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Abstract This study proposes a cryogenic diamond burnishing process and optimizes cooling parameters, including the distance to nozzle (N), nozzle diameter 
(D), and CO2 flow rate (Q) to minimize the maximum roughness (R), energy consumption (E), and circularity (C). The Kriging and adaptive-network-based fuzzy 
inference system (ANFIS) methods were ultilized to propose the response models. The CRITIC, non-dominated sorting genetic algorithm-II (NSGA-II), and MABAC 
were applied to calculate the weights, generate feasible solutions, and select the best optimal data. The result indicated that the optimal N, D, and Q were 15 
mm, 9 mm, and 8 L/min, respectively. The reductions in the roughness, energy, and circularity were 15.5 %, 2.0 %, and 38.6 %, respectively. The roughness and 
energy models were primarily affected by Q, D, and N, respectively, while circularity model was influenced by the N, D, and Q, respectively. The proposed process 
could be used to machine different holes with minimizing environmental impacts. Lower roughness and circularity were achieved using the cryogenic diamond 
burnishing process. The Kriging-NSGA-II could be utilized to show non-linear data and produce the best results. 
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Highlights
 ▪ A cryogenic CO2 diamond burnishing process is proposed and optimized.
 ▪ Minimizing the maximum surface roughness, energy, and circularity.
 ▪ The Kriging and ANFIS approaches are employed to develop the predictive models. 
 ▪ The reductions in the R, E, and C were 15.5 %, 2.0 %, and 38.6 %, respectively.

1  INTRODUCTION

Cryogenic cooling is an approach to cool workpieces and tools 
quickly and effectively in which refrigerants, such as liquid nitrogen 
or solid carbon dioxide, are used directly. This method has several 
advantages, including cost-effectiveness, faster cooling, improved 
tool life, better surface finish, and higher productivity. The cryogenic 
method has great potential to replace conventional cooling strategies 
in consideration of machinability.

The applications of cryogenic cooling on different burnishing 
operations have been extensively considered. Caudill et al. [1] 
presented that the roughness, hardness, and depth of the affected 
layer of the cryogenic burnished Ti-6Al-4V improved by 56.7 %, 
64.2 %, and 25.2 %, respectively, compared to the dry condition. 
The temperature in the cryogenic burnishing operation of Co-Cr-
Mo biomedical alloy was reduced by 50 %, while the depth of the 
affected layer was increased by 150 %, compared to the dry condition 
[2]. Yang et al. [3] emphasized that cryogenic cooling could be used to 
obtain a higher depth of the affected layer, increased micro-hardness, 
and fine grain size, compared to the base material. Huang et al. [4] 
presented those higher tangential forces and lower temperatures are 
observed from a cryogenic burnishing Al 7050-T7451. Tang et al. 
[5] indicated that the cryogenic conditions facilitated to produce the 
corrosion film on the subsurface layer of the Ti-6Al-4V. Similarly, 
a low roughness and nanocrystalline layer on the burnished Ti-6Al-
4V titanium alloy was produced with the aid of cryogenic burnishing 
[6]. A set of experiments was conducted to reduce the roughness 
and improve the hardness of the burnished 17-4 PH stainless steel 
[7]. The authors stated that the roughness of 0.03 µm and hardness 

of 413 HV could be generated at the optimal solution. The optimal 
burnishing force, feed, and speed of the machined 17-4 PH stainless 
steel were selected using the desirability approach [8]. The outcomes 
presented that a roughness of 0.20 µm and a hardness of 397.48 HV 
were achieved. Rotella et al. [9] presented that the wear resistance 
of the burnished Ti6Al4V titanium alloy was enhanced by 86.2 % 
with the aid of cryogenic cooling and coated tools. The regression 
models of the roughness, hardness, wear rate, and the depth of the 
affected layer were developed for the cryogenic burnishing Ti-6Al-
4V alloy [10]. The small errors between models and experiments 
indicated that the developed models were adequate. Sachin et al. 
[11] presented that the roughness was reduced when higher values of 
speed, feed, and force were employed. Caudill et al. [12] presented 
that cryogenic cooling increased the yield strength and produced 
nanostructured layer of the burnished Ti-6Al-4V. Huang et al. [13] 
emphasized that the surface hardness of the cryogenic burnished 
Al 7050-T7451 could be increased by 29.8 %. Maximov et al. [14] 
presented that the roughness of the burnished stainless steel could be 
changed from 0.041 to 0.049 μm using a cryogenic condition. Van 
and Nguyen stated that roughness and energy of the cold air-based 
burnishing process were reduced by 34.1 % and 1.5 %, respectively, 
while the power factor and Vickers hardness improved by 13.2 % and 
9.5 %, at the selected solution [15]. Maximov stated that the fatigue 
strength of the cryogenic-burnished SS304 was improved by 36.4 %, 
compared to the untreated specimen [16]. 

However, an internal diamond burnishing process using the 
liquid CO2 has not been developed and optimized. The impacts of 
the liquid CO2, including the distance to the nozzle, nozzle diameter, 
and flow rate on the roughness, energy, and hole circularity have not 
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been investigated. Finally, a multi-response optimization has not 
been performed to reduce energy as well as roughness and improve 
circularity. 

The following section presents the optimization strategy. After 
that, the experimental setup and results are explained. Lastly, some 
conclusions are made.

2  METHODS AND MATERIALS

2.1  Optimizing Framework

In this study, the roughness (R) is calculated as:

R
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where Szi is the maximum height of the scale limited surface 
roughness. The energy consumption (E) is calculated as:
E P tm m� � ,  (2)

where Pm and tm denote the burnishing power and burnishing 
duration, respectively. The circularity (C) is calculated as:
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where CCi is the circularity of the burnished hole.
The parameters and their levels, including the distance to the 

nozzle, nozzle diameter, and CO2 flow rate are shown in Table 1. The 
flow rate is selected using the properties of the valve and CO2 storage 
equipment. The distance to nozzle and nozzle diameter are referenced 
from related publications and experts in the brunishing field.

The optimizing procedure for the burnishing process is illustrated 
in Fig. 1. In this work, the advantages of various methods (Kriging, 
ANFIS, CRITIC, NSGA-II, and MABAC) were combined to propose 
the optimization approach.
Step 1: Executing 27 trials using the full factorial method [17-20]. 
Step 2: The CRITIC is used to compute the weights of the responses 
[21]. The response (fij) is normalized as: 
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where xbest and xworst are the best and worst values of each response, 
respectively. The standard deviation (sj) is calculated as:
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The conflict (Ij) among criteria is calculated as:
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where rjk is the correlation coefficient between the vectors xj and xk. 
The quantity (Cj) is calculated as:
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The computed (ωi) is calculated as:
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Step 3: The Kriging approach is used to construct the predictive 
models of the responses [22-25]. The Kriging model is expressed as:
f x f r x R Y FT Tx( ) ( ) ( ),( )� � ��� �1  (9)

where β denotes the least-squares estimate, and Y presents the true 
responses at the sample. The log-likelihood of the model parameters 
is expressed as:
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The σ2 is estimated as:
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Step 4: The R, E, and C models are proposed using the ANFIS 
approach [26-29]. 
Layer I: The outputs of R, E, and C responses are expressed as:

R x A x RE( ) ( ),� � 1  (12)

E y A y ET( ) ( ),� � 2  (13)

C z A z CD( ) ( ),� � 3  (14)
where Ai is the connected label of each response. 
Layer II: The fixed function is expressed as:
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Layer III: The firing strength is expressed as:
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Layer IV: The output is expressed as:

L x w f x w g x h x ki i i i i i4 , ( ) ( ),� � � �  (17)
where gi, hi, and ki are the consequent parameters, respectively.

Layer V: The fixed node is expressed as:
L x w fi i

i
5 , .��  (18)

Step 5: The selection of the optimality using the NSGA-II and 
MABAC. The operating principle of the NSGA-II is expressed as 
[30-33]. An initial population P0 of size N is randomly generated at 
the start of the procedure. 

The non-domination ranks and crowding distance are used to 
evaluate each individual. The crowding distance among individuals 
is computed as:
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where fm is the mth objective function. The parent-offspring generation 
is produced in the crossover operation. The arithmetic crossover 
function is expressed as:

S P Pi i i� � � � �0 5 1 0 5 1 1. ( ) . ( ) ,� �  (20)

where S and P are the off spring and parent, respectively, and γ is a 
crossover coefficient. The mutation operation is used to produce the 
individual diversity and expressed as: 
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The MABAC is expressed as [34]. The weighted response (vij) is 
calculated as:
v nij j ij� �� ( ),1  (22)

where nij is the normalized response. The approximation area (gi is 
calculated as:
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The alternative distance (dij) is calculated as:
d v gij ij i� � .  (24)
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The performance index (Pi) is calculated as:
P di ij
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.  (25)

The best solution is selected with the highest Pi.

Table 1.  Process parameters of the burnishing operation

Parameters Levels 
Distance to the nozzle, N [mm] 15-25-35

Nozzle diameter, D [mm] 6-8-10

CO2 flow rate, Q [L/min] 4-8-12

2.1  Experimental Facilities

The experiments are performed with the aid of a NC lathe (Fig. 2). The 
EN24 steel is applied to produce the high-strength shafts, punches, 
dies, bushings, rings, and gears. The workpiece with a length of 64 
mm, an internal diameter of 44 mm, and an external diameter of 58 
mm is used. The pre-machined surface is generated using the drilling 
and turning operations. The roughness and circularity of the initial 
surface are 14.034 µm and 50.63 µm, respectively. 

Fig. 1.  Optimization approach 

Fig. 2.  Experimental burnishing

The roughness, power, and circularity are measured using the 
ZeGage Pro-3D, Kyoritsu 6315, and ZEISS CONTURA CMM, 
respectively. The roughness is measured in three different points of 
the burnished surface. The power is captured from ten peak values of 
the obtained data. The circularity is measured at 8 positions at various 
circular cross-sections, and the average value is then determined (Fig. 
3c). The experimental outcomes at various burnishing conditions are 
presented in Fig. 3.

3  RESULTS AND DISCUSSIONS

3.1  Comparing Responses in Various Conditions

The experimental data are shown in Table 2. To prove the 
effectiveness of the proposed process, a set of experiments is 
conducted in dry, wet, and cryogenic conditions. The comparative 
results for the roughness are shown in Fig. 4. Quantitatively, the 
cryogenic CO2 reduces the roughness from 28.82 % to 34.42 %, 
compared to the dry environment. Similarly, the cryogenic CO2 

a)            b) 

c) 
Fig. 3. Example results of the burnishing process at the experimental No. 6; SEM image, b) circularity, and c) power consumed
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reduces the roughness from 13.03 % to 17.11 %, compared to the wet 
environment. Greater roughness occurs under dry conditions due to 
inadequate heat dissipation from the workpiece surface. The liquid 
CO2 effectively removes the temperature and friction at the interfaces 
due to thin-film lubrication, resulting in low roughness.

Table 2. Experimental results 

No. N [mm] D [mm] Q [L/min] R [μm] E [kJ] C [μm]
Experimental data for developing models

1 15 6 4 4.226 60.14 19.46
2 25 6 4 4.508 64.72 22.31
3 35 6 4 5.031 67.52 27.67
4 15 6 8 3.725 65.87 14.73
5 25 6 8 3.992 69.97 17.25
6 35 6 8 4.497 72.26 22.28
7 15 6 12 3.549 70.04 12.89
8 25 6 12 3.797 73.61 15.07
9 35 6 12 4.286 75.42 19.76

10 15 8 4 3.873 65.14 13.51
11 25 8 4 4.181 69.37 16.77
12 35 8 4 4.731 71.79 22.54
13 15 8 8 3.151 70.66 9.31
14 25 8 8 3.442 74.42 12.22
15 35 8 8 3.974 76.34 17.66
16 15 8 12 2.754 74.58 7.97
17 25 8 12 3.028 77.83 10.55
18 35 8 12 3.543 79.28 15.65
19 15 10 4 3.746 69.51 10.26
20 25 10 4 4.079 73.38 13.93
21 35 10 4 4.654 75.45 20.11
22 15 10 8 2.803 74.82 6.55
23 25 10 8 3.119 78.26 9.89
24 35 10 8 3.677 79.78 15.74 
25 15 10 12 2.185 78.52 5.73
26 25 10 12 2.484 81.41 8.73
27 35 10 12 3.025 82.51 14.24

Experimental data for testing models
28 20 7 5 3.953 66.64 15.93
29 20 9 7 3.251 73.68 9.62
30 18 7 9 3.365 70.83 11.54
31 22 9 10 2.836 77.43 8.51
32 26 7 11 3.469 75.32 13.07
33 30 9 5 4.108 74.12 16.32
34 32 7 10 3.828 75.73 16.36
35 16 9 9 2.811 74.35 7.24
36 34 9 11 3.297 80.36 14.12
37 24 7 8 3.649 71.95 14.01

The comparative results for the circularity are shown in Fig. 5. 
Quantitatively, cryogenic CO2 reduces the circularity from 29.47 % 
to 32.17 %, compared to the dry environment. Similarly, cryogenic 
CO2 reduces the circularity from 16.11 % to 19.18 %, compared to 
the wet environment. The liquid CO2 enhances the cooling efficiency, 
leading to even deformation of the burnished hole; thus the circularity 
reduces.

3.2  The Selection of a Better Modelling Technique

The comparisons between the actual and predcitve data of the Kriging 
and ANFIS models are shown in Tables 3 and 4, respectively. For the 

Kriging model, the errors of the roughness, energy, and circularity 
lie from –0.63 % to 0.39 %, –0.72 % to 0.42 %, and –1.10 % to  
0.78 % respectively. For the ANFIS model, the errors of the 
roughness, energy, and circularity lie from –3.30 % to 2.36 %, –1.61 
% to 4.45 %, and –5.78 % to 5.43 %, respectively. As compared to 
the models produced by the ANFIS approach, the predictive data 
generated by the Kriging method have a stronger association with the 
experimental data. 

Fig. 4.  Comparative roughness

Fig. 5.  Comparative circularity

Fig. 6 presents the consistent data of the burnishing responses; 
thus the developed Kriging models are adequate.

3.3  ANOVA Analysis for Burnishing Responses

The computed ANOVA results for the roughness, energy, and 
circularity are presented in Tables 5-7, respectively. The F-values of 
the roughness, energy, and circularity models are 27.42, 61.59, and 
26.80, respectively, indicating their significance. For the roughness 
model, the Q has the highest contributions (21.35 %), followed by the 
D (20.76 %) and N (16.96 %), respectively. The contributions of the 
ND, NQ, and DQ are 6.43 %, 7.52 %, and 4.67 %, respectively. The 
contributions of the N2, D2, and Q2 are 7.04 %, 7.62 %, and 7.65 %, 
respectively. For the energy model, the contributions of the N, D, and 
Q are 19.92 %, 28.87 %, and 29.28 %, respectively. The contributions 
of the ND, NQ, and DQ are 2.52 %, 3.42 %, and 1.92 %, respectively. 
The contributions of the N2, D2, and Q2 are 6.323 %, 2.21 %, and 5.63 
%, respectively. For the circularity model, the contributions of the 
N, D, and Q are 25.69 %, 22.61 %, and 19.11 %, respectively. The 
contributions of the ND, NQ, and DQ are 2.51 %, 2.07 %, and 3.13 
%, respectively. The contributions of the N2, D2, and Q2are 7.71 %, 
8.28 %, and 8.85 %, respectively. 
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Table 3.  Testing results for developed Kriging models

No.
R [μm] E [kJ] C [μm]

Exp. Kri. Er. [%] Exp. Kri. Er. [%] Exp. Kri. Er. [%]
28 3.953 3.967 –0.35 66.64 66.52 0.18 15.93 15.82 0.69
29 3.251 3.267 –0.49 73.68 73.52 0.22 9.62 9.71 –0.94
30 3.365 3.354 0.33 70.83 70.53 0.42 11.54 11.45 0.78
31 2.836 2.854 –0.63 77.43 77.86 –0.56 8.51 8.58 –0.82
32 3.469 3.456 0.37 75.32 75.02 0.40 13.07 13.14 –0.54
33 4.108 4.113 –0.12 74.12 74.65 –0.72 16.32 16.25 0.43
34 3.828 3.842 –0.37 75.73 75.92 –0.25 16.36 16.48 –0.73
35 2.811 2.824 –0.46 74.35 74.56 –0.28 7.24 7.32 –1.10
36 3.297 3.284 0.39 80.36 80.48 –0.15 14.12 14.18 –0.42
37 3.649 3.662 –0.36 71.95 71.76 0.26 14.01 14.09 –0.57

Table 4.   Testing results for ANFIS models

No.
R [μm] E [kJ] C [μm]

Exp. Kri. Er. [%] Exp. Kri. Er. [%] Exp. Kri. Er. [%]
28 3.953 3.842 2.81 66.64 65.23 2.12 15.93 16.85 –5.78
29 3.251 3.362 –3.41 73.68 74.02 –0.46 9.62 9.84 –2.29
30 3.365 3.402 –1.10 70.83 69.32 2.13 11.54 11.96 –3.64
31 2.836 2.964 –4.51 77.43 78.64 –1.56 8.51 8.96 –5.29
32 3.469 3.365 3.30 75.32 74.25 1.42 13.07 12.36 5.43
33 4.108 4.196 –2.14 74.12 73.21 1.23 16.32 16.94 –3.80
34 3.828 3.901 –1.91 75.73 72.36 4.45 16.36 15.86 3.06
35 2.811 2.765 1.64 74.35 75.03 –0.91 7.24 7.56 –4.42
36 3.297 3.152 4.40 80.36 81.65 –1.61 14.12 14.63 –3.61
37 3.649 3.552 2.66 71.95 72.86 –1.26 14.01 13.56 3.21

Table 5.   ANOVA results for the roughness model

So SS MS F value p-value
Model 5.8247 0.6472 27.42 <0.0001

N 12.8611 12.8611 544.96 <0.0001

D 15.7427 15.7427 667.06 <0.0001

Q 16.1901 16.1901 686.02 <0.0001

ND 4.8760 4.8760 206.61 <0.0001

NQ 5.7025 5.7025 241.63 <0.0001

DQ 3.5413 3.5413 150.06 0.0006

N2 5.3386 5.3386 226.21 <0.0001

D2 5.7784 5.7784 244.85 <0.0001

Q2 5.8011 5.8011 245.81 <0.0001
Res. 0.1653 0.0236
Cor. 5.99

R2 = 0.9724; Adjusted R2 = 0.9682; Predicted R2 = 0.9593

Table 6.  ANOVA results for the energy model

So SS MS F value p-value
Model 19509.10 1393.51 49.50505051 <0.0001

N 321.51 35.72 61.59 <0.0001

D 70.00 70.00 120.69 <0.0001

Q 101.45 101.45 174.92 <0.0001

ND 102.89 102.89 177.40 <0.0001

NQ 8.86 8.86 15.27 0.0011

DQ 12.02 12.02 20.72 0.0006

N2 6.75 6.75 11.63 0.0015

D2 21.89 21.89 37.75 0.0003

Q2 7.77 7.77 13.39 0.0009
Res. 4.07 0.58
Cor. 325.58

R2 = 0.9875; Adjusted R2 = 0.9802; Predicted R2 = 0.9786

3.4  The Impacts of Cooling Parameters on the Roughness, Energy, 
and Circularity

The main impacts of process parameters on the roughness are shown 
in Fig. 7. A higher N increases the friction at the burnishing area due to 
lower cooling effects; thus a higher roughness is produced. A higher 
D increases the cooling efficiency at the interfaces. The friction and 
temperature decrease; results in a lower roughness. As depicted in an 
increased Q leads to a higher CO2 intensity, leading to reductions in 
friction and temperature; thus this reduces the roughness.

a) 

b) 

c) 
Fig. 6.  Comparisons between the predictive and actual values;  
a) roughness model, b) energy model, and c) circularity model
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The main impacts of parameters on the energy are shown in Fig. 
8. A higher N causes higher friction at the machining region; thus 
a higher energy is required to overcome a greater load. A higher 
D increases the amount of the CO2 and the workpiece hardness 
increases; thus a higher energy is required. An increased Q leads to 
a higher CO2 intensity, leading to higher workpiece hardness; thus a 
higher energy is used to overcome a greater resistance. 

The main impacts of parameters on the circularity are shown 
in Fig. 9. A higher N increases friction at the interface, resulting 
in hard compression of material; thus the circularity increases. 
A higher D increases cooling efficiency due to higher liquid CO2 

quantity. The friction decreases, leading to even deformation of the 
material compression; thus the circularity reduces. An increased Q 
leads to a higher CO2 intensity, leading to reductions in friction at 
the burnishing region. The material compression evenly is produced; 
thus the circularity reduces.

3.5  The Impacts of Cooling Parameters on the Microstructure

The microstructure of the burnished specimen under various 
parameters is presented in Fig. 10. When the N increases from 15 
mm to 35 mm, the Vickers hardness and the depth reduce from 

a)                b) 
Fig. 7.  Kriging plots for the roughness model; a) R vs. N and D, and b) R vs. Q and D

a)                b) 
Fig. 8.  Kriging plots for the energy model; a) E vs. N and D, and b) E vs. Q and D

a)                b) 
Fig. 9.   Kriging plots for the circularity model; a) C vs. N and D, and b) C versus Q and D
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579.2 HV to 560.1 HV and 126 μm to 102 μm, respectively (Fig. 
10a and b). A lower N between the nozzle and workpiece enhances 
cooling efficiency, leading to a reduction in friction. The material 
compression is easily performed; thus higher hardness and depth 
are obtained. A higher N reduces cooling impact, lowering Vickers 
hardness and depth values.

When D increases from 6 mm to 10 mm, the Vickers hardness and 
the depth enhance from 579.2 HV to 593.3 HV and 126 μm to 158 
μm, respectively (Figs. 10a and c). An increased D improves cooling 
efficiency at the interfaces; thus higher values of the Vickers hardness 
and depth are obtained.

When the Q increases from 8 L/min to 12 L/min, the Vickers 
hardness and depth reduce from 579.2 HV to 594.8 HV and 126 μm 
to 168 μm, respectively (Figs. 10a and d). A higher amount of liquid 
CO2 reduces the friction at the interfaces; thus material compression 
is easily performed. A higher degree of plastic deformation is 
obtained, leading to higher Vickers hardness and depth.

Table 7. ANOVA results for the circularity model

So SS MS F value p-value
Model 349.51 38.83 26.80 < 0.0001

N 42.90 42.90 62.17 < 0.0001

D 37.75 37.75 54.72 < 0.0001

Q 31.91 31.91 46.25 < 0.0001

ND 4.19 4.19 6.07 0.0006

NQ 3.46 3.46 5.01 0.0007

DQ 5.23 5.23 7.57 0.0005

N2 12.87 12.87 18.66 0.0002

D2 13.83 13.83 20.04 0.0001

Q2 14.78 14.78 21.42 < 0.0001
Res. 4.85 0.69
Cor. 354.36

R2 = 0.9863; Adjusted R2 = 0.9782; Predicted R2  = 0.9691

a)           b) 

c)           d) 
Fig. 10.  The impacts of the cooling parameters on the microstructure; a) N = 15 mm, D = 6 mm, Q = 8 L/min, b) N = 35 mm, D = 6 mm, Q = 8 L/min,  

c) N = 15 mm, D = 10 mm, Q = 8 L/min, and d) N = 15 mm, D = 6 mm, Q = 12 L/min

a)           b) 
Fig. 11.  Pareto fronts generated by NSGA- II; a) roughness and energy, and b) roughness and circularity
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3.6  Optimal Outcomes Produced by the NSGA-II

The weight values of the roughness, energy, and circularity are 0.38, 
0.26, and 0.36, respectively. Fig. 11 shows the contradictory trends 
of the burnishing responses. As a result, the optimal N, D, and Q are 
15 mm, 9 mm, and 8 L/min, respectively. At the selected solution, the 
roughness, energy, and circularity are reduced by 15.5 %, 2.0 %, and 
38.6 %, respectively (Table 8). 

It can be stated that the cryogenic internal diamond burnishing 
process generated a smooth surface without any morphological 
irregularities. The reductions in the roughness and circularity are  
79.2 % and 85.2 %, respectively, compared to the pre-burnished 
surface (Table 9).

Table 8.  Optimization results produced by by the Kriging models-NSGA II

Method
Optimization parameters Responses

PiN 
[mm]

D 
[mm]

Q 
[L/min]

R 
[μm]

E 
[kJ]

V 
[μm]

Initial results 25 8 8 3.464 74.42 12.22
Optimal results 15 9 8 2.926 72.91 7.50 0.7246
Reductions [%] 15.5 2.0 38.6

Table 9.  Comparisons between the initial and optimized surfaces 

Method R [μm] C [μm]
Initial surface 14.034 50.63
Optimal surface 2.926 7.50
Reductions [%] 79.2 85.2

4  CONCLUSIONS

In the current study, the improvements in the roughness, energy, 
and circularity of the diamond burnishing process were obtained 
using optimal N, D, and Q. The Kriging and ANFIS methods were 
employed to develop the response models, while the CRITIC method 
was applied to estimate the weights. The NSGA-II and MABAC were 
used to generate an optimal solution. Based on the obtained results, 
the following conclusions have been drawn:
1.  A set of trials were executed to find the accuracy of the proposed 

correlations. Compared to the ANFIS, the Kriging technique 
provided a lower error average and a better capacity to forecast 
the response.

2.  A lower N could be used to minimize the roughness, energy, and 
circularity. Higher D and Q could be applied to reduce roughness 
and circularity. In contrast, minimal energy was achieved using 
the lower D and Q.  

3.  For the roughness and energy models, Q had the highest 
contribution, followed by D and N, respectively. For the circularity 
model, N had the highest contribution, followed by D and Q, 
respectively. 

4.  The optimal N, D, and Q were 15 mm, 9 mm, and 8 L/min, 
respectively. The reductions in the roughness, energy, and 
circularity were 15.5 %, 2.0 %, and 38.6 %, respectively.  

5. The roughness, energy consumed, and circularity of the burnished 
hole produced by the cryogenic CO2 are lower than the dry one. 

6.  The developed process and burnishing device could be utilized for 
various machining internal holes with different diameters.

7.  The Kriging model could be used to present complicated data 
when deal with the diamond burnishing operation, as compared to 
the ANFIS.
The impacts of the cooling parameters on the surface hardness and 

tribological factors will be explored in future works.
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Primerjava in optimizacija parametrov glajenja pri različnih pogojih 
obdelave

Povzetek Ta raziskava predlaga postopek kriogenega diamantnega glajenja 
in optimizira parametre hlajenja, kot so razdalja do šobe (N), premer šobe (D) 
in pretok CO2 (Q), z namenom minimiziranja maksimalne hrapavosti (R), rabe 
energije (E) in krožnosti (C). Za izdelavo odzivnih modelov sta bili uporabljeni 
metodi Kriging in ANFIS (adaptive-network-based fuzzy inference system). Za 
izračun uteži, generiranje izvedljivih rešitev in izbiro optimalnih podatkov pa so 
bile uporabljene metode CRITIC, nedominirana sortirna genetska optimizacija 
NSGA-II in metoda MABAC. Rezultati so pokazali, da optimalne vrednosti 
parametrov N, D in Q znašajo 15 mm, 9 mm oziroma 8 L/min. Zmanjšanje 
hrapavosti, energije in krožnosti je bilo 15,5 %, 2,0 % oziroma 38,6 %. Na 
modela hrapavosti in energije so najbolj vplivali parametri Q, D in N, medtem 
ko je bil na model krožnosti vpliv parametrov N, D in Q. Predlagan postopek se 
lahko uporablja za obdelavo različnih lukenj ob zmanjšanem vplivu na okolje. 
Z uporabo kriogenega diamantnega glajenja smo dosegli manjšo hrapavost 
in krožnost. Kriging-NSGA-II se je izkazal kot učinkovit za prikaz nelinearnih 
podatkov in doseganje najboljših rezultatov.

Ključne besede kriogeno diamantno glajenje, raba energije, maksimalna 
hrapavost, krožnost, Kriging model
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