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0  INTRODUCTION

Automation of production started in early 1913 when 
Henry Ford invented the conveyor belt. Automation 
remains one of the main topics of engineering because 
it offers many benefits; it increases product quality 
due to the reduction of human error; it increases 
production volume, it protects human health via the 
automation of dangerous tasks, and ultimately any 
threat to life can be minimized. The automation of 
any process inherently depends on the feedback 
information from the process itself. Feedback 
information can be obtained by acquiring different 
signals from within the controlled system. The sound 
generated by the machinery can be used for feedback 
information as reported in numerous examples; 
Mechanical and electrical faults observed on induction 
motors have been classified using analysis of the 
acoustic data by using correlation and wavelet-based 
analyses for extracting necessary features from the 
acoustic data [1]. A new technique of acoustic-based 
diagnosis (ABD) for gearboxes based on near-field 
acoustic holography (NAH) and spatial distribution 
features of the sound field was presented in [2]. The 
fault diagnosis of bearings has been exploited through 

a machine learning approach by using acoustic signals 
acquired from the near field area of bearings in 
good and simulated faults. The descriptive statistical 
features were extracted from sound signals, and the 
important ones were selected using a decision tree 
(dimensionality reduction) [3].Vacuum cleaner motors 
quality end-test at the end of the manufacturing cycle 
have been presented in [4]. Efficient signal processing 
algorithms have been developed to detect and localize 
bearing faults, defects in fan impellers, improper 
brush-commutator contacts and the rubbing of rotating 
surfaces [4].

Sound is typically used for the end quality 
inspection of produced machinery. Experts learn with 
experience to listen to the sound of the operating 
machinery, and use it as an important source of 
information for the classification between flawless 
and faulty machines. However, human responsiveness 
and accuracy are sometimes insufficient for the real-
time detection of a failure on produced machinery 
in mass production. Therefore, the need for suitable 
recognition of sound generated by the machinery is 
constantly present and will certainly increase in the 
future. The improvement of the recognition algorithms 
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can further be used not only for end quality inspection 
but for monitoring the whole production line.

Recognition of different sounds has a long history, 
with its roots in 1952 when Bell Labs demonstrated 
the first automatic speech recognition (ASR) systems 
for small-vocabulary recognition of digits spoken over 
the telephone. After computers had grown in power 
during the 1960s, filter banks were combined with 
dynamic programming to produce the first practical 
recognizers, mostly for words spoken in isolation. 
In 1970 linear predictive coding (LPC) became a 
dominant ASR algorithm. During the 1980s, it was 
replaced with mel-frequency cepstral coefficients 
(MFCCs). During the 1990s, commercial applications 
evolved from isolated-word dictation systems to 
general-purpose continuous speech systems [5] and 
[6].

Since the mid-1990s, ASR has been largely 
implemented in commercial software. Medical 
reporting and legal dictation have been two 
applications driving the development of ASR, as 
well as the automation of services to the public over 
the telephone [5]. Applications of ASR methods 
were extended to environmental sound recognition 
in 1993. The MFCC parameterization method was 
implemented in combination with the class statistic 
classifier [7]. Significant progress on environmental 
sound recognition was achieved when MFCC 
parameterization was combined with the matching 
pursuit (MP) algorithm [8]. MFCC has been widely 
used in environmental sound recognition as well 
as its first and second derivatives in combination 
with other parameterization methods [9] and [10]. 
Available literature studies about industrial machine 
sound recognition are usually based on the Morlet 
wavelet parameterization approach [11] to [13]. 
Furthermore, MFCC can be used as a damage-
sensing feature because its compactness and de-
correlation characteristics make it particularly suited 
for statistical recognition applications. Attempts to 
use the MFCC parameterization method to extract 
features of industrial sounds to detect faults was 
already discussed in the literature [14] and [15], with 
no modification to the algorithms.

The objective of our study is to recognize the 
operation of an individual machine in a production 
hall where the background noise level is high and 
constantly changing. The knowledge transfer from 
ASR to machinery sound identification seems to be 
a reasonable choice due to the efficiency of speech 
and speaker identification. Human speech is more 
dynamic than the sound produced by machines. The 
time stability of non-natural sounds should even 

increase the identification efficiency. The purpose 
of this paper is to show that the pattern recognition 
and feature extraction methods used in ASR systems, 
after minor modifications, can be efficiently used 
to identify different machine sounds even in noisy 
environments. An experimental plan was designed 
and performed in order to confirm the hypothesis 
proposing that ASR algorithms can be applied for 
automatic machine recognition (AMR). The design 
of the AMR procedure used in our study was divided 
into three stages: feature extraction, training, and 
recognition (classification).

The procedure presented in this paper is used in 
the system for the automatic classification of noise 
events during environmental noise measurements 
[16]. The same procedure was also tested for detection 
of cavitation phenomena on kinetic pumps [17]. The 
influence of various rotor designs on the generated 
noise is also tested with the same procedure. 

1  FEATURE EXTRACTION, TRAINING, AND RECOGNITION

Feature extraction is essential in the ASR and AMR 
due to the quality of training models. Likewise, 
pattern matching strongly depends on the quality of 
feature extraction methods. There are many different 
features of sound signals:
•	 Temporal features are computed from the 

waveform or the signal energy envelope: log-
attack time, temporal decrease, temporal centroid, 
effective duration, zero-crossing rate, cross-
correlation.

•	 Energy features refer to various energy contents 
of the signal: global energy, harmonic energy, and 
noise energy.

•	 Spectral features are computed from the short-
time Fourier transform (STFT) of the signal: 
spectral centroid, spread, skewness, kurtosis, 
slope, decrease, roll-off point, variation, etc.

•	 Harmonic features are computed from the 
sinusoidal harmonic modelling of the signal: 
fundamental frequency, noisiness, odd-to-even 
harmonic ratio, tristimulus, deviation, centroid, 
spread, skewness, kurtosis, slope, decrease, roll-
off point, variation.

•	 Perceptual features are computed using a model 
of the human hearing process: MFCC, first order 
derivative of MFCC (DMFCC), and second order 
derivative of MFCC (DDMFCC), loudness, 
specific loudness, sharpness, spread, roughness, 
and tonality [18].
To extract sound features from the sound signal 

with dynamic level changes, similar to speech, more 
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complex parameterization methods have to be used, 
as discussed in publications [19] and [20]. Most 
commonly used parameterization method in speech 
or speaker recognition systems is the MFCC method. 
It was used by many authors and, according to the 
literature survey, gives the best classification results 
in ASR. The time constant of features extraction is 
essential. In our application it turned out that the noise 
generated by the observed machinery is less dynamic 
than speech; therefore, the length of time window was 
set to 50 ms. Machinery sounds are usually generated 
by rotational movements that cause a harmonic form 
of noise. Machines have different sizes, operational 
conditions (speed and load), tasks, etc., thus leading 
to the different distribution of spectral energies. 
Frequency cepstral coefficient (FCC) parameterization 
is based on the deconvolution of spectral energies 
obtained from certain frequency ranges, thus making it 
a reasonable choice for machinery sound recognition.

1.1  Feature Extraction Based on the FCC Parameterization

The performance of FCC may be affected by the 
number of filters, the shape of filters, the way 
that filters are spaced and the way that the power 
spectrum is warped [21]. A chart diagram of FCC 
parameterization, as used in our experimental 
application, is shown in Fig. 1. 

The basic FCC feature extraction procedure was 
performed by applying a standard mel filter, and 

additionally by applying two different filter scalings: 
linear and logarithmic.

To calculate the FCC, the signals are first divided 
into short time intervals. Hamming windowing is 
then applied and fast Fourier transformation (FFT) 
of each time window for the discrete-time signal x(n) 
with length N is calculated. The magnitude spectrum 
| X(k) | is now scaled in both frequency and magnitude, 
where k stands for the FFT index of frequency. First, 
the frequency is scaled using one of the filter banks 
| H(k, m) |. Then the logarithm is taken, according to 
Eq. (1):
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For m = 1, 2, …, M, where M is the number of 
filters in a bank. Three different filter banks were used 
in our application; a mel scale filter bank, a linear filter 
bank, and a logarithmic filter bank. All three filter 
banks are based on a collection of triangular filters 
defined by the centre frequencies fc(m), as written in 
Eq. (2). Central frequencies are given in Eqs. (5), (6)  
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Fig. 1.  Chart diagram of FCC parameterization
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Three different types of FCCs (MFCC, lin-FCC 
and log-FCC) are obtained from filtered X′(m) using 
Eq. (3):
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For l = 1, 2, …, 12, where c(l ) is the lth FCC [22]. 
Three different types of filters influence the c(l ) 
through the filtered magnitude spectre X′(m).

1.1.1  Mel Scale Filter

MFCCs are obtained from X(m) which is filtered 
with a mel-scale filter bank. The centre frequencies 
of filters in the mel filter bank are computed by 
approximating the mel scale with:

	 φ = +
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which is a common approximation. Afterward, the 
fixed frequency resolution in mel scale is computed, 
corresponding to the logarithmic scaling of the 
repetition frequency, using Δϕ = (ϕmax – ϕmin) / (M+1). 
Therefore, ϕmax is the highest frequency of the filter 
bank on the mel scale, computed from fmax using 
Eq. (4), ϕmin is the lowest frequency in mel scale, 
and M is the number of filters in a bank. The centre 
frequencies on the mel scale are given by ϕc(m) = mΔϕ 
for m = 1, 2, …, M [22]. By using the inverse of Eq. (4), 
centre frequencies in Hz are obtained by:

	 f mc
mc( ) ( ).
( )/= −700 10 1

2595φ 	 (5)

The low-frequency limit and high-frequency limit 
of the individual filter in a bank are obtained by taking 
the central frequency of the previous and next filter. 
Because mel scale is adjusted to human speech and 
hearing, it provides good results in speaker/speech 
identification systems. Due to the temporal stability 
and linearity of machine sounds, it was essential to 
test the linear and the octave-based frequency scaling 
to calculate lin-FCCs and log-FCCs.

1.1.2  Linear Scale Filter

Central frequencies of the linear filter bank are 
obtained with the linear equation:

	 f m f f mc ( ) ,min= ⋅ ⋅∆ 	 (6)

for m = 1, 2, …, M, where
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Low filter frequencies are computed by using:

	 f m f f ml ( ) ,min= ⋅ ⋅∆ 	 (8)

for m = 0, 1, …, (M – 1), and high filter frequencies are 
computed by using:

	 f m f f mh ( ) ,min= ⋅ ⋅∆ 	 (9)

for m = 2, 3, …, (M + 1).

1.1.3  Logarithmic Scale Filter

Comparison of the results obtained by mel and linear 
filters with 1/n octave filters is not possible, because 
of the different number of filters in the collection. 
Therefore, logarithmic composition was used, due to 
its similarity with the central frequencies composition 
of the octave band filters. The central frequencies of 
such filters were calculated using this equation:

	 f mc
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for m = 1, 2, …, M, where Δflog is calculated by:
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Low frequencies of filters are calculated by:

	 f ml
m f f

( ) ,log minlog ( )= +
10 10∆ 	 (12)

for m = 0, 1, …, (M – 1), and high filter frequencies by:

	 f mh
m f f

( ) ,log minlog ( )= +
10 10∆ 	 (13)

for m = 2, 3, …, (M + 1).

1.2  Classification Using k-NN and MGD

The classification process of machinery into classes, 
based on generated sounds, is divided into two steps: 
training and testing. To train the algorithm and obtain 
the reference template, enough samples of generated 
sound should be available for each class. Extracted 
features from sound signals generated by known 
sources are used during the training procedure when 
the class reference template model is learning. In 
the second step, the sound signal from the unknown 
machine is matched with a stored reference template 
model, and classification decisions are made [23]. Two 
classification algorithms, which have diametrically 
opposed classification approaches, were tested: 
k-nearest neighbour (k-NN) and multivariate Gaussian 
distribution (MGD). MGD can be regarded as a single 
state Gauss Mixture Model (GMM). Simpler MGD 
was selected over the GMM, because it provides better 
results when adapting new data into the database [26].
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1.2.1  k-NN Algorithm

The k-NN algorithm is one of prospective statistical 
classification algorithms used for classifying objects 
based on the closest training examples in the feature 
space. It is a lazy learning algorithm in which the k-NN 
function is approximated locally, and all computations 
are deferred until classification. No actual model 
or learning is performed during the training phase, 
although a training dataset is required. It is used solely 
to populate a sample of the search space with instances 
whose class is known. For this reason, this algorithm 
is also known as the lazy learning algorithm, which 
means that the training data points are not used to do 
any generalization, although all the training data is 
needed during the testing phase.

One of the advantages of the k-NN method in 
classifying the objects is that it requires only a few 
parameters to tune: k and the distance matrices, for 
achieving sufficiently high classification accuracy. 
Thus, in k-NN-based implementation, the best choice 
of k and distance metric for computing the nearest 
distance is a critical task. Generally, large values of 
k reduce the effect of noise on the classification but 
make boundaries between classes less distinct [24].

k-NN classification is based on measuring the 
Euclidean distance (Eq. (14)) between unknown 
sample vector Xs and known sample vectors 
Xm = [X1, X2, ..., Xm] sorted in the database.

	 d x xsm sn mn
n

N

= −( )
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∑ 2

1

, 	 (14)

where index n is the size of observations and m is an 
index of the individual vector.

1.2.2  Multivariate Gaussian Distribution

The multivariate Gaussian distribution (MGD) is 
a generalization to two or more dimensions of the 
univariate Gaussian (or normal) distribution, which 
is often characterized by its resemblance to the bell 
shape. This algorithm is selected according to the 
statistical analysis of the reference feature vectors. The 
histogram of individual feature vector components 
indicates their Gaussian distribution. An additional 
advantage of the algorithm is its high computational 
speed. MGD is the Gaussian mixture model with a 
hypothetical mixture. 

During preliminary studies individual vector 
components were identified to have the univariate 
Gaussian distribution with acceptable deviation. If 
the real-valued univariate random variable X is said 

to have the Gaussian distribution with mean µ and 
variance σ2 (written as X ~ N (μ, σ2)), than its density 
function can be written as:
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where –∞ < μ < ∞ and σ > 0. The vector-valued random 
variable X = [X1, ..., Xr]T is said to have multivariate 
Gaussian distribution with mean r-vector μ and 
positive defined symmetric (r × r) covariance matrix 
Σ, if its density function is given by the curve;
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x r∈ℜ . If X is a random r-vector with values within
ℜr , then its expected value is the r-vector:
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where

	 σ µ2 2= = − var( ) ( ) ,X E Xi i i 	 (19)

is the variance of Xi , i = 1, 2, …, r , and

    σ µ µij i j i i j jX X E X X= = − − cov( , ) ( )( ) , 	 (20)

is the covariance between Xi and Xj , i , j = 1, 2, …, r  
(i ≠ j) [25].

A covariance matrix (also known as dispersion 
matrix or variance-covariance matrix) is a matrix 
whose element in the i, j position is the covariance 
between the ith and jth elements of a random vector. 
Each element of a vector is a scalar random variable, 
either with a finite number of observed empirical 
values, or with a finite or infinite number of potential 
values specified by a theoretical joint probability 
distribution of all the random variables. Multivariate 
Gaussian distribution density exists when the 
symmetric covariance matrix is positive definite. A 
sample covariance can be calculated using following 
equation:

	 σ µ µij ni i nj j
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N
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where N is the number of samples of a Xi or Xj vector 
component.

2  EXPERIMENT

An experimental plan was designed to evaluate the 
hypothesis proposing that an ASR algorithm can be 
applied for AMR. A traditional FCC method from 
ASR was used to extract sound features from typical 
industrial and machinery sounds. The classification 
of feature vectors was performed by k-NN and 
MGD at different signal-to-noise ratios (SNRs). 
The industrial noise was mixed with machinery 
sounds as background noise to set the SNRs. All 
machinery signals were first pre-processed to assure 
equal energies. SNR was set to 7 dB and 2 dB below 
the signal level by mixing industrial noise having 
appropriate energy levels with sample signals. Five 
different machines and three different operations were 
included in the MSR. The classification performance 
was tested by applying different filter types and 
different numbers of filters to FCC calculations. 
Experiments were conducted for traditional mel scale 
filter banks, and for two additional filter banks: the 
Linear and Logarithmic filter banks. The experimental 
plan which was designed and performed is presented 
in Table 1.

Measurements of machinery sounds were 
performed in a laboratory environment. The 
experimental set-up is shown in Fig. 2, where the 
position of measured machines and microphone are 
constrained, as well as room dimensions. To test 
the robustness of the proposed algorithms, original 
sounds were mixed with background noise having 
three different sound pressure levels (SPLs). All 
machines sound SPLMs were set to equal levels. 
Background noise SPLBG was adapted to ensure 
three different SNRs. The reverberation time of the 
room was 0.8 s. Sounds of two different vacuum 
cleaners, jigsaw, compressor, and drill were recorded 
using a B&K microphone and M-audio sound card. 
Also, the sounds of the jigsaw cutting aluminium 
plate, drilling holes into a steel plate and grinding 

aluminium plate on a grinding machine were recorded 
to simulate different operations. One-minute sound 
samples were recorded without background noise 
and with a sampling frequency of 48000 Hz and 
16-bit resolution. Background noise was recorded 
in the industrial hall to simulate a real industrial 
environment. Parameterization of sound samples 
and classification was done in a program written in 
LabVIEW. The program was designed to allow the 
user to change FCC parameters (time window length, 
overlapping, frequency range, filter type, and the 
number of filters). FCCs were extracted to 50 ms time 
windows of the signal with 40 % overlapping in a 
frequency range from 100 Hz to 8000 Hz.

Fig. 2.  Experiment set-up scheme

2.1  Database Design

Because the k-NN algorithm has no training mode, 
its database is just a compilation of vectors composed 
from FCCs, which result from pure machinery sound 
signals. In contrast, the MGD algorithm works 
only with the reference template models. FCCs 
of sound samples with no background noise were 
used in a training mode to build a MGD reference 
template model. The database for the MGD classifier 

Table 1.  Parameters of experimental plan

Parameter 1 2 3 4 5 6 7
Signal / noise 7 dB 2 dB –2 dB / / / /
Filter size 3 6 12 18 24 30 36
Algorithm k-NN MGD / / / / /
Filter type mel linear Log / / / /
Machine type compressor vacuum cleaner 1 Jigsaw drill vacuum cleaner 2 / /
Machinery operations jigsaw cutting Al drilling Grinding / / / /
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parameters is composed of mean value vector μ, the 
determinant of covariance matrix |Σ| and inverse of 
covariance matrix Σ–1.

If the covariance matrix is not full rank, then 
the multivariate normal distribution is degenerate 
and does not have a density. More precisely, it does 
not have a density with respect to the r-dimensional 
Lebesgue measure. In other words, the r dimensional 
MGD of vector X has density if the covariance matrix 
is positive definite i.e. feature vector components are 
independent. If non-diagonal covariances are zero 
valued, then the covariance matrix becomes a diagonal 
variance matrix. 

In practice, the non-diagonal covariances of 
vector components are not necessarily zero valued. 
This can result in a negative matrix determinant. 
If its determinant is zero, the matrix becomes non-
invertible. Eq. (16) indicates that the determinant of a 
covariance matrix must be positive. It is positive in the 
case of a diagonal variance matrix but not necessarily 
otherwise. Individual components of vector X have 
12 coordinates (12 FCCs). An individual vector 
component was treated as the normally distributed 
univariate. If the 12 dimensional covariance matrix of 
vector X is positive definite than MGD density exists, 
otherwise we must reduce components to the number 
at which point the covariance matrix become positive 
definite. The MGD database size of the individual 
model depends on the size of a positively definite 
covariance matrix.

2.2  Classification

The MGD rate of machinery sound recognition was 
determined by applying the voting procedure, where 
the decision of affiliation is based on a maximum 
matching of the unknown feature vector with the 

reference template models. MGD was used as a 
parametric model of the probability distribution for 
FCC feature measurements. The MGD algorithm 
calculates the probability of affiliation for an 
unknown feature vector based on the stored models 
and votes for the one with the maximum probability. 
The k-NN algorithm is quite different from MGD. 
It simply measures the Euclidian distances between 
the unknown feature vector and those stored in the 
database and votes for the k minimum measured 
distances. 

The experimental design included the analysis 
of both, the impact of the number of filters and 
different composition of filters on a classification 
performance. The experimental plan also compared 
the classification performance of two classifiers. 
Classification performances have been tested for 
two different SNRs to simulate real environmental 
conditions, where performance can be degraded due 
to all sorts of disturbances.

3  RESULTS AND DISCUSSION

Classification performance results from the k-NN and 
MGD classifiers for a different number of filters in 
the filter bank are shown in Table 2. The results are 
presented as an average of classification performance 
of five different machine sounds. Classification 
performance for 12 filters gives the best performance 
for all filter types, regardless of SNR. The obvious 
conclusion is that MGD provides better performance 
when SNR decreases, or when the background noise 
level increases. Regardless of the filter type, the MGD-
based classification provides better performance than 
the k-NN based classification, when using an optimal 
number of filters.

Table 2.  MGD and k-NN classification results for different number and compositions of filters at two different SNR values

SNR N filters 3 6 12 18 24 30 36

Mel
7 dB

MGD 78.56 80.27 81.54 63.70 75.48 74.23 55.44
k-NN 79.78 81.15 83.72 82.02 79.35 76.26 72.96

2 dB
MGD 61.26 63.57 64.32 53.26 60.36 60.92 46.04
k-NN 55.26 57.68 59.08 58.05 57.73 57.11 49.60

Linear
7 dB

MGD 84.73 97.34 98.92 82.88 94.47 83.02 59.01
k-NN 91.45 95.79 97.46 78.78 88.04 83.00 84.35

2 dB
MGD 74.06 83.06 79.74 63.52 76.52 65.08 49.00
k-NN 65.89 68.76 71.03 55.26 59.71 50.77 55.49

Logarithmic
7 dB

MGD 78.74 82.36 83.04 68.02 47.24 42.04 51.77
k-NN 70.55 75.03 75.74 73.24 57.88 54.36 42.98

2 dB
MGD 50.21 53.88 54.98 40.70 38.56 36.87 39.81
k-NN 48.65 52.47 54.03 39.55 36.59 35.47 37.69
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Fig. 3 summarizes the results for the optimal 
number of filters (12 filters) as given in Table 
2. Classification performance of different filter 
compositions for the case of using a k-NN or MGD 
classifier is clearly evident from Fig. 3. The best 
recognition rates are achieved by using 12 linear filters 
with an MGD classifier. Its advantage was especially 
clear when SNR was reduced to only 2 dB. The reason 
relates to the standard deviation of individual feature 
vector components. The use of 12 filters gives the 
best decomposition of filtered magnitude spectrum 
energies with the lowest possible standard deviation 
of individual decomposed component. Standard 
deviations become higher if the number of filters is 
lower or higher than 12. Narrow standard deviation of 
individual vector components provides better results.

As the results in Table 2 and Fig. 3 show the 
average of classification performance, the results in 
Tables 3 and 4 show a matrix of the classification 
rates. Tested objects are labeled in the first column, 
and the classification results are given in rows. 
Results of classification with 12 linear filters used 
in combination with MGD classifier are presented in 
Table 3. One misclassification occurred when using 
this combination at SNR of 2 dB, when a jigsaw was 
classified as a compressor. 

The k-NN algorithm provides similar results, also 
with one misclassification for SNR of 2 dB. FCCs of 
vacuum cleaner 1 were misclassified as a compressor, 
but the other test objects were classified correctly.

Fig. 3.  Impact of different filter compositions on classification 
performance of MVD and k-NN at SNR of 7 dB and 2 dB for 

machinery sounds

Although k-NN is a simple algorithm and gives 
good classification results, it suffers from a few 
disadvantages in real-time applications. The k-NN 
algorithm requires a large database because all training 
feature vectors of all classes must be stored. Database 
size of feature vectors increases with the length of 

Table 3.  Matrix of MGD classification performance at optimal FCC settings

Compressor Vacuum cleaner 1 Jigsaw Drill Vacuum cleaner 2

Linear filters MGD 
classifier 
SNR 7 dB

Compressor 100 0 0 0 0
Vacuum cleaner 1 0 99.9 0 0.1 0
Jigsaw 4.8 0 95 0.2 0
Drill 0 0.1 0.2 99.7 0
Vacuum cleaner 2 0 0 0 0 100

Linear filters MGD 
classifier 
SNR 2 dB

Compressor 100 0 0 0 0
Vacuum cleaner 1 0 98.6 0 0.2 1.2
Jigsaw 92.6 0.1 3.5 3.8 0
Drill 0 3.4 0 96.6 0
Vacuum cleaner 2 0 0 0 0 100

Table 4.  Matrix of k-NN classification performance at optimal FCC settings

Compressor Vacuum cleaner 1 Jigsaw Drill Vacuum cleaner 2

Linear filters k-NN 
classifier 
SNR 7 dB

Compressor 100 0 0 0 0
Vacuum cleaner 1 0 98.6 0 0.2 1.2
Jigsaw 0.5 0 99.5 0 0
Drill 0 2.4 9.81 87.79 0
Vacuum cleaner 2 0 0 0 0 100

Linear filters k-NN 
classifier 
SNR 2 dB

Compressor 100 0 0 0 0
Vacuum cleaner 1 89.29 0 0 0 10.71
Jigsaw 28.13 0 78.87 0 0
Drill 0 2.8 20.62 76.28 0.3
Vacuum cleaner 2 0 0 0 0 100
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the training samples, as well as with the number of 
classes. The second disadvantage is its speed and 
accuracy, which are related with the determination 
of k-NN. The increase of the k-neighbours results 
in a decrease of the self-classification accuracy, in a 
decreased probability of misclassification, and in an 
increase of the computation time.

The influence of the number k (number of nearest 
neighbours) on the classification performance and 
computation time is evident from Fig. 4. Decreasing 
the k seems to be a reasonable choice according 
to the results shown on the graph, but it should be 
reconsidered. Finding the optimal k is essential for 
achieving good results in real applications.

Fig. 4.  Impact of k-NN on classification performance and 
computation time at SNR of 2 dB

Contrary to the k-NN-based classification, 
the MGD-based classification is faster, and its 
computation speed depends only on the number of 
reference template models (classes). The database 
for an individual class consists only of few statistical 
parameters. The small size of the database ensures a 
small storage size of the reference template model. 

The average classification time of 2000 feature vectors 
using MGD is 50 ms whereas k-NN is more than 2.5 s.

The results of the classification performance 
of different machinery operations using an optimal 
number of filters are summarized in Tables 5 and 6. 
A comparison of the classification performances of 
different filter types with MGD or k-NN classifier at 
different SNRs is depicted in Fig. 5. Best recognition 
rates were achieved by using 12 mel filters with 
k-NN classifiers when SNR was 7 dB. Decreasing 
SNR to 2 dB gives better results using a linear filter 
type with an MGD classifier. When SNR is reduced 
to –2 dB, the k-NN algorithm outperforms the MGD 
algorithm regardless of the filter type. Mel filter type 
gives the best performance at SNR of 7 dB and 2 dB 
using the k-NN algorithm, but at –2 dB classification 
performance gives better results using a linear filter 
type. 

Results in Fig. 5 clearly indicate that best overall 
performance is achieved if a linear or male scale filter 
was used.

Results in Table 5 show the classification matrix 
rate achieved by applying an MGD classification 
algorithm where different machinery operations 
have to be recognized. The perfect classification was 
achieved with an SNR of 7 dB and 2 dB. Decreasing 
SNR to –2 dB led to a misclassification, in which a 
drilling operation was classified as the operation of 
grinding an aluminium plate.

Table 6 shows results for the k-NN recognition 
of machinery operations. Very good classification 
performance was achieved for all SNR values with 
perfect classification results. 

Results show that methods used in ASR systems 
can be successfully applied in MSR systems and 
can achieve high recognition accuracy even in noisy 

Fig. 5.  Impact of different filter compositions on classification performance of MGD and k-NN  
at SNR of 7 dB, 2 dB and -2 dB for different operational conditions of jigsaw
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conditions. A small modification of the FCC method 
and use of proper settings enables MSR working in 
real-time applications if the proper classifier is used.

Table 5.  Matrix of MGD classification performance at optimal FCC 
settings for different jigsaw operational conditions

Grinding Drilling
Jigsaw - 
cutting

Linear-MGD 
classifier  
SNR 7 dB

Grinding 100 0 0
Drilling 8.2 90 1.9
Jigsaw - 
cutting

34.3 0.7 65

Linear-MGD 
classifier  
SNR 2 dB

Grinding 100 0 0
Drilling 15.6 79.4 5
Jigsaw - 
cutting

35.1 0.2 64.7

Linear-MGD 
classifier  
SNR –2 dB

Grinding 99.9 0 0.1
Drilling 49.7 31.1 19.1
Jigsaw - 
cutting

40 0 60

Table 6.  Matrix of k-NN classification performance at optimal FCC 
settings for different jigsaw operational conditions

Grinding Drilling
Jigsaw - 
cutting

Linear-k-NN 
classifier  
SNR 7 dB

Grinding 81.92 16.67 1.42
Drilling 0.11 98.26 1.63
Jigsaw - 
cutting

2.61 29.25 68.14

Linear-k-NN 
classifier  
SNR 2 dB

Grinding 75 20.48 4.47
Drilling 0 92.7 7.3
Jigsaw - 
cutting

2.29 27.94 69.77

Linear-k-NN 
classifier  
SNR –2 dB

Grinding 71.46 20.59 7.95
Drilling 0 72.55 27.45

Jigsaw - 
cutting

0.65 25.65 73.69

4  CONCLUSIONS

A hypothesis proposing that automatic speech 
recognition algorithms can be applied for automatic 
machine recognition was tested. Two recognition 
algorithms (k-NN and MGD) were compared in 
combination with the FCC features extraction for 
three different SNRs. FCC feature extraction for 
automatic speech recognition based on a mel filter 
bank was modified through the modification of 
the filter bank. Two additional filter banks were 
developed to customize the FCC feature extraction for 
machinery-generated sound: linear and logarithmic. 
Performances of three different filter banks (mel, linear 
and logarithmic) were compared for the formation of 

feature vectors. Individual vector components were 
regarded to have univariate Gaussian distribution.

Experimental results confirm the hypothesis 
proposing that automatic speech recognition 
algorithms can be used for automatic machine 
recognition. The highest recognition rates of different 
machines classification were achieved by the MGD 
classifier in combination with linear filter type 
regardless of SNR. The results in Fig. 3 clearly show 
that a linear filter type in combination with MGD 
classifier should be used for machinery identification. 
However, classification performance of different 
machinery operations was better when using the k-NN 
algorithm in combination with male scale filter type, 
when SNR was low. When decreasing SNR to –2 dB, 
the linear filter type proves to be a better option.

Overall results of the experiment show that 
machinery noise features should be extracted using 
the proposed linear filter bank. 

Despite the good classification results of different 
machinery operations, the k-NN might not be the 
best solution to use. Because it has no statistical 
model, it might not work well when a few more 
machinery operations would be added to an MSR 
procedure. Taking k-NN speed and database size into 
account, definitely makes the MGD algorithm more 
appropriate.

Algorithms of the proposed procedure are very 
fast, and the recognition can be performed in real-
time. In further work, a full Gaussian mixture model 
should be tested for a further upgrade of machine 
classification performance.

The proposed procedure was already used in the 
system for the automatic classification of noise events 
during environmental noise measurements. It was also 
tested for the detection of cavitation phenomena on 
kinetic pumps and the quality inspection of suction 
units used in vacuum cleaners. 
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