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After gear teeth impact, natural free vibrations arise, attenuating in a short period of time. Teeth 

impacts repeat with the frequency of teeth entering the mesh, vibrations become restorable, and restore 
with teeth mesh frequency. In the range of sub-critical teeth mesh frequency range these natural free 
vibrations are covered by forced vibrations caused by the fluctuation of teeth deformations. In the super-
critical mesh frequency range, restorable free vibrations dominate in the frequency spectrum of gear 
system vibrations. These restorable free vibrations effectuate the increase of total vibration level with the 
speed of rotation increase. Also, in this frequency range the modal structure (natural frequency) of the 
gear system is not stable and effectuates super-critical resonances arising. Gear vibration measurements 
and frequency analysis (FFT-Analysis) are performed in very high speeds of gear rotations as high as 
40,000 rpm. A mathematical model for experimental results synthesis is established. For this purpose, the 
theory of singular systems is used. Gear teeth mesh is treated as a singular system, with a continual 
process of load transmission with singularities caused by teeth impacts. Damping coefficients and energy 
attenuation is determined using the developed mathematical model.  
©2010 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 
Gear vibrations have been the subject of 

studies for a long time. Research was oriented, 
both theoretically and experimentally, toward 
identifying the teeth mesh process or toward 
analysing gear drive system behaviour. Different 
models were used, starting from a single-degree 
model for teeth mesh analysis to complex multi-
degree models for identification of effects in a 
complete gear transmission system. Excitation 
arises from the teeth mesh. Basically, during the 
process of gear meshing two excitation processes 
are performed: fluctuation of gear teeth 
deformation and teeth impacting. Both of them 
enable the inclusion of the influence of teeth 
transmission errors, teeth stiffness non-linearity, 
friction forces, etc. Calculations of gear vibrations 
are predominantly performed in the form of 
forced vibrations caused by the fluctuation of 
gear teeth deformation. Compared with 
experimental results, this approach produces 
satisfactory results in sub-critical and in resonant 
mesh frequency range. However, in super-critical 
mesh frequency range (extremely high rotation 
speeds) the difference between the calculated and 
measured vibrations is significant. In this 
frequency range, the calculated level of vibrations 

decreases with increase of rotation speed, 
however, measured gear vibration level slightly 
increases (Fig.1). 

In the Gear research centre, TU Munich 
(FZG) managed very intensive investigations of 
gear vibrations 40 years ago. This research was 
analytical and experimental [1] and [2]. Knabel 
[2] performed detailed calculations of forced 
vibration caused by fluctuation of teeth 
deformations. Calculations were carried out using 
the model of three-degree freedom of meshed 
gear pair and analogy calculation system 
(computer). In Fig. 1, line 2 presents one of these 
results. The same vibrations were measured (line 
1 in Fig. 1), and the difference between the 
obtained vibration levels in the supercritical teeth 
mesh-frequency range is evident. In [1] and [2] 
the basic line 3 (Fig. 1) is defined, which presents 
basic and general increase of gear vibrations. 
Using the results of the FZG, the gear calculation 
procedure was standardized [3]. Internal dynamic 
forces are involved in calculations by dynamic 
factor Kv (Fig. 2). In supercritical teeth mesh-
frequency range is defined as independent of the 
teeth mesh-frequency, however, with the value 
close to maximal values in sub-critical range if 
teeth mesh frequency f is not higher than natural 
fn more than 2.5 times.    
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Further research was performed mainly in 
sub-critical and critical gear rotation speeds. 
Vibrations in those calculations are excited by 
time function of fluctuation of teeth in mesh 
deformation [4] and [5]. This function is suitable 
for inclusion of transmission errors and their 
effects analysis [6], inclusion of sliding friction 
effects [7] and [8], dynamic loads calculations [6] 
and [9]. All of these and similar calculations or 
analyses were processed in sub-critical and 
critical teeth mesh frequency ranges. Supercritical 
teeth mesh frequency range was not processed in 
the mentioned analysis. Research in the field of 
gear vibration was also performed in respect of 
non-linearity [10] and [11], and it was found that 
the effects of non-linearity are not significant. In 
some research works on gears, analyses of 
balance of vibration energy [12] and [13] were 
also performed. Calculations of gear vibrations 
using a discrete systems approach in some of the 
research works were coupled with FEM 
calculations of elastic systems [13] and [14].  

In order to define the nature of gear 
vibrations in supercritical teeth mesh frequencies 
and to define a mathematical model, so as to 
make a synthesis of the measured results, a new 
approach to gear vibrations treatment is taken. 
Gear vibrations are defined as restorable free 
(natural) vibrations caused by teeth impact at the 
moment of contact start (addendum impact). 
Every impact disturbs natural free damped 
vibrations which are restored with a new teeth 
impact. The theory of singular systems is used to 
develop a mathematical model. 
 

1 PROBLEM FORMULATION  
 

1.1 Comparing Measured and Calculated Gear 
Vibrations 

 
The measured results of vibration for one 

gear pair in a very wide teeth mesh-frequency 
range [2] show fluctuations, which can be 
explained by comparing them to those calculated 
(Fig. 1). Measurements were carried out to 20,000 
rpm and the main resonance was at 5000 rpm 
(Fig. 1, line 1). The range of other 15,000 rpm 
was supercritical, where the level of vibration was 
approximately between 50g and 100g (g - earth 
acceleration). After the main resonance 
acceleration decreased to the level of 40g, it then 
slightly increased with the speed of rotation 

increase. Using the model presented in Fig. 1, 
vibrations were calculated and are presented by 
Fig. 1, line 2. Excitation was performed by the 
function of stiffness fluctuation in the gear teeth 
mesh. In the supercritical mesh-frequency range, 
the calculated level of vibration decreased to 
minimal values. This is a phenomenon which 
needs a new approach to the process of 
description and modelling. 

 

 
Fig. 1. Comparing measured and calculated gear 

vibration level [2] 
 

 
 

Fig. 2. Dynamic factor Kv [3] and approximation 
of gear dynamic forces and vibration 

 
For practical use and load capacity 

calculation of gear drives, dynamic factor Kv is 
defined and standardized by ISO 6336. For this 
purpose, measured dynamic forces and vibrations 
were used, and values of Kv were defined 
separately for sub-critical, critical and 
supercritical teeth mesh-frequency range (Fig. 2). 
The levels of dynamic forces for a practical use 
are approximated by interrupted lines. Resonant 
teeth mesh-frequency is defined based on middle 
gear teeth stiffness and equivalent mass of 
connected gears and other rotating masses. In the 
supercritical teeth mesh-frequency range, the 
level of dynamic forces is approximated by a 
horizontal line, i.e. the value of Kv is independent 
of teeth mesh-frequency increase (if f < 2.5 fn). 
However, it is important that the level of Kv in this 
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range is significant, and it is necessary to 
investigate this phenomenon. 

 
1.2 Addendum Gear Teeth Impact 

 
There are a few kinds of teeth impacts 

during gear meshing. Much stronger than others 
is addendum impact, especially in spur gears 
without teeth flank corrections. Teeth 
deformations are proportional to teeth load and 
teeth stiffness. Deformations replace the first 
point of contact from the right position A, to 
position A’ which is ahead of point A. Contact of 
teeth pair starts with intensive addendum impact 
(Fig. 3a). Collision speed vc is proportional to 
teeth deformation, speed of rotation n and gear 
design parameters. By analyzing teeth geometry, 
deformations and speeds, collision speed at the 
first point of teeth contact is defined as: 
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are z1 and z2, and other parameters are presented 
in Fig. 3a. In Fig. 3b relative collision speed vc/n 
for the chosen parameters for spur gear pair is 
presented (z1 = z2 = 25, module m = 5 mm, offset 
factors x1=x2=0). For the other spur gear pairs 
with the radius of basic circle of pinion rb1 in mm, 
using ratio (vc/n) from diagram in Fig. 3b, 
collision speed is 

1
1

5.117

1
1 n

r

un

v
v bc

c 





 






 . (2)

Collision speed vc is defined in the 
direction of teeth contact line. For a further 
application of this speed, it is necessary to 
transform the model of rotating masses into a 
harmonic oscillator. Inertia moments of rotating 
masses (of gears and all others connected to 
them) J1 and J2 should be transformed in 
concentrated masses in the teeth contact line 
direction,  
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The radii of the basic circle of gear pair 
are   cos211 mzrb   and   cos222 mzrb  , 

where = 200. The collision force of 
concentrated masses is: 
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where c’ is teeth stiffness at the moment of 
collision and me equivalent mass. 
 

 

 
Fig. 3. Teeth collision: a) addendum collision, 

b) relative speed of addendum collision for 
chosen gear parameters 

 
1.3 Testing Rig for Vibrations in Supercritical 
Mesh Frequency Range 

 
For the purpose of gear vibration in the 

supercritical teeth mesh-frequency range, a 
specific testing rig is designed and realised (Fig. 
4). In order to perform the extreme high speed of 
rotation, the masses of rotating components are of 
relatively small dimensions, with specific type of 
lubrication and sealing. The speed of rotation can 
vary from zero to 40,000 rpm measured at the 
shaft of pinion z1. The torque which applies load 
in gear teeth is made by middle coupling using 
the principle of back-to-back system. The 
application of torque takes place before the 
rotation and vibration measurement. For the 
experiments presented in this work, the torque in 
the coupling (gear z2 = 47) was T2 = 30 Nm, and 

a) 

b) 
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in the pinion z1 = 32 it was T1 = 20.4 Nm. The 
speed of rotation n = n1 in rpm was measured in 
the shaft of the pinion z1 = 32 and teeth mesh-
frequency was calculated f = nz1/60. The 
accelerometer for vibration measurement is fixed 
by the screw on the left gear housing. The 
position of the accelerometer is presented in Fig. 
4b. The direction of the main accelerometer 
sensitivity is covered with gear contact line 
direction. The dynamic forces from the teeth 
mesh area are transmitted to the housing walls 
through bearings. Vibrations in the teeth contact 
area and in the housing walls differ in intensity 
but the structure of vibration spectrums is very 
similar. This relation is provided by a specific 
design of housing which eliminates additional 
natural frequencies with significant effects. The 
difference in the vibration level is proportional to 
vibration transmissibility factor between the teeth 
mesh area and the position point of the 
accelerometer. 

 

 
Fig. 4. Back-to-back test rig: a) gears centre 

distance surface, b) right side view 
(centre distance a = 85 mm, z1 = 32, z2 = 47, 

m = 2 mm, b = 8.5 mm) 
 
Measurement and spectrum analysis were 

performed using software for this purpose for real 
time and FFT analysis. Prior to measurement, the 
modal testing of back-to-back system was 
performed. The system was excited by the impact 
in the gear flank. One of those results is presented 
in Fig. 5. The three natural frequencies were 
detected, fn1 and fn2 caused by corresponding 
shafts and shaft supports elasticity and fn caused 

by elasticity of gear teeth in mesh. Before 
measuring the vibrations with a high speed of 
rotation, measurements with very slow speed of 
rotation were done. The aim of those 
measurements was to detect vibrations caused by 
separated teeth impacts. The results of these 
measurements are presented in Fig. 6. After the 
impact, gears vibrate with natural frequency fn. 
This vibration was measured in a tangent 
direction in the gears. After a short time, the 
vibration is damped. The next impact excites a 
new damped vibration, again and again. Small 
speed of rotation produces vibration, as presented 
in Fig. 6. 

The measured results presented in Fig.6 
show that gear vibrations contain restorable free 
component. Teeth collisions repeat with teeth 
mesh frequency f and restore a new cycle of free 
damped vibrations. This effect in the gear 
vibration analysis first used by Umezawa and 
thereafter Cai, reference [4], is referred to as the 
Umezawa’s effect. Using this effect and doing 
calculations, Cai [4] obtained an increase in 
vibrations in the supercritical teeth mesh 
frequency range, however, the range was very 
small. If the gears are damaged [16] these effects 
become dominant in the frequency spectrum. 

 

 
 

Fig. 5. Natural frequencies of testing rig 
 

 
 

Fig. 6. Restorable free damped vibration after 
every teeth impact 

a) 

b) 
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2 ANALYSES OF EXPERIMENTAL RESULTS  
 
Using installation, as presented in Fig. 4, 

the measurement was performed in the range as 
high as 40,000 rpm of pinion z1 = 32. The main 
objective was to obtain similar results presented 
in Fig. 1 [2] and identify the phenomenon which 
increases vibration level in the supercritical mesh-
frequency range. In addition, an objective was to 
identify “supercritical resonances” (Fig. 2) and 
the phenomenon which creates fluctuation of 
vibration level in this teeth mesh-frequency 
range. One of the measured results is presented in 
Fig. 7. At the teeth mesh-frequency f = fn = 5200 
Hz (Fig. 5) the main resonance increased 
vibration level to 168g. There is a small 
difference between the natural frequencies fn1 = 
4800 Hz and fn = 5200 Hz and it is possible to 
conclude that both of them were affected at a very 
high level of resonant vibration. After resonance, 
the level of vibration was decreased to 40g and 
then fluctuated to 60g for 20,000 rpm. In the 
range of up to this speed, something was changed 
in the tested system. The level of vibrations 
decreased to 20g for 28,000 rpm and then 
fluctuated between 20g and 45g. These results are 
not identical with those presented in Fig. 1, 
because the testing rigs are not the same, but the 
phenomenon is similar. 

 

Fig. 7. Total level of gear vibration measured 
using installation presented in Fig. 4 

 
For the purpose of identifying the structure 

of gear vibrations, a spectral analysis was carried 
out. Using software for Furrier transformation, 
the spectrums of frequencies and amplitudes of 
component time functions were obtained. In the 
range of sub-critical area frequency, the 

spectrums consist of time functions with teeth 
mesh-frequencies f and their higher harmonics 2f, 
3f, etc. and with natural frequencies fn1, fn2 and fn. 
The value of amplitudes of free vibrations 
increases when mesh frequency gets close to 
some of naturals. In Fig. 8a one of those 
spectrums is presented for the speed of rotation n1 
= 4050 rpm. In full resonance, teeth mesh-
frequency became equal to the main natural one f 
= fn = 5200 Hz. It was for the speed of rotation  n1 
= 9750 rpm. In frequency spectrum (Fig. 8b) only 
very high amplitudes dominate with resonant 
frequency of 5200 Hz. 

After resonance, a further increase of the 
speed of rotation revealed one specific 
phenomenon. In frequency spectrum, vibration 
with teeth mesh-frequencies f increasingly 
decreases until it disappears, as indicated by the 
interrupted line in Fig. 7. The total level of 
vibration in this area is the result of natural 
vibrations with natural frequencies (Fig. 8c). 
Within the range of speed of rotation n1=10,000 
to 20,000 rpm (Fig. 7), frequency spectrums are 
similar to the spectrum in Fig. 8c, i.e. vibrations 
within this range are natural (free) vibrations with 
frequency fn. With an increase in the speed of 
rotation, the intensity of the teeth impact also 
increases and the level of natural vibrations 
increases. In the frequency spectrum in Fig. 8c, 
the vibration amplitude increases with the 
increase of the speed of rotation. It should be 
noted that in the f > fn range the situation is 
opposite to that in Fig. 6. The time of impact 
repetition is shorter than the period of natural free 
vibrations 1/f < 1/fn. 

Within the range of the pinion speed of 
rotation n1 = 20,000 to 40,000 rpm (Fig. 7) the 
level of vibrations was first decreased and then, 
for higher speeds, was increased again. Frequency 
analyses reveal one additional phenomenon. In 
the frequency spectrum (Fig. 8d) the amplitude 
with frequency f disappears completely and all 
natural frequencies become active. The spectrum 
becomes crowded with the already detected fn1, 
fn2, fn and of many new ones. The amplitudes for 
these frequencies are relatively small but when 
combined, using corresponding phase positions, 
they create a total level of vibrations, which 
corresponds to the level in Fig. 7. Also, it is 
noticeable that teeth impact energy is distributed 
to all of these natural vibrations, and this can be 
the reason why they have small amplitudes. 
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Additionally, the modal structure of the tested 
system at these high speeds of rotation is 
changed. This phenomenon of modal structure 
instability at a very high speed of rotation has 
been identified in other experiments unrelated to 
gear testing. 

 

 
Fig. 8. Frequency spectrums of gear vibrations 

presented in Fig.7 
 

Modal instability and only free vibrations 
in the range of very high speeds of rotation can 
explain the fluctuation of vibration level in this 
range of speeds. When many natural frequencies 
occur, the level of vibrations decreases. For 
higher speeds these natural frequencies disappear 

again and, with one of them or a few of them, the 
level of vibrations increases. In Fig. 1 this 
occured for 19,000 rpm, and in Fig. 2 for f/fn = 2, 
and is marked as supercritical resonance. The 
possible explanation of supercritical resonances 
can be found in model instability and in the 
concentration of all modal frequencies (shapes) in 
a small group or in one group only. 

 
3 ANALYTIC MODELLING OF MEASURED 

RESULTS 
 
The gear teeth meshing process presents 

by itself a singular process [15] which contains 
two processes: continual and transient one. The 
continual process is a continual increase of the 
free vibration level ( ax  by frequency fn) with 

increase of teeth mesh frequency f. The transient 
process is the gear response also with a natural 
frequency fn after teeth impact, especially in 
resonance areas. 

Collision force (Eq. 4) increases 
proportionally to the speed of rotation. For a gear 
pair with a certain tooth load (Fig. 3b), using Eqs. 
(2) and (4), this force can be presented in direct 
relation with teeth mesh frequency f and constant 
K, 
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The impact force increases proportionally 
to the speed of rotation (teeth mesh frequency f). 
This force makes deformation in teeth contact 
direction xc and produces deformation work 

f
xKxF

W ccc

22
 . (6)

Displacement xc (deformation) is 
independent of the force Fc and of the speed of 
rotation. This deformation depends on the gear 
load, i.e. consists of teeth deflection and teeth 
contact deformations. There is a difference 
between teeth deformations at the moment of 
teeth impact xmax and before impact xmin (xc = xmax 
- xmin) with amplitude x0 = xc/2 and frequency f. 
Deformation work W absorbs elastic system and 
part of it returns in the form of vibration. These 
are damped free vibrations with natural frequency 
fn. The potential energy of these vibrations is: 

a) 

b) 

c) 

d) 
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Displacement xa presents gear vibration 
after impact (Fig. 6). This response is much 
weaker compared to teeth impact. The ratio 
between the vibration energy and disturbance 
energy is marked by a constant A and by product 
Af. The units for the constant A are seconds and 
product Af is a dimensionless parameter which 
defines the ratio between amplitude of impact 
displacement x0 and amplitude of free vibrations 
with frequency fn. This product (Af)2 shows how 
much energy is produced by vibrations compared 
to deformation work absorbed by impact elastic 
deformations. 

 
3.1 Continuous Process 

 
Impact energy increases continually with 

teeth mesh frequency f increase. Potential energy 
Ep is a part of impact energy which also increases 
continually. Potential energy is released in the 
form of natural free vibration, such as vibrations 
presented in Fig. 6. Kinetic energy of gear 

vibrations is 2/2
aek xmE  . The transformation 

of potentional into kinetic energy is defined by 
Lagrange's equations. For a certain mesh 
frequency f, these equations for natural free 
vibrations are as follows: 
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This vibration between the two impacts 
(Fig. 6) is with damping, i.e. with dissipation of 
vibration energy. The part of Eq. (8) which can 
present this effect is removed due to the fact that 
with impact repetition by frequency f, the free 
natural vibration with frequency 

   2en mcf   is restored. Those are 

restorable free vibrations. In the supercritical 
mesh frequency range (f > fn) this kind of 
dissipation is not effective. The damping effect in 
the system response is included in the transient 
part of this model. Using Eqs. (7) and (8), the first 
part of acceleration level in direction of contact 
line is: 

f
m

xc
Ax

e
a

0 . (9)

This is the first (algebraic) part of a 
singular solution (Fig. 9). Therefore, with the 
increase in mesh frequency f acceleration 
increases, and this in turn is proportional to the 
increase in the absorbed disturbance energy. 

 
3.2 Transient Process 

 
Teeth collision presented in Fig. 3a 

generates collision force Fc which is repeated 
with mesh frequency f. This force produces two 
kinds of teeth deformations (displacements). The 
total displacement is x = xa + xb. The first xa is 
already included in the continuous process and 
this part corresponds to the force and torque 
which meshed gears transmit (corresponds to gear 
pair load). The second part xb is additional 
displacement which is the result of inertia after 
the teeth impact and corresponds to the gear pair 
sensitivity. 

Gear pair can be presented by an 
equivalent single mass model with the mass me 
(Eqs. 3 and 4) supported by mean teeth in mesh 
stiffness c with damping with coefficient b. The 
action of force Fc in this model produces the 
additional transmitted force: 

bbT xcxbF   , (10)
where xb  is the additional displacement caused by 
teeth impact. Since forces bxb  and bxc  are 90o 

out of phase, the magnitude of the additional 
transmitted force is: 

2222
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The ratio of the additional transmitted 
force beT xmF   to the applied aeca xmF   can 

be expressed in terms of a transmission function, 
i.e. transmissibility: 
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The function T is well known as a 
transmission function for a single degree model 
excited by acceleration. These relations were 
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obtained in the form of response ratio, where 
1...0  is a dimensionless damping parameter. 

At the moment of impact (t = 0), the responded 
force is  sinTcaT FF   and the responded part 

of vibrations for the single degree mathematical 
model is: 

 sinTab xx   . (13)
This is the response at the moment of 

impact after which vibrations continue with 
natural frequency fn. This is the transient part of 
vibration which together with the continuous one 
produces the total gear vibration level. The 
maximal response of the system, i.e. T is for full 
resonance when f = fn, and = /2. 

 
3.3 Total Level of Vibration 

 
By summing the results of continual and 

transient process the total level of vibrations is: 
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Fig. 9. Relation between measured and calculated
level of gear vibrations 

 
Using the presented mathematical model 

and corresponding software, the curve of the total 
level of gear vibration was calculated (Fig. 9). 
Calculations were carried out using software 
developed for equation (14) and parameters of the 
tested gear pair. The damping parameters A and  
were adapted to the measured level of vibrations. 
These parameters offer the opportunity to analyse 
the relation between the energy of the gear teeth 
impact and the energy dissipated inside the 

machine parts. For this purpose, vibrations 
measured to 20,000 rpm were used, i.e. in the 
speed range before vibration level starts to 
fluctuate in a wider range (Fig. 7). 

The presented model gives the opportunity 
to compare the measured and calculated results 
and to check the hypothesis about the nature of 
gear vibration as well as to analyze the gear 
vibration phenomenon. In addition, the model 
provides the possibility of analyzing impact 
energy balance of accounts, i.e. energy 
distribution within the system, and of damping 
coefficient calculations. For this purpose, 
vibrations of the testing rig (Fig. 4) were 
calculated and analyzed. The parameters of the 
presented testing rig are as follows: inertia 
moments of rotating masses are J1 = 5.351·10-4 
kgm2 and J2 = 16.117·10-4 kgm2 which include 
mass inertia of the corresponding shaft with both 
gears and other parts in the shaft. Basic radii of 
the tested gears are rb1 = 0.0323 m and rb2 = 
0.0475 m (module m = 2 mm and teeth numbers 
z1 = 32, z2 = 47), transformed masses mt1 = 0.5351 
kg, mt2 = 0.714 kg and equivalent mass of the 
system me = 0.2978 kg. The gears are connected 
by stiff shafts and one shaft with both gears was 
treated like one rotating mass. Mean stiffness of 
the teeth in mesh for both gear pairs, including 
the shaft effect is c= 3.14·108 N/m. Back-to-
back system (Fig. 4) was loaded by the torque of 
30Nm at the gear z2, i.e. with the normal force in 
the flanks of each gear pair Fn = 631 N. This 
force makes deformations of gear teeth in mesh 
with amplitude x0 = 0.674935·10-6 m. Using Eqs. 
(9), (13) and (14), and the measured result of gear 
vibrations, the following gear parameters were 
calculated: response constant A = 5.92848·10-5 
seconds, and product Af presents vibration 
response caused by gear teeth impact. In resonant 
conditions vibration response is increased by 
(1+T) = (1+6.5) = 7.5 times. Dimensionless 
damping coefficient is = 0.078 and damping 
coefficient in gear mesh b = 1.61·10-5 Ns/m. 

 
4 CALCULATED AND MEASURED 

RESULTS ANALYSIS 
 

By the measurement of the gear vibration in 
the super-critical mesh frequency range, the 
phenomenon of gear vibration increase is a proof. 
Also, in this range natural free vibrations only are 
identified. After every teeth impact, gears vibrate 
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with natural frequencies and these are restorable 
free vibrations. With teeth mesh frequency the 
absorbed disturbance power and the level of 
natural vibrations are increased. By measured 
vibration analysis, the nature of gear vibrations in 
the super-critical mesh frequency range is 
identified. An additional phenomenon in the form 
of supercritical resonance is recognised.  
Following the nature of gear vibrations, a specific 
mathematical model is established, using the 
singular system theory. The model of restorable 
free vibrations consists of two parts; a continuous 
and transient one. Both of them present the gear 
vibrations as natural free vibrations with natural 
frequencies fni . The teeth mesh frequency f is the 
parameter which corresponds to disturbance 
energy absorption by repeatable impacts. The 
teeth impact force is, in this way, included in both 
parts of the mathematical model. The results of 
the continuous part of the mathematical model 
follow the increasing trend of total vibrations. 
The results of the transient part follow variations 
of the total level of gear vibrations caused by 
resonances.  

The main objective of specific 
mathematical modelling i.e. a synthesis of the 
measured vibrations is to present the vibrations 
by following the nature of experimental results. 
The next objective is to identify the relation 
between the absorbed disturbance energy and the 
realised energy by natural free vibration 
(vibration power). For this purpose, it was 
necessary to identify damping parameters which 
include the inside energy dissipation and the 
outside energy dissipation in contact (elastic 
deformations, frictions, etc.). Using identified 
parameters for a calculation of gear vibrations, 
the calculated results are equal to those measured. 
The line of the calculated results (Fig. 9) follows 
the main resonance but not the other smaller 
resonances. By the presented mathematical 
model, it is possible to satisfy secondary 
resonances and cover the measured results much 
better. 

 
5 CONCLUSIONS 

 
By measurement, frequency analysis, 

mathematical modelling and calculation, the main 
hypothesis about gear vibrations nature has been 
confirmed. In the range of supercritical teeth 
mesh frequency (f > fn), those are restorable free 

vibrations caused by teeth impact. After every 
impact the free vibrations with natural frequency 
are restored. The level of these vibrations 
increases with an increase in teeth mesh 
frequency f which increases teeth impact 
intensity. 

A mathematical model is developed to 
simulate excitation process caused by teeth 
impacts and to synthesize the measured results of 
gear vibrations. According to the singular systems 
theory, gear meshing is presented in the form of a 
continual and transient process. The continual 
process is presented by a continual part of the 
model using algebraic equation. The transient 
process which includes resonances, is presented 
by transfer function of the single mass model of 
the tested gear system.  

Using the measured results and the 
developed mathematical model, a few key facts 
are analyzed. Restorable free vibrations are 
proportional to teeth impact intensity and increase 
with enlargement of the teeth mesh frequency. In 
the resonant range the system response 
additionally magnifies free vibration level with 
natural frequency. The quantity of the impact 
disturbance energy which is released by gear 
vibration is defined by the value of constant A. 
Damping of gear free vibrations is presented by 
dimensionless coefficient . Numerical values of 
both of these parameters are calculated. 

The presented approach explains gear 
vibrations in the supercritical teeth mesh 
frequency range and this explanation is based on 
the modal structure of the mechanical system. In 
this frequency range the structure is not stable. 
For some teeth mesh frequencies those main 
natural frequencies separate into a number of new 
ones, while for others they unify. When natural 
frequencies separate, the level of free vibrations 
decreases and for the unified it increases. This 
explains the phenomenon called “supercritical 
resonance”.  
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