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0  INTRODUCTION

Designing the suspension systems of vehicles is 
a demanding engineering task. Currently, driving 
stability is ensured by electronically controlled active 
suspension systems. The objectives set in the course 
of designing include improving travel comfort, 
decreasing the dynamic loading of the wheels and 
decreasing the suspension workspace [1]. Similar 
possibilities are offered by the use of air springs. The 
rubber bumpers (Fig. 1) built into the air springs of 
buses perform several crucial functions, such as 
working together with the air spring as a secondary 
spring, thus modifying the original characteristics of 
the air spring when pressed together (characteristics of 
the dotted and dashed lines in Fig. 2). When the bus 
is in a stationary position and settles to the ground, 
the static weight of the chassis and the body rests on 
the bumper; in this case, the solid line characteristic is 
active. If the fibre-reinforced bellows of the air spring 
wears through while the bus is running, the vehicle 
can safely reach the nearest garage at a limited speed 
while bouncing on the bumper; no additional damage 
will occur. It prevents metal-on-metal collision at large 
dynamic impulses and absorbs the impulse. These 
rubber bumpers are subject to compressive stress, for 
which the characteristics show a progressive feature.

It is a fundamental requirement that they should 
have a specified load-displacement curve under load; 
setting this objective results in a shape optimization 
task. The aim of the optimization is to achieve a 
specified characteristic by means of the geometric 
design of the rubber bumper while the material 
characteristics remain the same.

Fig. 1.  The air spring

The literature does not devote much room to the 
examination of the rubber bumpers of air springs. 
Another area for which rubber mounts are used is the 
flexible support of engines, on which several works 
have been published. Estimation of the fatigue life 
of rubber springs, rubber mounts and air springs is 
carried out in [2] to [5], respectively. In [6], extensive 
studies on the rubber mounts of engines are performed 
using the finite element method. Several authors 
have formulated shape optimization for the specified 
stiffness of rubber mounts, in which the analysis was 
done using commercial finite element software or a 
finite element code of their own development. The 
stiffness of rubber mounts in three directions on the 
basis of parameter examinations is optimized in [7]. 
Optimization based on sensitivity analysis using a 
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special purpose finite element code is performed in [8] 
for material properties and shape, where stiffness was 
also taken into consideration. Determining the shape 
was done with the aim of minimizing the volume of 
the rubber part. Rubber mounts undergoing shear are 
modelled with the finite element method in [9], and 
the effects of the geometric design and the load on 
the stiffness of the part are also investigated. For the 
purpose of minimizing the cross-sectional area and the 
maximum stress of the rubber mount and for that of 
maximizing the life cycle, shape optimization using 
an Ogden-type material model and commercial finite 
element software is applied in [10]. Several objective 
functions in a system where the optimization had 
several stages are handled. A back-propagation neural 
network (BPN) is used to find the connection between 
the input and output data and then a micro-genetic 
algorithm (MGA) is used for global optimization. 
A large number of finite element running results are 
used as learning points. The experience gained from 
the above works also easily lends itself to examining 
the rubber bumper of air springs.

Our research intends to determine the behaviour 
of rubber bumpers in the complete range of operation, 
and thus the aim of the shape optimization is to 
achieve the specified spring characteristics. Since 
there is no active control in the rubber bumpers, 
shape optimization may provide the required load-
displacement curve. In connection with the objective 
set, achieving the aim of the optimization will require 
an efficient load-displacement calculation, which 
is performed using the finite element method. This 
is the purpose served by the finite element program 
prepared for the examination of axi-symmetric rubber 
parts, which can be conveniently fit to the shape 
optimization procedure.

Fig. 2.  The lift diagram

The support vector regression (SVR) proposed 
by [11] is a widely used application of support vector 

machines (SVM) for regression problems, e.g. in 
optimization models. A great number of applications 
can be found in the fields of materials science, 
chemistry, economics and data procession, where 
connections are sought between a number of input 
data (e.g. some mechanical or chemical property). 
Although there are results in the field of engineering 
problems based on SVR models [12], this method 
is not yet particularly widespread for engineering 
optimization. The application of SVR in non-linear 
models has the advantage that the transformation 
function between input space and the so-called feature 
space (where a linear regression problem is to be 
solved) can be hidden [13], and machine learning 
procedures can be applied to find an appropriate 
regression function.

The novel procedure based on the FEM and 
SVR is suitable for the shape optimization of rubber 
bumpers with the specified characteristics. The 
efficiency of the method is verified by examples.

1  THE OPTIMIZATION METHOD

1.1  The Objective Function of the Shape Optimization

In the optimization process, we start from the 
load-displacement curve of an existing and known 
construction (Fig. 3). The shape optimization can be 
formulated as a minimization problem on a given 
domain by the following. The objective function  
ΔW : Ω → R gives the area between the desired load-
displacement curve and the curve obtained by finite 
element computation for a specific rubber bumper 
shape (represented by the parameter vector d):

 ∆W F s F s ds
s

( ) ( ) ( ) ,d d= −∫ des FEM,
0

0

 (1)

(the grey-filled area in Fig. 4). Function ΔW is 
considered on Ω⊂ Rn , the set of possible design 
parameter vectors d, s0 is the limit of the operation 
range, Fdes and FFEM,d denote the spring force of the 
desired characteristics and the spring force calculated 
by finite element method for a specific geometry 
(determined by d), respectively. The optimization 
range Ω is given by inequality conditions coming from 
technology limitations, n is the number of the design 
parameters. Therefore, many design parameters are 
chosen, so many variables will be in the optimization.

Function ΔW has to be minimized by determining 
the optimum design parameter vector dopt, that is:
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 ∆ ∆
Ω

W W( ) min ( ).d d
d

opt =
∈

 (2)

Since numerical methods are used, the process 
results in an approximate value of the optimum.

Fig. 3.  The optimization task

The first step of the method is to solve a 
non-linear regression problem for function ΔW. 
The regression procedure is based on the points 
( , ( )) , ,...,d di i nW R i N∆ ∈ =+1 1  (learning points), 
where ΔW(di) are given (measured or calculated with 
FEM). The SVR model is used to find the regression 
function; the calculations are carried out with the SVR 
package of “R” software [14]. Since the values of 
the regression function provided by the software are 
available for arbitrary design parameter vectors in Ω, 
the place of the minimum of ΔW, i.e. the value of the 
optimum design parameter vector, can be determined 
numerically.

Fig. 4.  Derivation of the objective function

1.2  Application of the SVR Model

The support vector regression model related to the 
theory of learning machines and kernel methods and 
widely used in statistics and lately in engineering 
calculations also plays a central role in our 
investigations. In this part, the theoretical background 
of the method is summarized briefly.

Using the finite element method, the values of 
ΔW are determined for the design parameters 
d d1,..., N ∈Ω , and the learning points 

( , ( )) , ,...,d di i nW R i N∆ ∈ =+1 1  play the role of the 
given data points in the (non-linear) regression 
procedure.

In the SVR model, the so-called kernel functions 
play a central role. Let t :Ω Ω→ ′⊂ Rm  be a 
transformation function mapping the learning points 
from the input space into what is called the feature 
space that transforms our non-linear problem into 
a linear one. It is widely used since the regression 
function can be expressed as a linear combination of 
kernel functions

 ki
T i( ) ( ) ( ),d t d t d= ⋅  (3)

where ( )T denotes the transpose (see in [11]).
The regression function f is looked for in the 

form:

 f bT( ( )) ( ) ,t d w t d= ⋅ +  (4)

in the feature space, where b R∈  and w∈Rm

. In the classic models, the optimization is based on 
the difference between the values of the regression 
function and the given values at the learning points 
L f Wi i i( ) ( ( )) ( )d t d d= − ∆ , which does not provide a 
satisfactory solution in many cases. In some cases, it 
appears to be better to use the ε-insensitive (Vapnik’s) 
error function Lε to solve the regression problem [11] 
defined by:

 L
if f W

f W
i

i i

i iε

ε

ε
( )

, ( ( )) ( )

( ( )) ( ) ,
d

t d d

t d d
=

− ≤

− −



 0 ∆

∆ otherwise
, (5)

where ε is a fixed non-negative parameter. According 
to Eq. (5), the error is zero if the value of a learning 
point is in the ε-insensitive tube around the regression 
function (Fig. 5). ε may be regarded as the parameter 
controlling the smoothness of the solution.

Fig. 5.  ε-insensitive tube in 1D case

Using the ε-insensitive error function, the 
optimization problem leads to a constraint quadratic 
optimization problem, minimize:
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 1
2

w wT ⋅ ,  (6)

subject to:

 ∆W b i Ni T i( ) ( ) , ,..., .d w t d− ⋅ +( ) ≤ =ε 1  (7)

When using regression models, we have to take 
into consideration that certain learning points will 
disturb the run of the regression function; therefore, 
it is expedient to moderate the effect of such high 
values by means of the slack variables ξi and ξi': the 
difference of the ith learning point from the function 
should not be more than ε + ξi and ε + ξi', respectively. 
The higher the value of the slack variables, the larger 
the scope for searching for the function. Introducing 
the slack variables, the following modified constraint 
quadratic optimization problem is to be solved (see, 
e.g. [11]), minimize:

 
1
2 1

w wT
i i

i

N

C⋅ + +( )
=
∑ ξ ξ ' ,  (8)

subject to:

 ∆W bi T i
i( ) ( ) ,d w t d− ⋅ +( ) ≤ +ε ξ  (9)

 w t d dT i i
ib W⋅ +( ) − ≤ +( ) ( ) '∆ ε ξ  (10)

 ξ ξi i i N≥ ≥ =0 0 1, ' , ,..., .  (11)

C determines the trade-off between the error and 
the complexity of the solution. The hyper-parameter C 
can be regarded as a penalty parameter that penalizes 
excessive divergence (larger than ε). For higher values 
of C, the objective function is more sensitive to the 
slack variables, so in the optimum solution the value 
of the slack variables remains low, and the function 
will be a reasonable approximation of the learning 
points, while a low value of C can result in a function 
that runs at a considerable distance from certain 
learning points.

According to the standard dualization method 
[15], we introduce the Lagrange function:

 

L b
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where αi, αi', λi, λi' ≥ 0. The dual optimization problem 
is the following, maximize:
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subject to:

 α α α αi i
i

N

i i C−( ) = ∈
=
∑ ' , [ , ].

1
0 0   and   '  (14)

Solving the dual problem, we obtain:

 f bi i
i

N
T i( ( )) ' ( ) ( ) ,t d t d t d= −( ) ⋅ +

=
∑ α α

1
 (15)

that is, the solution (regression function) is a linear 
combination of kernel functions ki

T id t d t d( ) = ⋅( ) ( ).
This form of f says that the explicit form of w 

does not need to be computed. Furthermore, it can be 
proved that for the learning points inside the ε-tube  
αi – αi' = 0, that is f is determined only by the learning 
points having non-vanishing coefficients. These pairs 
are called support vectors.

Which learning points play the parts of support 
vectors depends on the choice of parameter ε (Fig. 
5). The wider the band, the smoother the solution. 
Otherwise, the model will attempt to fit the solution 
more accurately to the learning points, and the function 
will change more rapidly. The fact that the solution is 
determined by support vectors is a consequence of 
using the special error function (Eq. (5)).

It is known that the solution of the problem 
discussed above is a regression function, which can 
be written as a linear combination of kernel functions  
ki, i = 1, ..., N having the form of Eq. (3), so we are not 
involved with the transformation function t. This fact 
leads to the following idea: choosing a suitable kernel 
function, an appropriate solution of the regression 
problem can be achieved.

In accordance with our calculation experience 
and the research results in this field, the Gaussian 
kernel function:

 k ei

i

( ) ,d d d
=

− −γ  (16)

belonging to the class of radial basis functions (RBF) 
provides the best solution to our problem, where γ is a 
parameter controlling the form of the kernel function. 
In the calculation, the Gaussian function Eq. (16) is 
chosen as a kernel function. Since it depends only on 
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the distances d d− =i i N, ,..,1 , the learning points 
behave as a kind of centre when the Gaussian kernel 
functions are applied. The value of the regression 
function is fundamentally determined by the nearby 
known values (learning points).

In the following, the regression function obtained 
from the SVR model is denoted by ΔWSVR, that is:

 ∆W fSVR ( ) ( ( )).d t d=  (17)

It is easy to see that the accuracy of the regression 
provided by the SVR method depends on γ and C. An 
optimum choice of the hyper-parameters (γ,C) leads to 
the error of the learning process:

 δ δ1

2

1
2

1

1=
−( )

( )
≤=

=

∑

∑

∆ ∆

∆

W W

W

i i

i

N

i

i

N

FEM SVR

FEM

*,  (18)

where ∆ ∆W Wi i
SVR SVR= ( )d  and ∆ ∆W Wi i

FEM FEM= ( )d   
are the values of the objective function determined 
by the finite element calculation. δ1* can be specified 
by the user according to the expected accuracy. A 
successful combination of hyper-parameters can be 
achieved when the error remains within the specified 
limit δ1*.

In our examples, the hyper-parameters are chosen 
by the following steps:
• the initial values of the hyper-parameters γmin, 

Cmin are predefined;
• while keeping C = Cmin at a constant value, we 

are considering the error δ1 as a function of γ and 
looking for the parameter γ = γopt, where δ1 is 
minimal;

• hen keeping the parameter γopt at a constant value, 
we are considering the error δ1 as a function of C 
and looking for the parameter C = Copt, where δ1  
is within the specified limit δ1*;

• values of γopt and Copt mean the hyper-parameters 
satisfy the requirements in Eq. (18) and determine 
the regression function used in the last part of the 
shape optimization process.
Considering a set:

 D P={ }⊂d d1,..., ,Ω  (19)

according to technology limitations the minimum of 
ΔWSVR on D is determined numerically.

2  PRODUCING THE LEARNING POINTS BY THE FEM

Rubber bumpers may undergo large deformations 
under load, which in itself shows non-linear behaviour. 
The changing contact range between the parts and the 
incompressibility of the rubber increases this non-
linear behaviour further.

In order to be able to use the SVR method, the 
spring characteristics have to be produced by the finite 
element code within the optimization range, and then 
the difference of the work values has to be calculated 
for the learning points to be written. There is no 
generally accepted rule concerning the learning points. 
Their number may depend on the expected accuracy 
and the type of the problem, among other factors. In 
determining the learning points, the objective was that 
they should properly cover the optimization range.

For rubber, the material models are generally 
given by the strain energy density function [16]. The 
energy density function of nearly incompressible 
materials can be divided into a volume-changing and 
a volume-preserving part. The strain energy density 
resulting from the change in volume U(J) is given in 
the following form:

 U J J( ) ( ) ,= ⋅ ⋅ −
1
2

1 2κ  (20)

where J is the Jacobian, κ is the bulk modulus, which 
is a real material characteristic and in the finite element 
investigations can be interpreted as a penalty parameter. 
If an incompressible material is examined, then U(J)  is 
zero, for ν = 0.5. It is to be noted that rubber bumpers 
may be regarded as nearly incompressible materials 
due to additives. Accordingly, the Poisson ratio is 
between 0.49 < ν < 0.5.

A compression test according to the standard 
ISO 7743 is performed to determine the stress-
strain curve of the rubber part. A number of material 
models can be found in the literature for the volume-
preserving member of strain energy density. Since the 
deformation is relatively small in our investigations, 
the two-parameter Mooney-Rivlin material model is 
sufficient to describe the material behaviour, where 
the strain energy density is expressed using the scalar 
invariants:

 W I I� � � �( ) ( ) ( ).C = ⋅ − + ⋅ −µ µ10 013 3I II  (21)

The Mooney-Rivlin material constants μ10 and 
μ0 are determined from the results of the compression 
test using FEM computations [7]. I I   and I II  are the 
scalar invariants of the volume preserving member of 
the Cauchy-Green strain tensor of the right C [16].
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The program developed uses the combined 
technique, which is based on the following functional:

 

Π

Π

( , , ) ( ) ( )

( )

u CJ p W dV U J dV

p J J dV c g dA

VV

V
n

Ac

= + +

+ ⋅ − + ⋅ −

∫∫

∫ ∫

 

1
2

2
extt ( ),u  (22)

where the displacement field u is approximated using 
the quadratic tensor product space, the volume change 
J  and the hydrostatic pressure p  are approximated 
using linear functions independently of each other,  
U( J ) is the penalty parameter member, J can be 
indirectly derived from the displacement and is 
independent of J , c is the penalty parameter of the 
contact, gn is the gap function, Πext(u) is the potential 
of the external forces, V is the volume of the rubber 
and Ac is the contact surface.

To discretize the functional, nine-node iso-
parametric axi-symmetric finite elements are used. 
Applying the Total-Lagrange description to the 
variation equations of functional Eq. (22) according to  
u, J , p  [16], after finite element discretization, and 
the Newton-Raphson iteration equation [17] is finally 
obtained:

 K u fT∆ ∆= , (23)

where KT is the structural tangent stiffness matrix, Δu 
is the vector of nodal point displacement increment and 
Δf is the unbalanced load vector. The validation and 
calibration of our program (mesh, material constants 
and finite element input data) were performed 
according to [18]. For the finite element code, a data 
generation program (mesh, boundary conditions, loads 
and finite element input data) has also been developed.

3  OPTIMIZATION PROCESS

In the course of the optimization process, the geometry 
of the initial design, the results of the compression 
testing, and the specified characteristics are known.

As the first step, the finite element model is 
built, and then the Mooney-Rivlin material constants 
(μ10, μ01) are determined with consideration of the 
measurement results.

In order to decrease the running time, the clearest 
mesh is found at which the required calculation 
accuracy can be preserved. For the same specified 
material characteristics (μ10, μ01, κ and c), the learning 
points are created.

The learning points are used to test the error δ1 
of the regression function produced by the software 

optimizing the hyper-parameters γ and C. If the error 
δ1 is within the specified limit δ1* the regression 
function is accepted and is used for further calculation. 
The minimum of ΔWSVR on D defined in Eq. (19) is 
calculated.

The finite element calculation is performed again 
with the optimum design parameter vector determined 
using SVR method and the condition:

 δ δ2 2=
−

≤
∆ ∆

∆

W ( ) W ( )
W ( )

,*FEM
opt

SVR
opt

FEM
opt

d d
d

 (24)

is checked, where the limit is specified by the user.
If Eq. (24) is fulfilled, the optimization is 

considered to be completed. Fig. 6 shows the 
flowchart of the shape optimization problem.

4  NUMERICAL EXAMPLES

4.1  Two-Dimensional Shape Optimization

The rubber part investigated is the bumper of an air 
spring used in buses. The meridian section of the air 
spring containing the rubber bumper is shown in Fig. 
1. The air springs are designed so that the buses can 
“kneel” at bus stops, and the air spring goes flat. The 
rubber bumper rests against the bumper plate at that 
time. 

In current practice, when a softer or a harder 
rubber bumper is needed, this is achieved by changing 
the rubber composition. Our task is to enable the 
described rubber bumper to produce a 15% harder 
characteristic under operating conditions. This is to be 
achieved by changing the shape of the rubber bumper.

Table 1.  FEM input data

Mooney-Rivlin constant (μ10) 0.63 N/mm²

Mooney-Rivlin constant (μ01) 0.1575 N/mm²

Bulk modulus (κ) 1000 N/mm²

Penalty parameter of contact (c) 1000 N/mm²

Prescribed disp. inc. (Δu) 1 mm

Number of load steps (m) 13

In Fig. 1, it can be seen that the rubber bumper 
comes into contact with the top plate and the pin even 
under a small compression. The displacements are 
known on the lower and upper surfaces. The finite 
element code was developed so that it would be 
suitable to also consider normal contact. The shape 
optimization problem is two-dimensional in this 
case. The finite element input data are given in Table 
1, the initial geometry of the rubber bumper and the 
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deformed shape of the original geometry are shown in 
Fig. 7.

Fig. 6.  Flowchart of the shape optimization

Fig. 7.  The initial and the deformed geometry

The initial and the specified characteristics are 
shown in Fig. 8. Taking the production technology and 
application technology limitations into consideration, 
the two design parameters are the largest diameter  
d1 = Dk and the external diameter of the bumper 
surface d2 = Db. It is a fundamental requirement that 

the hole diameter D1 and the height of the part h 
should not change.

Fig. 8.  The spring characteristics

In the shape optimization, the inequalities  
d2 ≥ Db0 and d1 > d2 are specified, so that the design 
parameters in mm are defined according to the 
following conditions:

d = (d1, d2),  where
, ,...,
, ,...,

d
d

1

2

82 83 102
74 75 90

∈{ }
∈{ }






  and d1 > d2.

Thus, the optimization range and the learning 
points chosen can be seen in Fig. 9.

Fig. 9.  The optimization region and the learning points

Table 2.  Input data of the optimization process

SVR parameter (ε) 0.01

SVR parameter (γmin) 0.1

SVR parameter (Cmin) 1

Tolerance (δ1*) 0.01

Tolerance (δ2*) 0.05

The manufacturing accuracy for the two design 
parameters is 1 mm. Under the specified accuracy, the 
number of possible solutions is P = 312, which can be 
determined from the predefined conditions on design 
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parameters and manufacturing accuracy. The number 
of learning points is N = 24. The input data of the 
optimization process are collected in Table 2.

After reading in the learning points on the basis 
of the hyper-parameter search (Figs. 10 and 11), the 
following parameters are considered to be optimal 
in the SVR program: γopt =1.5, Copt = 1.5, where  
δ1 = 0.008429. The goodness of learning is shown in 
Fig. 12. 

Fig. 10.  Determination of γopt (Cmin = const.)

Fig. 11.  Determination of Copt (γopt = const.)

Fig. 12.  SVR best fit

The results obtained by the teaching using the 
optimal hyper-parameters are collected in Table 3.

Table 3.  Results of the SVR teaching

No. d1 [mm] d2 [mm] ΔWFEM [Nm] ΔWSVR [Nm]
1 82 74 9.94111 9.799091
2 82 78 8.72711 8.669142
3 86 74 8.16311 8.135446
4 86 78 6.93211 6.959917

… … … … …
23 102 86 4.26789 4.284846
24 102 90 5.55889 5.531014

On the basis of the calculation, the minimum 
work difference of the possible solutions is 
ΔWSVR(dopt) = 0.368536 Nm, for which the optimum 
design parameters are d1opt = 94 mm and d2opt = 88 
mm. The optimization results are summarized in Table 
4.

Table 4.  Design solutions obtained with the SVR

No. d1 [mm] d2 [mm] ΔWSVR [Nm]
174 94 88 0.368536
296 102 74 0.388816
175 94 89 0.389079
297 102 75 0.411857
280 101 75 0.415206
235 98 81 0.44596
… … … …

Fig. 13.  The spring characteristics

The characteristics obtained for the control 
finite element calculation run for the optimum design 
variable and the specified characteristics are shown 
in Fig. 13, where ΔWFEM(dopt) = 0.385546 Nm, so the 
tolerance is δ2 = 0.04412.

The optimal shape is shown in Fig. 14.
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Fig. 14.  The optimum shape

4.2  Multi-Dimensional Shape Optimization

Although the prescribed characteristics can be 
achieved by changing two or three design parameters 
in engineering practice, it may be considered that 
more design variables are needed to describe the 
specific feature. The shape optimization using SVR is 
suitable for handling even more design parameters. In 
the following example, the efficiency of this method is 
presented using a five-dimensional shape optimization 
problem. The outer skirt of the rubber bumper 
investigated is described by means of a cubic spline in 
five control points. These control points are the design 
parameters. The finite element input data are given 
in Table 5; the initial geometry of the rubber bumper 
and the deformed shape for the original geometry are 
shown in Fig. 15. The initial and the desired load-
displacement curves can be seen in Fig. 16.

Fig. 15.  The initial and the deformed geometry

Table 5.  FEM input data

Mooney-Rivlin constant (μ10) 0.5 N/mm²

Mooney-Rivlin constant (μ01) 0.125 N/mm²

Bulk modulus (κ) 1000 N/mm²

Prescribed disp. inc. (Δu) 2 mm

Number of load steps (m) 10

Fig. 16.  The spring characteristics

In the investigation, the design parameters 
in [mm] are defined according to the following 
conditions:

d = (d1, d2, d3, d4, d5),  where

,
,
,
,

d
d d d
d d d
d d d
d

1

2 1 1

3 2 2

4 3 3

40 56
4 4
2 2
2 2

∈[ ]
∈ − +[ ]
∈ − +[ ]
∈ − +[ ]

55 4 42 2∈ − +[ ]












 d d,

and d1, d2, d3, d4, d5, are even numbers.
Under the specified accuracy, the number of 

possible solutions is P = 1215. The number of learning 
points is N = 10. The input data of the optimization 
process are included in Table 6.

Table 6.  Input data of the optimization process

SVR parameter (ε) 0.01

SVR parameter (γmin) 0.05

SVR parameter (Cmin) 1

Tolerance (δ1*) 0.02

Tolerance (δ˝2*) 0.05

After reading in the learning points on the 
basis of the hyper-parameters search, the following 
parameters are considered to be optimum in the SVR 
program: γopt = 0.1, Copt = 20, where δ1 = 0.013775. 
The goodness of learning is shown in Fig. 17.

On the basis of the calculation, the minimum 
work difference of the possible solutions is  
ΔWSVR(dopt) = 0.432812 Nm, for which the optimum 
design parameters are d1opt = 52 mm, d2opt = 48 
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mm, d3opt = d4opt = d5opt = 54 mm. The results of 
the optimization are summarized in Table 7. The 
characteristics obtained for the control finite element 
calculation run for the optimum design variable and 
the specified characteristics are shown in Fig. 16, 
where ΔWFEM(dopt) = 0.41267 Nm, so the tolerance 
is δ2 = 0.04878. A deformed shape for the optimal 
geometry is shown in Fig. 18.

Fig. 17.  SVR best fit

Table 7.  Design solutions obtained with the SVR

No. d1 
[mm]

d2 
[mm]

d3 
[mm]

d3 
[mm]

d5 
[mm]

ΔWSVR 
[Nm]

837 52 48 54 54 54 0.43281
861 52 50 54 52 54 0.43344
828 52 48 52 54 54 0.45588
836 52 48 54 54 52 0.4559
852 52 50 52 52 54 0.45601
860 52 50 54 52 52 0.46177
… … … … … … …

Fig. 18.  Deformed shape of the optimal geometry

5  CONCLUSIONS

Rubber bumpers that are built into vehicles and 
structures have to meet several requirement as a 
result of their function. In this paper, bumpers with 
predefined load-displacement curves were achieved 
via shape optimization.

The characteristics of the rubber bumpers of 
different shapes were determined with the help of 
the finite element method. In the investigations, the 
SVR was used by means of open-source software to 
perform the optimization task. Combining the above 
two methods into one system, two shape optimization 
problems were solved to prove the efficiency of 
the presented procedure for axi-symmetric rubber 
bumpers.

The SVR method requires relatively few time-
consuming learning points to treat non-linear multi-
dimensional optimization problems. Naturally, 
the learning points should cover the optimization 
range. The density of the points may depend on the 
complexity of the problem.

The teaching procedure producing a small 
number of learning points and carried out by using 
the finite element method can be regarded as short. 
After the teaching procedure, the software provides a 
remarkably strong prediction for further multitude of 
parameters by dispensing with the time-consuming 
finite element calculations and relying on engineering 
intuition.

For both two and five design parameters, the 
novel shape optimization procedure proved to be fast 
and accurate (see the examples presented in 4.1 and 
4.2, respectively). This regression process results in 
an approximation value of the objective function. The 
goodness of the calculation can be checked by finite 
element computation. Experimental measurements 
on bumper shapes obtained by numerical simulations 
would be justified, but this was not part of the current 
project.

It may be considered that further work is needed 
on multi-objective optimization including total mass 
or life cycle number, etc.
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