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 This paper studies the ideally dissociated gas (air) flow along a porous wall of the body of 
revolution within the fluid in the conditions of equilibrium dissociation. Using similarity transformations, 
the governing boundary layer equations are brought to a generalized form. The obtained equations are 
numerically solved in three-parametric twice localized approximation by finite differences method. Based 
on the obtained solutions, diagrams of distribution of physical quantities and characteristics of the 
boundary layer are drawn. General and some specific conclusions about behaviour of these quantities 
are also made for the studied compressible fluid flow.
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0 INTRODUCTION

This paper investigates the dissociated gas 
(air) flow in the boundary layer on bodies of 
revolution. The contour of the body within the 
fluid is porous. The dissociated gas flows in the 
conditions of the so-called equilibrium 
dissociation 1] and [2 .

The goal of our investigations is to apply 
the general similarity method to the considered 
flow problem. Naturally, the ultimate objective is 
to solve the obtained generalized equations in the 
appropriate approximation. 

The general similarity method was first 
introduced by Loitsianskii 3  and later improved 
by Saljnikov 4  - Saljnikov's version. 
Investigators of the Belgrade School used this 
method to solve many boundary layer flow 
problems. The most significant results were 
accomplished in investigations of incompressible 
fluid flow and with the MHD boundary layer 5 .
Solutions for some complicated flow problems 
6  were also obtained, (e.g. for the case of the 

temperature calculating layer on a rotating surface 
7 ). Both versions of the general similarity 

method were successfully applied to planar 
boundary layers with homogenous compressive 
fluid flow, dissociated and ionized gas flow 8] 
and [9 . This paper presents the results obtained 
for the ideally dissociated gas (air) flow along a 
porous wall of the body of revolution within the 
fluid in the conditions of equilibrium dissociation. 

They were obtained using Saljnikov's version of 
the general similarity method.  

1 MATHEMATICAL MODEL 

Thermo-chemical equilibrium is assumed 
to be established in the whole area of the 
boundary layer. Therefore, a complete equation 
system for this case of axisymmetrical gas flow in 
the boundary layer (Fig. 1), with the corres-
ponding boundary conditions 10] and , 11 , is: 
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In the mathematical model (1), the first equation 
is a continuity equation of axisymmetrical 
compressible fluid flow on bodies of revolution, 
the second one is dynamic, and the third one is 
energy equation. In the energy equation, the 
function l(p, h) for the equilibrium two-
componential mixture depends on Lewis number 
(Le) and on the enthalpy of the atomic hA and 
molecular hM components of the equilibrium 
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dissociated gas (air). This function is determined 
with the expression 12     

( , ) (Le )( ) ,A
A M

p

Cl p h 1 h h
h (2)

in which  CA =  stands for the concentration of 
the atomic component of the ideally dissociated 
gas.

Fig. 1.  Gas flow around a body of revolution

In the equation system and the boundary 
conditions, the usual notation is used. Thus,  
u(x, y) denotes the longitudinal projection of the 
velocity in the boundary layer, v(x, y) -
transversal projection,  - density of the ideally 
dissociated gas,  - dynamic viscosity, h -
enthalpy. Here, x and y are longitudinal and 
transversal coordinates, respectively. Prandtl and 
Lewis numbers are defined with the expressions: 
Pr = c p / , Le = c p /  in which  - stands for 
the thermal conductivity coefficient, cp - specific 
heat of the dissociated gas at constant pressure 
and D - atomic component diffusion coefficient. 
The radius of the cross-section of the body of 
revolution, which is normal to axis of revolution, 
is denoted with r(x) The contour of the body, 
which figures in the continuity equation is given 
by the function r(x). The subscript  denotes the 
physical quantities at the outer edge of the 
boundary layer, and the subscript w  stands for 
the quantities at the wall of the body within the 
fluid. Here, vw(x) denotes the given velocity of the 
gas that flows through the solid porous wall (vw >
0  or vw > 0). 

Everywhere, the thickness of the boundary 
layer (x) is assumed to be significantly less than 
the radius of the body of revolution ( (x) << r(x)).

Therefore, this thickness can be neglected 
compared to r(x) However, this assumption 
cannot be applied to long thin bodies 13 .

Unlike other methods 14 , the application 
of the general similarity method involves the 
usage of the momentum equation and the 
corresponding sets of similarity parameters. In 
order to obtain the momentum equation we start 
from the boundary layer continuity and dynamic 
equations.  

The planar, steady flow of the equilibrium 
dissociated gas in the boundary layer is 
determined with the equations system 12  which 
differs from the system (1) only by the continuity 
equation. Therefore, for both flow types, the 
continuity equation can be written in a general 
form as 

( ) ( ) ,j jur vr 0
x y

where j = 0 for the planar, and j = 1 for 
axisymmetrical flow.  

It has been shown 15  that a more suitable 
general form of the continuity equation should be 
used. 

.
j jr ru v 0

x L y L (3)
The equation for axisymmetrical flow (j = 1) and 
L = const. reduces to the first equation of the 
system (1). In the same equation, L is a 
characteristic constant length, and for the 
numerical calculation L = 1 16 .

2 TRANSFORMATION OF THE GOVERNING 
BOUNDARY LAYER EQUATIONS 

As in already solved flow problems by 
means of the general similarity method, we 
introduce variables: 

( ) ,

( , ) .

x 2 j

w w
0 0 0

yj

0 0

1 rs x dx
L

1 rz x y dy
L

(4)
In the transformations (4) for the new 

longitudinal s(x) and transversal z(x, y) variables, 
the values 0  and 0 = 0v 0  denote the known 
values of the density and dynamic viscosity at a 
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certain point of the boundary layer (v0 is 
kinematic viscosity). Here, w and w are given 
values of these quantities at the inner edge of the 
boundary layer.  

These transformations were also used in 
the papers 12  for j = 0 and 16  for j = 1, but 
for the case of  non-porous contour of the 
body of revolution within the fluid. It should be 
noted that the transformations (4), due to factors 
(r /L )2 and r /L  (j = 1), contain Mangler-Stepanov 
transformations 11 .

When the continuity equation (3) is 
multiplied with the velocity ue(x) at the outer edge 
of the boundary layer, and when the dynamic 
equation of the system (1) is multiplied 
with(r /L) j , by the usual procedure 15  we obtain 
the momentum equation from these equations. 
Namely, by integration transversally to the 
boundary layer (from y = 0 to y ) and the 
change of the variables, the momentum equation 
is obtained: 

.ot

e

FdZ
ds u (5)

While deriving the momentum equation, 
we defined the conditional displacement 
thickness *(s), conditional momentum loss 
thickness **(s) and nondimensional friction 
function  (s):  
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u u
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The parameter of the form f  is also 

defined: 

( ) ( ); ,
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The characteristic boundary layer function  

Fot in the momentum equation (5) is determined 
with the expression 

,
( / )

,

w 0
ot j

0 w

v2F 2 2 H f
r L

H
(8)

where the subscript ot denotes the body of 
revolution.  

For the case of a non-porous wall of the 
body within the fluid (for which vw = 0) the 
expression for the characteristic function Fot
comes down to the expression for the function F
(Fot = F ) of the planar dissociated gas flow 12 .
In this case, the expression for this function is 
formally the same as the one for incompressible 
fluid flow 3 . For j = 0 this function is 
completely the same as the function Fdp for the 
planar dissociated gas flow 17 .

Based on the relations (8) for Fot, the 
porosity parameter (s) can be defined as: 

( )
( / )
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( ),
( / )

0
wj

w 0

w 1
0

0
w wj

w

1s v
r L

V s

1V v j 1
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where Vw(s) represents the conditional fluid 
injection velocity. Therefore, the function Fot of 
the boundary layer can be written in the form of 

otF 2 2 H f 2 (10)
and as such it will be used hereafter. It should be 
noted that because of the relationship between the 
quantities Z**, **   and f the momentum equation 
(5) can be written in two other forms 17 .        

In order to solve the governing equation 
system, we introduce a stream function (s, z):

,

( / )

( )

j
0 0

2 j
w w 0

u
z

1 z rv u v
x Lr L

j 1
s (11)

in accordance with the relations that result from 
the continuity equation (3). For j = 0 these 
relations come down to the expressions used in 
the paper 12 .   
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Applying transformations (4) and the 
stream function (11), the governing system takes 
the following form: 

,
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In the equation system (12), the 
nondimensional function Q is determined with the 
expression: 

;

for ,

( ) for .

w w

e e

w w

Q

Q 1 z 0

Q Q s z
(13)

For further application of the general 
similarity method, the stream function (s, z)
should be divided into two parts: 

( , ) ( ) ( , ) , ( , ) .ws z s s z s 0 0 (14)
Here, w(s)= (s,0)  denotes the stream 

function along the wall of the body within the 
fluid (z=0) , and ( , )s z  is now a new stream 
function. 

Applying the relations (14), the equation 
system (12) is easily transformed into: 
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Unlike the system (12), both equations of 
the system (15) contain a new term in which the 
derivative d w/ds  appears. This derivative is 
determined with: 

,
( / )

( ).

w 0
w wj

wz 0

d 1 v V
ds s r L
j 1 (16)

The expression (16) for the derivative 
d w/ds  for j=0 comes down to the 
corresponding expression for the planar 
dissociated gas flow 17 . In the case of a 
nonporous wall of the body within the fluid, this 
derivative equals zero. Then, the terms in the 
equations (15) equal zero. In this case, the 
obtained equation system is completely identical 
with the one obtained in the paper 12  for the 
planar flow along a nonporous wall. 

3 GENERALIZED BOUNDARY LAYER 
EQUATIONS ON BODIES OF REVOLUTION 

For the application of the general 
similarity method, we used the procedure already 
used for both, incompressible and compressible 
fluid in 4 . We introduced new changes of the 
variables: 

b 2
eu

s s,    (s,z )= z,
S(s )

, , .;

( , )
( , ) .

1 2s
b 1

0 e
0

1- b 2
e

1 1

S(s ) a u ds a b const

(s,z ) u S(s ) s ,
h(s,z ) h h s ; h const (17)
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Table 1. List of variables  

Starting 
variables x y )(xue ),(),,( yxvyxu ),( yxh 0y y

New I )(xs ),( yxz )(sue ),(),,( zszs ),( zsh 0z z

New II )(xs ),( zs )(sue ),(s

)(),(, kkf
),(sh

)(),(, kkfh

0

In expression (17), (s ,  z)  is a newly 
introduces variable, (s , )   is a new stream 
function, while h is a nondimensional enthalpy. 
Here, h1denotes the enthalpy at the front 
stagnation point of the body within the fluid. 
Table 1 gives a list of the starting and the newly 
introduced variables.  

Based on the variables (17), the important 
quantities and characteristics of the boundary 
layer (e.g. (6)) can be expressed in the form of: 

( ), ( ) ( ) ,
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( ) ,
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b 2
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2

2
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u u

AH B
B

A s d

B s 1 d
(18)

The transversal variable and the stream 
function can also be written in a more suitable 
form as: 

( , )e

B(s )(s,z )= z ,
(s )

u (s ) (s )
(s,z ) s .

B(s ) (19)
After the calculation of the derivatives and 

after comprehensive transformations, the equation 
system (15) reduces to the form that is not 
generalized according to the general similarity 
method. Thus transformed dynamic and energy 
equations contain the factor u e /u ' e  in their terms. 
Therefore, the solution of the system will depend 
on the concrete form of the law of the given 
velocity at the outer edge of the boundary layer 
u e (s).

In order to bring the equation system (15) 
to a generalized form, it is necessary to introduce 
the transformations (17) and (19) and the 
corresponding sets of parameters. For application 
of Saljnikov’s version of the general similarity 
method, we introduce a new stream function 
and a new nondimensional enthalpy :h

, , ( ), ( )

, , ( ), ( )

e
k k

1 k k

u
(s,z ) f ,

B
h(s,z ) h h f ; (20)

where  is the local compressibility parameter 
12 .         

In the generalized similarity 
transformations (20), with the newly introduced 
functions  and h , the set of parameters of the 
form )(sfk  of Loitsianskii type 3  and the set of 
parameters )(sk  of the porous wall 15  are 
defined as: 

/
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h s 1 k 1 2 3 (21)

The introduced sets of parameters reflect 
the conditions of the outer flow, and in the 
transformations (20), they represent independent 
variables (instead of the variable s). Both sets of 
parameters (21) satisfy the corresponding 
recurrent simple differential equations:  

,

( )

e
1 0

e

e k
1 1 ot k k 1 k

e

u df 2 f 2 f
u ds
u d f

f k 1 f kF f f
u ds
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( ) ( ) /
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(22)
These equations are formally the same as the ones 
for the case of incompressible fluid flow 3 .
Furthermore, from (21) for k=1 it follows that 
f1(s)= u ' eZ * *  is the already known parameter of 
the form (7), while from the set of the porosity 
parameters for the first parameter we get the 
expression 

/1 2w w w
1

00 0 0

V V V
Z

which is the same as the previously defined 
parameter (9). 

Applying (17) and (20), the equation 
system (15) is brought to a generalized equation 
system of the dissociated gas boundary layer: 

( )

,

(
( )

Pr

22 2
1

2 2 2

2 2
e1 1

2 2

2 2

k2 2
k kk 0

2 2

k 2
k kk 1

2

aB 2 b fQ
2 B

f
BB

1
f fB

aBQ h1 l
)

;

1
2

22
e 1 1

2 2

k2
k kk 0

k
k kk 1

2 b f h
2 B

2 f h2 Q
BB

1 h h
f fB

h h

.for1)(,1

,0for.,0,0

shh

consthh

e

w

(23)

The system of generalized equations (23) 
has the same form as the system 17  for planar 
flow of dissociated gas along a porous contour. 
For 0j  these systems are completely identical 
because in that case the expressions for porosity 
parameters are also identical. For the case of a 
nonporous wall ),0,00( 1ww Vv  the 
equations (23) formally come down to the 
corresponding equations obtained in the paper 
12 .

The equation system (23) is solved in the 
so-called n-parametric approximation. In three-
parametric twice localized approximation 
( f 0= 0, f1= f 0, 1= 0, fk=0,  k=0 for 
k 2 and  ,0/ )0/ 1  this system has 
the following form: 
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Note that in the energy equation of the 

system (23), the localization per the parameter 
is performed  in relation to the total 
nondimensional enthalpy ,/)2/( 1

2 huhg
when, according to 12 , we can consider that 

.0/g  The relation between the 

nondimensional h  and the total enthalpy g is 
determined with the expression 

.)/( 2gh
The generalized equation system obtained 

here, represents a mathematical model of ideally 
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dissociated gas (air) flow in the boundary layer 
along a body of revolution under the conditions of 
equilibrium dissociation. The terms that contain 
the porosity parameter 1  are characteristic for 
the porous wall of the body of revolution. The 
equation system (24) is of the same form as the 
corresponding system for the planar flow 
problems 17 .

For a numerical solution of the obtained 
equation system, the order of the dynamic 
equation is decreased: 

.),,,( 11fu
u

e (25)
Then, based on the results stated in 12 ,

for the equilibrium dissociated air it is accepted 
that ,1Le  and consequently .0l  According to 
the same author, the function Q (13) and the 
density ratio ,/e  that figure in the equation 
system (24), can be expressed using the formulae: 

.
1

,)(
31

h
h
hhQQ ew

(26)
The formula for the function Q gives 

satisfactory results for a wide range of the 
pressure change. The formula for the density ratio 
that follows from the corresponding formulae 
stated in 12 , gives a rather rough approximation. 

Taking (25) and (26) into consideration, 
we come to a generalized equation system with 
four independent variables: 1,, f  and 1 :
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4 NUMERICAL SOLUTION 

Numerical solution of the obtained system 
of partial differential equations (27) is performed 
by the passage method, i.e., by the finite 
difference method. Here, the whole area of the 
boundary layer is changed with the planar 
integration grid with spaces 1f  and 4 .
Some derivatives in the equations (27) are 
changed with the corresponding finite differences 
of the functions at discrete points of the grid: 

).1,1(),1,(),1,1(),,( KMKMKMKM

The values of the functions ,  and h  are 
calculated at discrete points of each calculating 
layer ).1(K  Because of the complexity of the 
considered flow problem, the number of discrete 
points from 1M  to 401NM  has been 
determined for each layer calculating. 

For the numerical solution of the 
generalized equation system (27), i.e., of the 
corresponding equivalent system, a program in 
FORTRAN programming language has been 
written. This program was used in our paper 17 ,
and is based on the one used in the paper 4 . The 
equations are solved for the following values of 
the parameters and coefficients: Pr = 0.712; a = 
0.4408, b = 5.714 4 . For the characteristic 
functions B and Fot at a zero iteration, the 
following values are accepted: 0.4490

K 1B  and 
, 0.44110

ot K 1F . They were also used in the 
investigations 4 .      

5 THE OBTAINED RESULTS 

Numerical solutions of the generalized 
equations (27) are first obtained for each cross-
section of the boundary layer in the form of 
tables. Then, based on the tables, diagrams of the 
nondimensional velocity, nondimensional 
enthalpy and characteristic quantities of the 
boundary layer are drawn. Again, note that due to 
transformations (4), the obtained generalized 
equations (27) are formally the same as the ones 
obtained in 17 .

This paper gives only some of the most 
important diagrams obtained in the course of our 
investigations. Figure 2 is the diagram of the 
nondimensional velocity euu for three cross-
sections  of  the  boundary  layer.  Figure 3 shows  
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Fig. 2.  Diagram of the nondimensional velocity 
euu

Fig. 3.  Diagram of the nondimensional enthalpy 
h

Fig. 4.  Diagram of the nondimensional enthalpy 
h  for different values of the parameter 0f

Fig. 5.  Distribution of the nondimensional 
friction function )( f

the diagram of the nondimensional enthalpy  h
also at three cross-sections of the boundary layer 
when the compressibility parameter is  = f0 = 0.5
The diagrams on Fig. 4 represent the distribution 
of the nondimensional enthalpy for different 
values of the compressibility parameter. Finally, 
Fig. 5 shows the distribution of the 
nondimensional friction function ).( f Here, the 
subscript 1 in the parameter of the form )( 1 ff
is left out. 

6 CONCLUSIONS 

The paper shows that the general similarity 
method can be applied in the studied case of the 
fluid flow. However, the application of this 
method to the problem of the ideally dissociated 
gas (air) flow in the boundary layer on bodies of 
revolution is associated with some complexities, 
which are primarily of mathematical nature. 
There are also some problems related to physical, 
i.e., thermochemical processes of gas flow (e.g. 
(26)). Nevertheless, we have obtained some 
important quality results that give us an insight 
into the behaviour of the distribution of physical 
and characteristic quantities at different cross-
sections of the boundary layer.  

 It should be noted that the porosity 
parameter )(s (9) and a set of parameters 

)(sk of the porous wall of the body of 
revolution (21), enabled the application of the 
general similarity method to this problem.  
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It is specifically pointed out that the 
system of generalized equations (23) has the same 
form as the corresponding system for planar flow 
of dissociated gas along a porous contour. But 
this is quite expected and it is due to the 
transformations (4) that contain the terms 2)/( Lr
and ./ Lr

Based on the numerical results, i.e., on the 
presented and other diagrams, a general 
conclusion can be drawn: distributions of the 
solutions of the obtained boundary layer 
equations are of the same behaviour as with other 
dissociated gas flow problems.  

For the considered case, the following 
concrete conclusions can be drawn: 

The nondimensional flow velocity 
// euu  at different cross-sections of the 

boundary layer on the body of revolution 
(different f ) converges very fast towards unity 
(Fig. 2). 

The influence of the compressibility 
parameter 0f on the distribution of the 
nondimensional enthalpy at the cross-section of 
the boundary layer is considerable (Fig. 4). This 
is due to the fact that the value of the 
nondimensional enthalpy is determined with this 
parameter at the outer edge of the boundary layer 

1( ehh  for ).
In order to obtain results that are more 

reliable, it is necessary to solve the system (23) in 
three-parametric approximation but without the 
localization per corresponding parameters. It is 
important that the solutions should be obtained 
without localization per the compressibility 
parameter. This parameter has a great influence 
on the change of the enthalpy in the boundary 
layer, and it even changes the general character of 
behaviour of the distribution of enthalpy. 
However, this solution would involve even more 
complexities of mathematical nature. 

From the diagrams in Figure 5 and 
others not shown here, it is obvious that the 
porosity parameter has a considerable influence 
on all the important characteristics of the 
boundary layer. This parameter influences the 
nondimensional friction function ,  and, 
consequently, it influences the boundary layer 
separation point. 

We should also note that there were some 
problems in numerical solution of the system 

(24). Namely, the program stopped working for 
some input values. This was the problem 
encountered in other cases of the boundary layer 
flow, as pointed out by some authors 7 .    
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