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The paper presents computational and experimental approaches to a powertrain vibration 
analysis. A complex computational model of a powertrain - a virtual engine is a powerful tool for a 
solution of structural, thermal and fatigue problems. The virtual engine results should answer different 
questions, mainly those concerning the area of noise, vibrations and component fatigues. The paper also 
includes a description of fast algorithm for a hydrodynamic solution of  a slide bearing incorporating 
pin tilting influences. The main contribution is the fact that all models, that is those of a cranktrain, a 
valvetrain, a gear timing mechanism and a fuel injection pump are solved simultaneously, using a complex 
computational model. Synchronous solutions can have a fundamental effect on results of powertrain 
dynamics solutions. Additionally, it might help to understand influences among powertrain parts. The 
virtual engine is assembled as well as numerically solved in Multi Body System. Virtual engine results are 
validated by measurements on Diesel in-line six-cylinder engine.
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0 INTRODUCTION

Modern powertrains are complex thermo-
mechanical systems improved by large and 
gradual development. Car producers still increase 
engine parameters like engine performance or 
torque together with a significant decrease of fuel 
consumption. Powertrains and cars supplied to 
European, US or Japanese markets have to be in 
compliance with national legislatives, which force 
the producers to significantly decrease noise, 
vibrations and emissions of every new powertrain. 
All these conditions have to be satisfied in very 
short developing periods.

Generally, the increase of engine 
performance often leads to an increase of 
powertrain noise and vibrations. Noise 
and vibration problems can be resolved by 
experimental or computational methods. 
Experimental methods are often very expensive 
which causes a fast development of modern 
computational methods. Modern computational 
methods can provide very exact results but only 
on condition that exact inputs are included. 
The inputs are often supplied by experimental 
methods. A portion of experimental methods 
continuously decreases, however, the experimental 
method still plays an important role in powertrain 
development.

All computational and measurement 
methods are applied to new turbocharged diesel 
inline six-cylinder engine. Some of the engine 
parameters are engine displacement 6.2 litres, 
peak power output 125 kW at engine speed 2200 
rpm and compression ratio 17.8. The engine 
includes an OHV (Over Head Valve) valvetrain 
with two valves per cylinder and a camshaft 
located in a crankcase. The slide bearings are 
used for the bearing of the crankshaft as well as 
the camshaft. The valvetrain is driven by the front 
end of the crankshaft using helical gears. The 
engine incorporates a mechanically controlled 
fuel injection pump and other accessories like a 
piston compressor or an oil pump. The crankshaft 
includes a rubber torsional damper to decrease 
torsional vibrations. The design of the new engine 
originates from a turbocharged diesel inline four-
cylinder engine.

1 THE STATE OF THE ART REVIEW

Historically, there have been many 
cranktrain computational models. Technical 
literature includes a large number of different 
computational models. The references [1] to [5] 
can be taken as examples of a wide variety of 
cranktrain computational models. The present 
state of the art in cranktrain simulations shows 
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computational models being solved in time domain 
with high portions of flexible bodies. Other 
powertrain parts like a valvetrain, are included 
only as an additional mass or frequently, they are 
not included at all. Crankshaft and engine block 
interactions are solved using a hydrodynamics 
model of a slide bearing most often. A slide 
bearing model comes from a numerical solution 
of Reynolds equation, often without pin tilting 
influences [3] and [4] or with a simple pin tilting 
approximation [1]. Full elastohydrodynamic 
solution of Reynolds equation including shell 
and pin deformations is still not fully applied for 
powertrain dynamics with many slide bearings. 
The elastohydrodynamic solution of slide bearings 
of a separate connecting rod is often used for 
detailed slide bearing solutions. Theoretically, 
simultaneous full elastohydrodynamic solution of 
all cranktrain bearings can be used but numerical 
costs are high and there are no significant benefits 
for the cranktrain dynamics. 

The present state of the art of rubber 
torsional damper computational models often 
includes a torsional spring and a torsional damper 
in a serial arrangement. This computational model 
does not describe rubber frequency behaviour for 
a solution in time domain correctly. For frequency 
dependencies it is necessary to use more complex 
models including Maxwell parts arranged in 
parallel. The rubber damper can sometimes 
influence axial crankshaft vibrations, therefore, 
axial properties have to also be incorporated 
Sometimes.

Valvetrain computational models have also 
been developed over  a long period. First, discrete 
computational models of the valvetrain (still in 
use) included discrete point masses or springs. 
Springs have included only linear dependences of 
a force vs. a deformation. A tappet or a valve was  
excited by a lift function. With increasing Multi-
Body Systems (MBS) the valvetrain computational 
models became more complex and incorporated 
rigid bodies and nonlinear contact forces. Later, 
some of the parts were replaced by spring-damper-
mass bodies or beam bodies [6]. Camshaft angular 
irregularities on the basis of a separate cranktrain 
model solution were also incorporated. The present 
state of the art includes computational models with 
flexible parts. Spring models use flexible bodies 
with valve coil contacts enabling to understand 

contacts between coils as well as spring stiffness 
changes [7] and [8]. The single valvetrain models 
are assembled to a complete valvetrain model [9]. 
However, drive timing mechanism or injection 
pump influences are not often included nor are 
influences of a compressor, an oil pump or other 
powertrain accessories. 

So far each part of a powertrain has 
been solved separately. It has sometimes been 
extended by influences of other model results or 
measurement results but these results have been 
obtained from separate solutions. Valvetrain 
dynamic simulations can be taken as an example. 
A camshaft is driven by an angular velocity 
obtained from a separate cranktrain solution 
or from measurements. At present the need to 
solve all powertrain parts together continuously 
increases. This solution enables to include all 
interactions among parts. The results will show 
that, for example, valvetrain dynamics is highly 
influenced by a cranktrain but at the same time the 
cranktrain is slightly influenced by the valvetrain, 
both influenced by a timing drive or an injection 
pump.

2 COMPUTATIONAL METHODS

2.1 Virtual Engine

A complex computational model of the 
engine, in other words a virtual engine, is solved 
in time domain. This enables an incorporation 
of different physical problems including various 
nonlinearities. The virtual engine is assembled as 
well as numerically solved in MBS (Multi Body 
System) ADAMS.

ADAMS is a general code and enables 
an integration of user-defined models directly 
using ADAMS commands or using user written 
subroutines. The key features of the virtual model 
like the slide bearing model, the torsional damper 
model or gear timing drive model are incorporated 
into ADAMS model using Matlab program.

The virtual engine includes all the 
significant components necessary for NVH (Noise 
Vibrations and Harshness) or fatigue analyses. The 
included modules are: a cranktrain, a valvetrain, a 
gear timing drive with fuel injection pump and a 
rubber damper. Fig. 1 presents the virtual engine 
and its submodules.
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Fig. 1. Virtual engine including main subsystems

2.2 Flexible Parts

Flexible bodies represented by FE (Finite 
Element) models have a decisive importance on 
powertrain dynamics simulations. The FE models 
of each component should be created with special 
effort. In addition, a uniform FE mesh is often 
preferred.

In general, for a solution in time domain, 
FE models are very large and require a reduction. 
The discretization of a flexible component into 
a finite element model represents the infinite 
number of DOF (Degrees of Freedom) with a 
finite, but very large number of finite DOF. For 
the reduction of FE models, the Craig-Bampton 
method is used [10].

For the powertrain dynamic solution 
main components are treated as flexible models. 
A crankshaft model presents a fundamental 
component of the virtual engine. A reduced FE 
model is used for simulations of powertrain 
dynamics. The dynamics of powertrain moving 
parts are influenced by the stiffness of an engine 
block. Therefore, a reduced engine block FE 
model is also used for dynamics solutions. 
Reduced FE models of a camshaft, rockers and 
valve springs are used for a solution of valvetrain 
dynamics.

2.3 Torsional Rubber Damper Model

A torsional vibration damper is an 
important component of some cranktrains. It 
can significantly increase fatigue of engine parts 
together with a decrease of noise and vibrations. 
Different designs of torsional vibration dampers 
can be used. The rubber damper is chosen for the 
target engine.

Rubber mechanical properties can be 
characterized by very small compressibility and a 
high ability to reach large strains at small stresses 
without any plastic deformations. Maximal relative 
deformations of rubber can reach values of 800%. 
Force versus deformation rubber properties are 
strongly nonlinear. Therefore, Hook’s law cannot 
be used for stress-strain behaviour. Generally, 
every material is compressible, however, rubber 
can be treated as an uncompressible and isotropic 
material.

A phenomenological approach is used for 
the description of rubber mechanical properties. 
This approach does not originate from any 
molecular structure but comes from mathematical 
models. The Mooney-Rivlin two-parametric 
model is used for rubber structure modelling. This 
model introduces a hypothesis that strain energy 
W is a linear combination of two invariants of 
Finger tensor [11]:

	 W C I C I
d
J= −( ) + −( ) + −( )10 1 01 2

23 3 1 1 , 	 (1)

where I1 and I2 are the first and the second 
invariant of a deviatoric component of Finger 
tensor, J is the determinant of a deformation 
gradient (for incompressible materials J = 1)  and 
C10, C01 and d are constants. More information 
about rubber material properties can be found in 
[11] and [12].

The Mooney-Rivlin material model 
parameters have to be determined using average 
damper operating temperatures. An average 
operating temperature can be roughly estimated 
from similar torsional rubber dampers running on 
similar engines. Temperatures of rubber central 
volume of similar torsional dampers vary between 
60 and 80 °C. Additionally, the fact that the 
material properties of rubber in this temperature 
range are only slightly changed is very helpful. 
The average temperature of 70 °C can be used 
for temperature corrections of material properties. 
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Pilot cranktrain dynamic calculations show that 
the loading frequency range is from 100 to 200 
Hz. 

The Mooney-Rivlin two-parametric 
model used for calculations is able to correctly 
describe rubber behaviour up to 30% of tension 
deformations and up to 10% of compression 
deformations. Real deformations in rubber 
damper are significantly smaller than these limit 
deformations. Mooney-Rivlin coefficients used 
for FE calculations and including temperature 
corrections are C10 = 1.065, C01 = 0.263 a d = 
0.016.

A final rubber damper MBS model includes 
only global properties like torsional stiffness or 
axial stiffness. 

A rubber damper MBS computational 
model has to incorporate dependency of torsional 
stiffness as well as torsional damping on frequency. 
FE solution founds the static torsional stiffness, 
the value is kT = 56145 Nm/rad and incorporates 
no frequency dependencies. The frequency is 
incorporated using rubber frequency dependencies 
presented [11] and [12]. Torsional damping can 
be computed using frequency dependent torsional 
stiffness and relative damping as:

	 b k
T

Tω
ω χ
ω

( ) = ( )
, 	 (2)

where kT(ω) is frequency dependent torsional 
stiffness, χ is relative damping and ω is angular 
velocity.

Generally, the torsional damper can 
be described by parallelly arranged torsional 
stiffness and damper, however, the single arranged 
torsional stiffness and damping cannot be included 
as frequency dependent into MBS model. 

Thus, a different approach has to be 
used for MBS simulations in time domain. A 
more complex MBS computational model of 
the torsional rubber damper has to be used. The 
model includes three serially connected Maxwell 
members (a spring and a damper). Two rigid parts 
(a damper ring and a damper flange) connected by 
a cylindrical joint and a serially arranged spring 
and damper in axial direction are also included in 
the model. The MBS model of the rubber damper 
is presented in Fig. 2.

The torsional stiffness of the complex 
rubber model can be calculated using Eq. (3) and 
the torsional damping using Eq. (4).
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where kM is torsional stiffness of the torsional 
damper, bM is torsional damping of the torsional 
damper, kTi is torsional stiffness of i-spring, for 
i=1,2,3 , bTi is torsional damping of i-damper and 
kT0 is parallel torsional spring stiffness.

Fig. 2. MBS computational model of the torsional 
rubber damper

The resulted torsional stiffness kM and 
damping bM are frequency dependent but each 
spring or damper includes frequency independent 
values.

Fig. 3. Development process of MBS rubber 
damper computational model

Coefficients kTi, bTi a kT0 are found by 
least squares method programmed in Matlab. The 
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frequency range is chosen from 50 to 300 Hz and 
covers all significant frequencies occuring in the 
torsional damper.

The global stiffness values originate from 
a detailed solution of the three dimensional FE 
model in combinations with Matlab calculations. 
The development process starts with rubber shape 
and hardness proposals. The rubber hardness 
of 70 Shore is proposed from simple results of 
cranktrain torsional vibration calculations using 
a discrete torsional model. Fig. 3 shows the 
complete process of MBS rubber damper model 
development.

Generally, poor knowledge of rubber 
material properties is one of the main problems 
for a computational modelling of a cranktrain 
equipped with a rubber damper. The proposed 
approach for the determination of torsional 
damper global properties comes from elementary 
mechanical properties of rubber with a 
consideration of rubber frequency and temperature 
behaviour. However, this approach cannot produce 
highly accurate data because accurate rubber 
properties often do not exist. In addition, a rubber 
aging process or rubber producer tolerances 
(sometimes the rubber hardness tolerance is ±5 
Shore) has to be also considered.

2.4 Slide Bearing Model Incorporating Pin 
Tilting Influences

Present computational models enable a 
description of a slide bearing behaviour in great 
detail. These models are often very complicated 
and require long solution times even on condition 
that only one slide bearing model is being solved. 
The target engine includes tens of slide bearings, 
therefore, all model features of slide bearings have 
to be carefully considered.

The loading capacity of a slide bearing 
model included in the virtual engine is considered 
in a radial direction and also incorporates pin 
tiltings, which means that radial forces and 
moments are included in the solution. For the 
solution of powertrain part dynamics elastic 
deformations can be neglected because integral 
values of pressure (forces and moments) for HD 
(hydrodynamic) and EHD (elastohydrodynamic) 
solution are approximately the same. This 
presumption is very important and it enables 

a simplified solution. On the other hand, the 
solution can not be used for a detailed description 
of the slide bearing. Solutions of tens of EHD 
slide bearing models simultaneously seem to 
be extremely difficult and do not provide any 
fundamental benefits for general dynamics. 
The virtual engine therefore incorporates a 
compromise solution using the HD solution with 
elastic bearing shells and can be named (E)HD 
approach.

A HD approach presumes that shapes 
of a pin and a bearing shell are ideal cylindrical 
parts. The pin and the bearing shell are rigid 
bodies without any deformations. An oil gap 
between the pin and the shell is filled up but the 
oil and gap proportions are small in comparison 
with pin or bearing shell proportions. Only 
hydrodynamic frictions occur, while lubricating 
oil is incompressible and oil flow is laminar.

Generally, oil temperature has a significant 
influence on slide bearing behaviour. Oil 
temperature is treated as a constant for the whole 
oil film of the bearing. This presumption enables 
an inclusion of temperature influences after the 
hydrodynamic solution according to temperatures 
determined from similar engines.

In general, if the equation of the motion 
and the Continuity equation [2] are transformed 
for cylindrical forms of bearing oil gap together 
with restrictive conditions [2], the behaviour of 
oil pressure can be described by the Reynolds 
differential Eq. (5). This frequently used equation 
is derived for a bearing oil gap [1] or [2] and can 
be written in the form:
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where p is pressure, h is oil film gap, η is dynamic 
viscosity of oil and U is an effective velocity. The 
oil film gap is defined as:

	 h R r e= − + cos( ),ϕ 	 (6)

where R is a shell radius, r is a pin radius, e is a 
pin eccentricity and φ is an angle about pin axis.

The following relations can be defined as:

	
ϕ = =

x
R

x
D
2 ,

 
Z Z

B
=
2 ,
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where D is a shell diameter, B is a width of the 
bearing, Z is a dimensionless co-ordinate in the 
bearing axis direction, s is a bearing clearance, 
ψ is an independent bearing clearance and ε is 
dimensionless eccentricity.

A definition of a dimensionless oil film gap 
H in dependence on angle can be used:

	 H *( ) cos .ϕ ε ϕ≅ +1 	 (8)

Additionally, the pressures in oil film can 
be replaced by dimensionless pressures [5].

	 ΠD
Dp=
ψ

ηω

2
 and ΠV Vp=

ψ
ηε

2



.	 (9)

ΠD denotes dimensionless pressure 
for a tangential movement of the pin, ΠV is 
dimensionless pressure for a radial movement of 
the pin, ω  is effective angular velocity and ε  is 
a derivative of dimensionless eccentricity with 
respect of time.

Pin tilting angles can be introduced as:

	 γ
γ
γ

=
tg
tg

*

max
* , 	 (10)

	 δ
δ
δ

=
tg
tg

*

max
* , 	 (11)

where γ is a dimensionless pin tilting angle in 
narrowest oil film gap and δ is a dimensionless 
tilting angle in the plane perpendicular to the plane 
of narrowest oil film gap. γ* denotes a real tilting 
angle in a plane of the narrowest oil film gap and 
γmax* denotes a maximal possible tilting angle in 
the plane of the narrowest oil film gap for given 
eccentricity. δ* is a real tilting angle in the plane 
perpendicular to the plane of narrowest oil film 
gap and δmax* is a maximal real tilting angle in the 
plane perpendicular to the plane of narrowest oil 
film gap for given eccentricity. 

Fig. 4 presents the definition of pin tilting 
angles and Fig. 5 presents the definition of 
general and maximal tilting angle in a plane of the 
narrowest oil film gap.

Fig. 4. Definition of tilting angles of pin

Fig. 5. Description of real tilting angles in plane 
of the narrowest oil film gap

The final definition of the dimensionless 
oil film gap depending on tilting angles is:
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and includes a dependency on two tilting angles. 
If the dimensionless oil film gap is used 

for the Reynolds equations for tangential and 
radial movements of the pin, then the Eq. (5) can 
be rewritten into two separate Eqs. [2] but with a 
modified definition of the dimensionless oil film 
gap.
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Likewise the dimensionless pressure is 
modified as follows [5]:

	
∂
∂

∂
∂









 +

∂
∂

∂
∂









 =ϕ ϕ

ϕH D
B Z

H
Z

V V3
2

2
3 12

Π Π
cos . 	(14)



Strojniški vestnik - Journal of Mechanical Engineering 57(2011)7-8, 610-621

616 Pistek, V. ‒ Novotny, P.

	 Π Π= H
3
2 . 	 (15)

If the Eqs. (10) to (12) are input into 
Eqs. (13) and (14), the final forms of Reynolds 
equations are:
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The equation term a(φ,ε,Z,γ,δ) is defined 
as:
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and the equation terms bD(φ,ε,Z,γ,δ) and 
bV(φ,ε,Z,γ,δ) are defined as:

	 b Z H HV ( , , , , ) ,ϕ ε γ δ ϕ=
−

6
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2 	 (19)

	 b Z HD ( , , , , ) cos .ϕ ε γ δ ϕ=
−

12
3
2 	 (20)

Functions Hφ, HZ and Hφφ are partial 
derivatives of the oil film gap and can be written 
as:
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Eqs. (16) and (17) are solved numerically. 
The FDM (Finite Difference Method) is used for a 
numeric solution. 

The FDM in basic form uses a constant 
integration step, however, this strategy can 
be disadvantageous because in casethe pin 
eccentricities are very high, the oil film pressure 
becomes concentrated in small areas so it is 
necessary to use a very small integration step. This 
leads to higher computational models. Therefore, 
FDM using variable integration step and multigrid 
strategies is developed. 

The iterative solution starts using a very 
small computational grid. After a few iterations 
the results are approximated to a more dense grid 
and again a few iterations are solved. The new 
results are used for re-meshing the algorithm 
to generate new variable computational grid. 
The grid density is changed in dependency on 
the prescribed conditions (a pressure gradient). 
Three point integration scheme is chosen for the 
solution because for small integration steps it is 
very fast and the accuracy is similar to five-point 
integration scheme. Fig. 6 presents an example 
of computational grid for FDM with a variable 
integration step.

The resulted formula for iterative solution 
of dimensionless pressure at point i, j defines Eq. 
(29).

The formula for the numerical solution 
Eq. (29) is different for tangential and radial pin 
movement only in the term bD (for tangential pin 
movement) and bV (for radial pin movement) 
respectively.

Fig. 6. Computational grid for FDM with variable 
integration step

The solution approach with variable 
integration steps presumes sufficient density of a 
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solution grid according to pressure differentiations 
with respect to the bearing angle and bearing 
width. This strategy enables solving problematic 
pressure zones in acceptable solution time.   

Eq. (29) is solved iteratively for the 
tangential pin movement as well as for the radial 
pin movement. Initial and boundary conditions are 
the same for both solutions. The first boundary 
condition describes:
	 p

z B Z
=±








=±( )= ⇒ =
2

10 0Π . 	 (25)

The only initial condition describes:
	 p ϕ ϕ=( ) =( )= ⇒ =0 00 0Π , 	 (26)

This initial condition is used only for the 
first iteration and after that it is replaced by the 
cyclic boundary condition:
	 p pϕ ϕ π ϕ ϕ π=( ) =( ) =( ) =( )= ⇒ =0 2 0 2Π Π . 	 (27)

The cavitation condition is included during 
the numerical solution. This condition resets 
negative pressures to zero values.

Eq. (33) describes real physical processes 
and does not allow negative pressures in liquids (a 
cavitation).
	 p p= ∈ < ⇒ = ∈ <0 0 0 0Π Π . 	 (28)

Fig. 7 presents solution results of modified 
Reynolds equation for tangential pin movement, 
relative eccentricity ε = 0.8, first pin tilting angle  
γ = 0.8 and second tilting angle δ = 0.

The computed pressure distributions have 
to be transferred to equivalent force systems for 
a solution in MBS. Pressure on an elementary 
surface can be imagined as an elementary force 
dF on this elementary surface dS. Integral values 
are dimensionless reaction forces F and reaction 
moments M and can be found by an integration 
of pressure across the whole bearing surface with 
coordinates φ and z. 

Fig. 7. Solution results of modified Reynolds 
equation for tangential pin movement, relative 

eccentricity is ε = 0.8, first pin tilting angle is γ = 
0.8 and second tilting angle is δ = 0

Elementary forces and moments for axes 
”1“ and ”2“ can be defined as follows:
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The indexes 1 and 2 represent projections 
to axes „1“, „2“, index D means results for a 
tangential pin movement and index V means 
results for a radial pin movement.

The pressure distribution for radial pin 
movement is symmetrical, therefore, the forces 
F2V and moments M2V equal zero. 

If all integration conditions are satisfied, 
the axis force components „1“ and „2“ can be 
found using equations:
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and components of moments for axes „1“ and „2“ 
can be found as:
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The equivalent force system including the 
resulted force and moment can also be replaced by 
the force acting on an arm ξ. 

Hydrodynamic databases include integral 
values Φ1D, Φ2D, Φ1V, Θ1D, Θ2D, Θ1V for chosen 
ratios D/B and pin tilting. The resulted forces and 
moments (F1D, F2D, F1V, M1D, M2D, M1V) inserted 
into MBS can be obtained by an inclusion of 
bearing sizes, bearing clearances, dynamic 
viscosity and pin kinematic values.

3 POWERTRAIN DYNAMIC SOLUTION 
RESULTS

3.1 Cranktrain Dynamic Solution Results

The determination of cranktrain torsional 
vibrations represents a fundamental step in 
powertrain development. Cranktrain torsional 
vibrations influence torsional vibrations of each 
powertrain rotating component. These vibrations 
can significantly influence forces in every single 
valvetrain or forces in a gear timing drive. Fatigue 
of powertrain components like a crankshaft or 
a camshaft is also affected. An experimental 
determination of torsional vibrations using, for 
example, laser vibration tools is an advance and it 
can help to validate computational models.

A summary of a cranktrain torsional 
behaviour can provide a harmonic analysis of 
torsional vibrations determined from a crankshaft 
pulley angular velocity. Fig. 8 shows computed and 
measured harmonic analysis results of cranktrain 
torsional vibrations of the powertrain with a 
rubber damper. The sixth harmonic order is the 
most dominant one and a resonance of this order 
occurs above the engine speed range. The rubber 
torsional damper causes system retuning, which 
means that amplitudes of dangerous harmonic 
orders are restricted mainly to the engine speed 
range. The sixth order resonance is forced out of 
the engine speed range. Brüel&Kjaer Rotational 
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Laser Vibrometer Type 2523 and POLYTEC 4000 
Series Laser Vibrometer are used for torsional 
vibration measurements. These experimental tools 
enable measurements of angular velocities of 
arbitrary rotating parts.

Fig. 8. Harmonic analysis of crankshaft pulley 
torsional vibrations of an inline six-cylinder 

engine with rubber torsional damper (a 
computation and a measurement)

Comparisons of computed and measured 
results show some differences. These differences 
are partially caused by different combustion 
pressures. The inline diesel four-cylinder engine 
was used for combustion pressure indications 
but these pressures are slightly different from the 
inline diesel six-cylinder engine used for torsional 
vibration measurements.

3.2 Valvetrain Dynamic Solution Results

The camshaft vibrations are influenced 
mainly by cranktrain torsional vibrations and also 
by all single valvetrain torques, a gear timing 
mechanism and an injection pump torque. Fig. 
9 presents harmonic analyses of measured and 
computed angular velocities of a camshaft end 
near to the camshaft bearing No. 1. There are 
mainly harmonic orders known from cranktrain 
torsional vibrations. 

The results which can be very efficiently 
used for valvetrain computational model 

validations are strains and stresses in some 
component parts. In the case of the target engine, 
strain gauge measurements on a rocker and an 
outer valve spring have been used. Relative strains 
and stresses from the same places respectively are 
analysed by computational models of a rocker and 
a spring. 

Fig. 9. Harmonic order analysis of camshaft 
end angular displacement (a computation and a 

measurement)

Fig. 10. Computed and measured stresses of the 
first cylinder intake rocker for engine speed 2200 

rpm

Deformations produce better results 
than forces found by previous calibration tests 
because these forces are of static values. However, 
the measured values are dynamic, which can 
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cause inaccuracies in results. Valve spring stress 
measurements can be taken as an example. 
The calibration test deforms the valve spring in 
the form of the first mode shape (static shape) 
but in reality higher mode shapes can also be 
excited. They cannot be found by strain gauge 
measurements because they can lie on vibration 
nodes. Therefore, the calibrated force does not 
show any additional force.

Fig. 11. Computed and measured stresses of the 
first cylinder inline valve spring for engine speed 

2200 rpm

The comparison of computed and measured 
stresses on a rocker surface in a given direction 
for an engine speed 2200 rpm is presented in Fig. 
10. Fig. 11 shows a comparison of computed and 
measured stresses on an outer valve spring surface 
in a given direction for an engine speed 2200 rpm.

3.3 Powertrain Surface Velocity Solution 
Results

In general, powertrain surface vibrations 
and radiated noise are coupled. The noise produced 
by a powertrain can be understood from crankcase 
surface velocities. Fig. 12 shows measured and 
calculated Campbell diagrams of crankcase 
surface velocities near the second cylinder and 
crankshaft axis. The value 5.10-8 ms-1 is used as 
a reference velocity. The measured results have 
been determined by POLYTEC Vibrometer OFV-
5000.

The main area of the most significant 
velocity amplitudes is from 50 to 350 Hz. The first 
and second torsional frequencies (210 and 255 
Hz) can be found in computed and in measured 
results. Engine attachments to the ground have 
a fundamental influence on surface velocities 
with frequencies up to 150 Hz. The computed 
and measured results show the movement of 
the whole engine (a rotation about a crankshaft 
axis direction) at natural frequency 66 Hz. The 
Campbell diagrams (Fig. 12) shows a resonance 
of this frequency at the engine speed 1300 rpm. 

Fig. 12. Measured and calculated Campbell 
diagrams of crankcase surface velocities near the 

second cylinder and crankshaft axis

4 CONCLUSION

The results enable providing 
recommendations for solutions of vibrations, 
noise or component fatigues of a powertrain: 
The solution of component fatigues: Independent 
subsystem models of the cranktrain or the 
valvetrain can be used. In the case of the cranktrain, 
the flexible engine block models have to be used. 
In the case of the valvetrain, the variable driving 
angular velocities have to be incorporated into the 
model. Highly detailed computational models can 
also be used for an independent solution of some 
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subsystems. A detailed analysis of a connecting 
rod using thermo-elastohydrodynamic (TEHD) 
models of the slide bearings can be taken as an 
example.    

The solution of powertrain part dynamics: 
The crankshaft, the camshaft or other component 
vibrations can be partially solved using 
independent models, however, the complex 
computational models provide more accurate 
results. What is more, they help to understand 
interactions between powertrain subsystems.

The solution of powertrain noise, vibrations 
and harshness: The complex computational 
models of the powertrain incorporating the most 
significant powertrain subsystems have to be used. 
Engine block models using reduced FE bodies 
should include all parts like covers, caps and 
intake or exhaust manifolds. All significant noise 
sources like combustion pressure forces, meshing 
gear forces or injection pump torques have to also 
be included into the powertrain model.

The virtual engine results can help to 
understand the NVH behaviour of a new powertrain 
and enable to speed-up the development process 
together with reductions of expensive prototypes. 
The presented computational approach enables 
an analysis the NVH properties of a powertrain 
in the range of days. The contribution of different 
modifications on existing virtual engine (different 
crankshaft design, added ribs on a crankcase etc.) 
can be found in range of hours or days.

Therefore, the computational tools based 
on FEM, MBS, EHD or CFD principles together 
with experimental tests play an important role in 
modern powertrain design.
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