© 2010 Journal of Mechanical Engineering. All rights reserved.  
Keywords: polygonal hole, boring, kinematics 
 

0  INTRODUCTION 
 
Polygonal contours of different geometry 

are widely used in many engineering applications 
– hexagonal hole in screw head is well known 
example. In case of the screws, deep extrusion 
process is used as the only one justified 
considering number of products, required surface 
quality and price. However, when there is a need 
for lesser number of products or they can not be 
produced using casting of forming, machining 
technologies has to be applied. Internal surfaces 
are typically produced using broaching, shaping 
or EDM procedures while for external ones 
milling is preferable. Generally, broaching and 
shaping have problems with accuracy and 
repeatability of dimensions. EDM gives precise 
dimensions but it is time-consuming process so, 
frequently, it is discarded due to high price. On 
the other side, there exist a lot of machining 
technologies with main motion based on rotation 
- motion easiest to obtain. They are rather 
inexpensive and fast, and among them, most 
interesting for this problem, is boring. In fact, 
polygonal holes can be manufactured on 
conventional machines such as lathes or drills 
using special tool. It is imperative that tool and 
hole geometry are compatible, that is to say, hole 
contour must represent an envelope to 
consecutive tool positions.  Tool has to rotate 
about its axis while its center simultaneously 
follows complex planar trajectory. Tool center 

motion can be achieved in several ways: by 
guiding tool with template which shape exactly 
matches the shape of the hole produced (Watts 
drilling system [1]), using cam mechanism 
(Formbore system [2] and [3]) etc. Beside main 
rotational motion tool has to perform auxiliary 
linear motion. Watts drill  is based on curves of 
constant width (Roleaux polygons) theory, but it 
is only applicable on polygonal holes with even 
number of sides. On the other side when using 
cams, a different one has to be calculated and 
applied for each polygonal hole, so it becomes a 
case study procedure. 

In order to prescribe optimal boring 
regime it is very important to know time-history 
of tool cutting blade tip speed [4]. Polygonal 
holes are, generally, produced with rounded 
corners in order to avoid impact load on the tool, 
so, having in mind further operations with work 
piece - assembly for instance, corner radius has to 
be calculated. Using concept of alternative 
mechanism [5] and centrodes theory for planar 
motion [6] those two problems were resolved first 
graphically for square hole [7]. Analytical 
approach using centrodes generalized to calculate 
blade tip velocity and hole corner radius for all 
types of equilateral polygons was proposed in [8] 
and [9]. Idea was further developed resulting in 
general analytical approach which enables easy 
and efficient forming of the complete 
mathematical model describing geometry and 
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kinematics of any equilateral polygonal hole 
boring process which is presented in this paper. 

 
1 BASIC GEOMETRY OF TOOL AND HOLE 

 
Cross-section of tool for manufacturing 

equilateral n-sided polygonal hole is an equilateral 
n-1-sided polygon. During process, trajectories of 
two tool cutting blade tips coincide with adjacent 
hole sides, i.e. they actually produce hole sides.  
Other blades cut rounded corners of the hole. 

In Fig. 1 tool and hole geometry 
parameters relevant for analysis are presented, 
indexes 1 and 2 refer to tool and hole parameters 
respectively. Point  O is hole center while point C 
denotes tool center. 

Each equilateral polygon can be assembled 
from triangles with two equal sides. Central 
angles of these triangles are (n is number of sides 
of produced polygonal hole): 

1

2
)(1 




n
n

  , (1)

n
n

 


2
)(2  . (2)

Peripheral angles of tool )(1 n  and 

hole )(2 n  are: 

 




1

3
)(1 n

n
n  , (3)

 



n

n
n

2
)(2  . (4)

Mutual position of tool and hole is defined 
with (valid for n > 4): 
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Tool side dimension can be calculated as: 
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if n>4 , 
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otherwise a(4) = A. (8)
In case when n = 4 tool side dimension can 

not be calculated accordingly to (7) because tool 
cutting blade tips will not describe desired hole 
contour so  value defined by (8) is accepted. 

Radii of circles circumscribed about tool 
and hole respectively, )(1 nr  and )(2 nr , are: 
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Fig. 1. Tool and hole geometry parameters 
 

2 CHARACTERISTIC POINTS POSITION – 
FORMING PARAMETRIC EQUATIONS  

OF MOTION 
 
Characteristic points are: tool center C, 

tool cutting blade tips and instantaneous velocity 
pole N. Equations of motion are given with 
respect to tool rotation angle  

 
2.1 Position of Tool Center - Local Parametric 
Equation  

 
Origin of fixed coordinate system xOy is 

positioned in the polygonal hole center O while y 
axis coincides with axis of symmetry of the hole 
corner. In case of n-sided polygonal hole this 
analysis will define only one part of the tool 
center trajectory that would be the one around the 
particular corner ( )()( gg nn   ). Tool 

center position parameters are presented in Fig. 2.  
Equations of two adjacent hole sides are: 

)()(),( 21 nrxnknxy  , (11)

)()(),( 22 nrxnknxy  , (12)
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where )(nk  is given as: 
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2
tan()( 2 n

nk


 . (13)

Parametric equation of the cutting tool side is: 

),()tan(),,( 1212 nbxnxy   , (14)

where parameter  is measured as angle between 
tool side and x axis. 

Fig. 2. Tool center position parameters 
 
Coordinates ( ),(1 nX  , ),(1 nY  ) and 

( ),(2 nX  , ),(2 nY  ) of points 1 and 2 (tool tips), 

are found as intersection of 
12( ( , , )y x n ,

1 ( , ))y x n  

and ( ),,(12 nxy  , 
2 ( , ))y x n  respectively (Fig. 2).  

Relation ),,(),( 121 nxynxy   is valid for 

point 1 so it can be written that: 
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In the same way, following expressions 
can be obtained for point 2:  
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In those equations ),(12 nb   represents 

intersection of line ),,(12 nxy   and y axis.  

It can be calculated using the fact that 
distance between tool tips i.e. intersection points 
1 and 2, of lines ( ),,(12 nxy  , 1 ( , ))y x n  and 

( ),,(12 nxy  , 2 ( , ))y x n  respectively, always 

equals )(na . So, if coordinates of point 1 and 2 

are  
1( ( , )X n ,

1( , ))Y n  and ( ),(2 nX  , ),(2 nY  ) 

it can be written that: 
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After transformations, expression for 
),(12 nb  is obtained: 
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Tool center C is situated at intersection of 
),,(121 nxy   and ),,(122 nxy   - lines which 

connect respective tool tip and tool center: 

),(),(),,( 121121121 nbxnanxy   , (21)

),(),(),,( 122122122 nbxnanxy   , (22)

where ),(121 na   and ),(122 na  are given as: 

)
2

)(

2
tan(),( 1

121 
 

n
na , (23)

)
2

)(

2
tan(),( 1

121 
 

n
na . (24)

Coefficients ),(121 nb   and ),(122 nb   are 

determined using the fact that lines ),,(1 nxy   

and ),,(121 nxy   intersects at point 1, while lines 

),,(2 nxy   and ),,(122 nxy   intersects at 2. 
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Finally, position of tool center C is 
determined as: 
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It is important to emphasize that Eqs. (27) 
and (28) are valid in )()( gg nn    interval 

i.e. around axis of symmetry of observed hole 
corner. Because of that they will be called tool 
center local equations.  
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2.2 Position of Fixed Centrode Points – Local 
Parametric Equations 

 
Fixed centrode presents geometric position 

of the instantaneous velocity pole (Fig. 3). Since tool 
cutting blade tips 1 and 2 move along hole sides 

),(1 nxy  and ),(2 nxy , respectively, velocities of 1 

and 2 are collinear with ),(1 nxy   and ),(2 nxy , so 

intersection of normals to ),(1 nxy  and ),(2 nxy  at 

points 1 and 2 represents instantaneous velocity pole 
N. Equations of lines ),,(1n nxy   and ),,(2n nxy   

are: 

),()(),,( 1n1n1n nbxnanxy   , (29)

),()(),,( 2n2n2n nbxnanxy   , (30)

where:   
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Fig. 3. Instantaneous velocity pole position 
 
Coefficients ),(1n nb   and ),(2n nb   are 

determined knowing that lines ),(1 nxy  and 

),,(1n nxy   intersects at 1 ( ),(1 nX  , ),(1 nY  ), 

while ),(2 nxy  and ),,(2n nxy   intersects at 2 

2( ( , )X n ,
2 ( , ))Y n . 
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Fixed centrode point (instantaneous 
velocity pole) N is found as intersection of lines 

),,(1n nxy   and ),,(2n nxy  .  

Parametric equations defining position of 
instantaneous velocity pole N are:  
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Again, Eqs. (35) and (36) are valid in 
)()( gg nn    interval i.e. around axis of 

symmetry of observed hole corner. Because of 
that they will be called fixed centrode local 
equations. 

 
2.3 Position of Moving Centrode Points – Local 
Parametric Equations 

 
Moving centrode is curve rigidly 

connected to the tool which, while tool moves, 
rolls without sliding over fixed centrode (Fig. 4). 
If tool center and fixed centrode points 
coordinates are known, moving centrode can be 
easily defined – equation defining position of its 
points is obtained by expressing fixed centrode 
points coordinates in local, moving coordinate 
system x1Cy1. It is rigidly attached to tool, axis y1 
representing axis of symmetry of the tool side and 
its origin is situated in the tool center C. 

 

 

Fig. 4. Fixed and moving centrode 
 
From Fig. 4 it can be seen:  

PCN rrr


  . (37) 

Using matrix transformation between 
x1Cy1 and xOy following relation can be written: 



Strojniški vestnik - Journal of Mechanical Engineering 56(2010)7-8, 503-512 

 

Analytical Description Of Polygonal Holes Boring - General Approach 507 
































 



















1

),(

),(

000

),()cos()sin(

),()sin()cos(

0

),(

),(

P
l

P
l

C
l

C
l

N
l

N
l

nY

nX

nY

nX

nY

nX










,

 (38)

which, after some transformations, gives local 
equations of moving centrode: 
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2.4 Position of Fixed Centrode Points, Tool 
Center and Moving Centrode Points – Global 
Parametric Equations  

 
First, global parametric equations for fixed 

centrode points will be determined. Locally, fixed 

centrode is defined with ( ),(N
l nX  , ),( nY N

l  ), 

where angle  is parameter. Manufactured 
polygonal hole represents centrally symmetrical 
curve which implies central symmetry of fixed 
centrode. Furthermore, that suggests transition 
from Descartes to polar coordinates: 
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As problem geometry is same around axis 
of symmetry of each hole corner it is obvious that 
fixed centrode has to be periodical curve with 
period: 

)()( 2NT nn    . (42)

Eqs. (40) and (41) are highly nonlinear 
with respect to parameter, so it is not possible to 

obtain analytical expression )( N
l

N
l

N
l rr  . On 

the other hand, period g of the parameter can be 
calculated using relationship: 

)(),g( NTN
l nn    . (43) 

In this way, an interval ( g g)      

around one axis of symmetry (one hole corner) in 
which local equations are valid can be 
determined. Polar radius of global curve is 

periodical function of polar angle N
l  with 

period )()( 2NT nn    but it is also periodical 

function of , with period 2g. 
In order to calculate global radius 

),(NN nrr  of fixed centrode expansion of (41) 

to Fourier series  will be used on interval 
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Using property of Fourier series which 
says that if a function is expanded on interval, 
than Fourier series not only represents function 
approximation on that interval but it will also be  
its periodical continuation, global radius of fixed 
centrode can be calculated for whole period 

N ( , ) (0 2 )n    . 

As said before geometry of polygonal hole 
is symmetrical with respect to y axis (Figs. 2 and 
3). Since geometry of the fixed centrode is 
determined by the geometry of the polygonal 
hole, centrode itself has to be symmetrical with 
respect to y axis. This means that local radius (41) 
has to be even function i.e.: 
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Because of that, expansion to Fourier 
series can be simplified and global radius of fixed 
centrode can be finally expressed as: 
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where )(i nAf  are Fourier coefficients which are 

determined as:  
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Polar angle function angle is also 
periodical function with period )(NT n  

(parameter period is 2 g).  In order to define 

global curve of the fixed centrode polar angle has 
to fill complete interval 

N ( , ) (0 2 ).n     From 

Fig. 5 it is obvious that global function of the 
polar angle can be obtained by continuous 
supervening of polar angle local functions 

),(N
l n  until ),(N n  reaches 2 . So, as in 

interval (0 2 )  there are n periods 

(
NT ( ) 2 )n n   , local function ),(N

l n  has to 

be added n  times in order to form 
N ( , ).n   

While parameter  changes in interval 
0 2 gn      polar angle describes whole fixed 

centrode i.e. 
N ( , ) (0 2 ).n     

 

Fig. 5. Fixed centrode – global curve  
 
Index j is introduced, defining an interval in 

which instantaneous value of parameter  is situated: 
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Global function of the polar angle can now 
be written as: 
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Obtained curve: ),(N n , ),(N nr   (Eqs. 

(46) and (49)) represents fixed centrode global curve 
(

N ( , ) (0 2 )n     while 0 2 gn     ) (Fig. 

5). 

Same procedure can be applied in order to 
form tool center global curve ),(C n , ),(C nr  .  

Some interesting conclusions have been 
obtained while performing the procedure. 
Namely, after forming and analyzing global 
equation for radius of tool center trajectory 

),(C nr   it was concluded that trajectory has 

nearly circular shape. Eccentricity of trajectory, is 
introduced as:  

)),(min(

)),(max(
)(

C

C

nr

nr
ne




  . (50) 

It resumes values significantly close to 1 
for all cases of n. 

Also, after analysis of polar angle global 
function ),(C n  (Fig. 6) it has been concluded 

that it behaves close to function: 

  )1(),(C nn  . (51) 

Differentiation of (51) gives relationship 
between angular velocities in the following form:  

   )1(),(C nn  . (52) 

 

 
Fig.6. Function ),(C n  with respect to    

(case n = 5) 

 

Fig. 7. Tool motion 
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This means that tool motion (Fig. 7.) can 
be realized as superposition of two rotations: tool 
has to rotate around its longitudinal axis with 

angular velocity   and, at the same time, to 
rotate around hole centre O with angular velocity 

C , radius of rotation is equal to average 

)),(( C nr  . Such motion can be easily realized 

using planetary gear mechanism. 
Moving centrode global curve ),(P n  

),(P nr  can be defined following the same 

procedure. It is also centrally symmetrical and 
periodical curve, its period depending on its 
shape. Since tool geometry defines shape of 
moving centrode period of global polar angle 

),(P n  will be: 

)(
1

2
)( 1PT n

n
n  




  . (53)

Obtained curve gives coordinates in 
moving coordinate system x1Cy1. Its origin is 
positioned at the tool center ),(C nX  , ),(C nY  , 

while axis x1 forms angle  with axis x of fixed 
coordinate system xOy. Now, moving centrode 
can be expressed in fixed coordinate system using 
following matrix transformation:  

f
P C

f
P C

P

P

( , ) cos( ) sin( ) ( , )

( , ) sin( ) cos( ) ( , )

0 0 0 0

( , )

( , ) .

1

X n X n

Y n Y n

X n

Y n

   
   




   
       
     
 
  
  

 
(54)

where ),(p nX   and ),(p nY   are Descartes 

coordinates of moving centrode in moving 
coordinate system. 

 
2.5 Position of Tool Cutting Blades Tips  

 
In case of manufacturing n-sided 

equilateral polygonal hole, tool has to have shape 
of n-1-sided equilateral polygon, two of its 
corners being in contact with hole sides.  

Parameter m which defines tool cutting 
blades tip index is introduced. With known global 
position of tool center ),(C nX  , ),(C nY  , distance 

)(1 nr between tool center and tool tip as well as  

angle ),,( mn , it is easy to calculate position of 

all tool cutting blades tips m = 1, 2, 3, ..., n-1 (Fig. 
8):  

)(
)),,(cos(

)),,(sin(

),(

),(

),(

),(

1
C

C

m

m

nr
mn

mn

nY

nX

nY
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



























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





.

 
(55)

 

Fig. 8. Position of tool cutting blades tips 
 
Tool tips m = 1, 2 are situated on hole 

sides. Angle ),,( mn , is calculated as: 

  )2()(
2

)(
),,( 1

1 mn
n

mn . (56)

Since global coordinates of tool center 
were used in Eq. (55), obtained ),,(m mnX   and 

),,(m mnY   represent global coordinates of mth 

tool tip.  
After forming trajectory of each tool tip (m = 

1, 2, ..., n-1) for one period ( 0 2 gn    ) they are 

combined thus forming closed curve which represents 
contour of real manufactured hole (Fig. 9).  

 
2.6 Radius of Curvature of Tool Cutting 
Blades Tip Trajectory 

 
In general, if the moving point trajectory is 

defined by )(sr


, (s is the parameter) than its 

radius of curvature is defined as:  

)()(

)(
)(

3

srsr

sr
s 




  . (57)
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In this case tool tip coordinates are 

m ( , , ),X n m  
m ( , , ),Y n m  so its position vector in 

xOy is given as: 

jmnYimnX

mnr








),,(),,(

),,(

mm

m




 
.
 (58)

Radius of curvature is then (acc. to Eq. (57)):   

),,(),,(

),,(
),,(

mm

3

m

mnrmnr

mnr
mn




 




  (59)

or, after differentiation with respect to : 

),,(),,(),,(),,(
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mmmm
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mnYmnXmnYmnX

mnYmnX
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












.
 (60)

When tool tip enters hole corner radius of 
curvature decreases, so it assumes its minimal
value min  at positions defined by : 

ρmin 0,2 ,4 2g g n g         . (61)

Those positions are determined by
parameter period  2 g  (Fig. 5). 

 
Fig. 9. Real contour of the manufactured 

polygonal hole (case n = 5) 
 
Corner radius min ,  minimal corner radius 

min ,  tool tips 1, 2, 3 and 4 position vector and 

trajectories for one period, as well as complete 
hole contour for case n = 5, are presented in Fig. 
9. 

 
2.7  Tool Cutting Blades Tip Velocity 

 
With position of tool tip known it is easy 

to calculate its velocity vector: 

jmnYimnX

mnrmnv








),,(),,(

),,(),,(

mm

mm




 
.
 (62)

Absolute value of velocity is obtained as: 

2
m

2
m

m

),,(),,(

),,(

mnYmnX

mnv





 


 
.
 (63)

 
3  EXAMPLE – PENTAGONAL HOLE 

BORING 
 

Hole profile is equilateral pentagon so tool 
will have square shape. Necessary geometrical 
parameters, according to Eqs. (1) to (9) have been 
calculated: 
 tool and hole central angles:   

1(5) 90 ,    
2 (5) 72 ,    

 tool and hole peripheral angles:  

1(5) 90 ,    
2 (5) 108 ,    

 angles determining mutual position of tool 
and hole: 

1(5) 9 ,    
2 (5) 27 ,    

 dimension of tool side:  It was adopted that  
A = 1 cm, so a(5) = 1.05 cm, 

 radii of circles circumscribed about tool and 
hole: 

1(5) 0.741cm,r   
2 (5) 0.851cm.r   

Using procedure derived in Section 2 
graphs presenting position of tool center (Fig. 10), 
fixed centrode (Fig. 11), moving centrode (Fig. 
12), real contour of the manufactured polygonal 
hole (Fig. 9) and tool cutting blade tip velocity 
(Fig. 13) are obtained.  

 
Fig. 10. Position of tool center 

C( ( , 5)  ,
C ( ,5))r    

 
Change of tool cutting blade tip velocity 

with respect to  is presented in Fig. 13. 
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Fig. 11. Fixed centrode 

N( ( ,5),   
N ( ,5))r   

 

 
Fig. 12. Moving centrode ( P ( ,5)  ,

P ( ,5))r   

 

 
Fig. 13. Tool cutting blade tip velocity 

 
Minimal radius of curvature appears at the 

hole corners, for pentagonal hole 
min 0.17 cm  . 

One period of hole boring process 
(corresponding to one turn of centrodes) is 
presented in Fig. 14. Moving centrode rolls over 
fixed one thus realizing tool motion. During the 
motion tool center C describes nearly circular 
curve K. 
 
 

 

 

 
Fig. 14. Pentagonal hole boring process 
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In Working model 2D software planetary 
gear mechanism that realizes desired motion i.e. 
moves tool so it cuts desired equilateral 
pentagonal hole has been modeled and tool 
motion was simulated (Fig. 15). 

 

Fig. 15. Simulation of tool motion 
 

4 CONCLUSION 
 
Using proposed analytical approach it is 

possible to analyze geometry and kinematics of tool 
in the process of boring equilateral polygonal hole.  

Cross-section of tool for manufacturing 
equilateral n-sided polygonal hole is an equilateral 
n-1-sided polygon where cutting blades are 
positioned in respective tool tips and are always in 
contact with hole sides. Such geometry implies that 
hole corner will be cut with respective radius and 
the difference (distance between tool tip and hole 
corner) measures less then 5% of hole side A. Value 
of min rises with A and, even more, with n 

(number of hole sides). For n > 10, a radius 
becomes significant, but having in mind that such a 
hole, even with precise geometry, slightly differs 
from a circle, it is not widely used and this fact does 
not limitate the usefulness of the method. Though 
existence of the radii is preferable because of better 
dynamic regime of cutting, in some cases it is 
necessary to cut hole with precise geometry. This 
can be done by reshaping the tool and making its 
center to follow an appropriate trajectory, which, in 
practice, leads to application of single cutting tip 
tool with cam mechanism. As for shape of hole 
sides, taking enough members in Eq. (46) ensures 
satisfactory precision.   

Presented approach as well as the method 
used to solve the problem is general – applicable 
to all equilateral polygons, not only to 4, 6 and 8-
sided as methods based on curves of constant 
width. Even though the holes are cut with radius 
in corners, the fact that multiple tool tips are in 
contact with hole sides ensures good dynamics of 
boring regime (no impact in sharp corners, cutting 
force is distributed to more cutting blades thus 
diminishing stress to the tool). Also, a simple 
practical solution – planetary gear mechanism 
which can realize desired motion is proposed  (no 
need for complex tool center trajectory realization 
– cams or robot guidance (EDM)).  
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