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0  INTRODUCTION

In recent years, stainless steels have been increasingly 
utilised in the automotive industry and in the 
production of domestic appliances because of its 
excellent strength, good formability and resistance to 
corrosion. While the use of stainless steel increases 
mechanical properties of a formed part, there is 
another merely technological disadvantage. We refer 
to the so–called springback effect, a phenomenon 
that is associated with the reversible elastic strain 
recovery which happens after the removal of the tools 
and complete unloading of the formed part. Because 
of the high stress state that is achieved in stainless 
steels during forming, and because of smaller sheet 
thickness that is usually required in order to reduce the 
weight of the produced component, the springback of 
stainless steels in regard to forming mild steels is even 
more intense and has been long recognised as a major 
problem for companies’ development departments. 
From the point of view of tool design, there is no 
doubt that a reliable springback prediction, which is 
based on the corresponding numerical simulation 
of the forming process, is the key to resolving this 
problem. In this regard, a considerable amount 
of work that is specifically related to the proper 
mathematical modelling of the springback has been 
already done. Above all, it turns out that the precise 
experimental observation of the material’s behaviour 
and the inclusion of its revealed physical relations 
into a corresponding constitutive model are the most 
promising way. Models that have been presented up 
until now mostly deal with the precise modelling of 

anisotropy [1], the Bauschinger effect [2], and damage 
[3]. Recently, we have proposed that, for reliable 
springback prediction, elastic modulus degradation 
must also be included in the constitutive modelling; in 
[4] we studied the effect of coupling the Mori–Tanaka 
model with isotropic plasticity. However, sheet metals 
usually exhibit significant plastic anisotropy. This 
paper is an attempt to build a corresponding physically 
consistent constitutive model that is capable of taking 
into account the resulting stiffness degradation during 
plastic deforming and plastic anisotropy in material.

The topic presented here, which is focused on the 
anisotropy modelling and experimental verification of 
the basic assumptions, is in this regard a continuation 
and an upgrade of our previous research, as reported 
in [5] and [4]. The work is based on a combined 
experimental–analytical–numerical approach; with 
the proven experimental evidence being analytically 
modelled, the physical adequacy of the built 
constitutive equations is established by means of 
a numerical simulation of given experiments. The 
conceived constitutive model is implemented into a 
FEM-based program; in our case, ABAQUS/Explicit 
[6]. In the development stage of the constitutive 
modelling, the FEM simulations are used purely for 
the purpose of constructing a constitutive model that is 
as consistent as possible with the given experimental 
evidence. In the end, with the developed constitutive 
model being confirmed in regard to its original 
experimental framework, it is further numerically 
validated on a simulation of a series of experimentally 
performed springback tests. 
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1 CONSTITUTIVE MODELLING  
AND NUMERICAL IMPLEMENTATION

In [5] we showed that a considerable amount of voids 
tends to evolve during plastic straining. This evidence 
was determined by observing the microstructure 
of stainless sheet metal which had been plastically 
prestrained to different degrees. According to damage 
mechanics [7], the arisen voids are the main cause for 
the stiffness degradation in ductile materials, which 
means that in order to more realistically capture the 
material behaviour, this evidence must be considered 
in the constitutive modelling. In particular, this is 
important with respect to springback simulation 
analyses.

In the attempt to conceive a constitutive model that 
would incorporate the above experimental evidence 
to the greatest degree, we start in this work with the 
isotropic Gurson–Tvergaard–Needleman (GTN) 
model [8] to [10] and continue with its corresponding 
upgrading. In the GTN model, which establishes 
the respective constitutive laws for the evolution of 
ductile damage in porous materials, void nucleation 
and void growth (two essential elements of damage 
evolution besides void coalescence) are considered. In 
this regard, in order to consider physically consistent 
stiffness degradation in the material, we have coupled 
the GTN model with the Mori-Tanaka model [11], 
which considers stiffness degradation due to inclusion 
of spherical voids. Further, since the sheet metal is 
also highly anisotropic due to rolling, the anisotropic 
Hill48 model has been consistently compounded into 
the model as well. Therefore, we propose the model 
which is physically consistently compounded from the 
GTN, Hill48, and Mori–Tanaka model. Considering 
the initials of all three models, it can be designated as 
the ‘GHM model’.

1.1  Plastic Potential

In order to simultaneously consider the anisotropy 
and damage, we have adopted a yield criterion that 
is based on the upgrade of the Gurson type (GTN) 
potential with the anisotropy [12]:
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In the above equation, the stress tensor σij is 
given in the coordinate system (1, 2, 3), which is 
defined by the material principal axes, whereas the 
coefficients F, G, H, L, M, N are the corresponding 
material parameters that characterise the material 
anisotropy. For the simplicity of further description, 
σeq can be equivalently introduced by means of fourth-
order Hill tensor Hijkl and the stress deviator tensor 
sij = σij – 1 / 3σkk δij as:

 σ eq
2 = s H sij ijkl kl .  (3)

In Hijkl only the following components are 
nonzero:

 H1111 = G + H, H2222 = F + H,     
 H3333 = F + G, H1122 = H2211 = – H,     
 H1133 = H3311 = – G, H2233 = H3322 = – F,       (4)
 H1212 = H2121 = N, H1313 = H3131 = M,
 H2323 = H3232 = L.

The material anisotropy parameters F, G, H, L, 
M, N are related to yield stress ratios Rij

ij=σ σyield ref/ , 
where σref and σ yield

ij  are respectively the adopted 
reference yield stress and actual yield stresses from 
the uniaxial (i = j = 1, 2, 3) and shear (i ≠ j) experiments, 
in the following way:
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The parameters of the introduced model can be 
grouped with regard to their action in two subsets. 
The parameters F, G, H, L, M, N or, equivalently, Rij, 
describe the anisotropy, while parameters q1, q2 and 
q3, describe the influence of damage on yielding. In 
Eq. (1), σM is the yield stress of the matrix material, 
which is defined as a function of the equivalent strain 
of matrix material εM

p . In this work, the hardening 
curve is constructed from 10 cubic splines up to 
εM
p = 0.46, and the equivalent plastic strain of the 

matrix material εM
p  is obtained from the following 

equivalent plastic work expression:

 1−( ) =f ijσ ε σ εM M
p pd d ij .  (6)



Strojniški vestnik - Journal of Mechanical Engineering 60(2014)2, 84-92

86 Starman, B. – Vrh, M. – Halilovič, M. – Štok, B.

The remaining state variables in Eq. (1), σH and f, 
are, respectively, the hydrostatic stress σH = σkk / 3 and 
void volume fraction or porosity in the material. 

1.2  Evolution of Porosity

The law governing the evolution of porosity considers 
two mechanisms, void growth and void nucleation, 
respectively:

 df = dfgrowth + dfnucleation . (7)

The first term on the right-hand side can be 
formulated by considering mass conservation:

 d dgrowth
pf f kk= −( )1 ε ,  (8)

whereas the nucleation of voids due to microcracking 
and decohesion of the particle–matrix interface 
is related to the plastic deformation of the matrix 
material:

 d dnucleation n M
pf A= ε .  (9)

In the GTN model, the parameter An is computed 
as:
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following a normal distribution about the mean 
nucleation strain εn with a standard deviation sn. 
Parameter fn represents the maximum possible 
nucleated void volume fraction. In this study, the 
possible decrease of the strength of material due to 
extensive void coalescence is omitted.

1.3  Stiffness Degradation

Stiffness degradation due to inclusion of spherical 
voids in the elastic continuum was studied in many 
papers, such as [13] to [15]. To characterise it, 
Eshelby’s equivalence principle and his solution of the 
elastic field of an ellipsoidal inclusion in an infinite 
elastic medium [16] can be used. Eshelby’s principle 
is best combined with Mori–Tanaka’s concept of 
average stress in the matrix [11] and [13], which was 
verified several times for different materials (e.g., in 
[17] for aluminium, in [18] for graphite, and in [19] for 
metal composites). Combining the GTN model with 
the Eshelby and Mori–Tanaka approach gives a firm 
basis for building a proper constitutive model that is 
capable of simulating the measured material response. 

Here, linear and isotropic elastic law σ εij ijkl klC= e , 
i.e., Hooke’s law, will be used with degradation of 
stiffness taken into account. The effective values of 
Young’s modulus and Poisson’s ratio, E  and ν  are 
related, according to the Mori-Tanaka approach, to the 
porosity of the material that contains spherical voids 
in the following way:
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where E0 and ν0 are Young’s modulus and Poisson’s 
ratio of the virgin material (i.e., undeformed material).

Note that the Hill48 model can be derived from 
the GHM model when specific values of the material 
model parameters are considered. The Hill48 model 
can be simply obtained when the porosity is set to 
zero. In this case, σ εM M

p( )  becomes the classical 
yield stress as a function of equivalent plastic strain 
σ εy eq

p( ) .

1.4  Numerical Implementation

The above conceived constitutive model has been 
implemented in a general purpose finite element code 
ABAQUS via VUMAT subroutine. For the integration 
of the constitutive equations, a new highly efficient 
explicit integration scheme is used, which was 
recently developed by the authors. More about the 
application of the new scheme and its implementation 
within FEM can be found in [20], whereas the reader 
is invited to study [21] for the theoretical background.

2  EXPERIMENTAL OBSERVATIONS AND MEASUREMENTS

For the investigated stainless steel EN 1.4031, the 
standard tensile tests in three specific directions, 
namely in direction 0, 90 and 45° regarding the rolling 
direction of the sheet, have been performed in order 
to obtain respective yield curves. In addition, Young’s 
modulus degradation has been measured on the tensile 
sheet specimens that were plastically prestrained in 
the rolling direction.

2.1  Plastic Anisotropy and Hardening

The overall hardening and plastic anisotropy of the 
observed steel was measured by means of the standard 
tensile test, performed in the Tira 2300 tensile test 
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machine. The initial thickness and width of the tensile 
sheet specimens were 0.67 and 20.2 mm, respectively. 
In the experiment, the tensile force F and elongation 
ΔL of the gauge length L0 = 80 mm were measured. 
The established F – ΔL relationships for the three 
considered directions, which include the rolling 
direction (0°), transverse direction (90°) and diagonal 
direction (45°), are graphically displayed in Fig. 1.

From three hardening curves which are displayed 
in Fig. 1, one can observe that cold rolled metal sheet 
EN 1.4301 exhibits a significant degree of plastic 
anisotropy, which certainly cannot be neglected in 
numerical simulations.

Fig. 1.  Tensile test measurements

2.2  Effective Young’s Modulus Degradation

The degradation of the effective Young’s modulus 
was measured as a function of the longitudinal plastic 
strain, which can be defined for the uniaxial stress 
case as εp = ln ((L0 + ΔL) / L0). The corresponding 
experimental procedure is a two-stage loading 
procedure in which standard specimens are first 
plastically prestrained in the tensile test machine to a 
certain degree of the equivalent plastic strain and then 
released. The thickness and width of each prestrained 
specimen is precisely measured in order to evaluate the 
respective cross-sectional area which will be needed 
in subsequent stiffness analysis. In the second stage, 
each plastically prestrained specimen is clamped again 
in the tensile test machine and loaded only elastically. 
In order to accurately follow the elastic response, the 
machine is equipped with a precise dynamometer, 
which can measure force in a range up to ±10 kN 
with accuracy class being 1 (ISO 376, EN 10002–3), 
whereas the strain transducer, which is mounted on 
the specimen as shown in Fig. 2, is of accuracy class 
0.1 while its nominal displacement range is ±2.5 mm.

From the measured force-displacement 
relationship registered by elastic loading and 

unloading of the plastically prestrained specimen, 
the effective elastic modulus can be calculated 
considering Hooke’s law by using the interpolation of 
the measurement data of length, cross-sectional area, 
and force. In order to retrieve the effective Young’s 
modulus degradation as a function of the longitudinal 
plastic strain, the described procedure is repeated for 
different degrees of the applied plastic prestrain. As 
can be clearly seen from the plotted graph in Fig. 3, it 
is beyond all question that the evidenced degradation 
of the effective Young’s modulus is directly correlated 
to the degree of the applied plastic prestrain. The 
fact that, in our experiment, plastic prestraining was 
achieved under the condition of a uniaxial stress state 
certainly does not affect the general statement. The 
phenomenon described here can be found also in [22] 
and [23].

Fig. 2.  Measurement of elastic elongation

Fig. 3.  Young’s modulus degradation due to plastic straining

3  IDENTIFICATION OF THE PARAMETERS

The parameters of the herein deduced GHM model 
have been identified using the least square method 
and the Levenberg-Marquardt optimization algorithm 
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[24] and [25]. The goal of the optimization is to fit 
with the respective numerical simulation, when 
performed by considering the GHM model, the 
performed experiments to a greatest extent. Thus, 
in the optimization, the model parameters that 
are under consideration take the role of design 
variables, while the cost function to be minimised 
is defined as the discrepancy between the numerical 
and experimental responses. With a corresponding 
adjustment of the model parameters’ values, we have 
thus tried to numerically obtain both the measured 
force-displacement curve (F – ΔL) in three observed 
directions (0, 45, and 90°) and the measured effective 
Young’s modulus degradation at the same time.

Parameters q1, q2 and q3 are essentially an 
improvement of the basic Gurson’s constitutive 
model, upgrading thus the original plastic potential 
[9]. Since the values of those parameters are similar 
for all metals [6], we adopt them by taking q1 = 1.5, 
q2 = 1 and q q3 1

2 2 25= = . . Further, we have observed 
that the model fits more adequately the measured 
effective Young’s modulus degradation when An in 
Eq. (9) does not follow the normal distribution. Thus,  
An has been adopted as the independent parameter of 
the model; in that case only one parameter needs to be 
identified instead of three. Also, considering specific 
of the planar anisotropy in the rolled sheet only two 
yield stress ratios, R22 and R12, have been chosen as 
relevant for the characterization of the anisotropic 
behaviour (parameters of Hill48). Accordingly, 
only R22 and R12 have been identified, whereas the 
remaining yield stress ratios were set to 1. 

Further, the control points σ σ εε
M M M

p= ( )  of the 
cubic spline, which is used for the definition of the 

hardening behaviour, have been the subject of the 
identification as well. Values of all the GHM model 
parameters, those that are identified and those that are 
assumed, are tabulated in Table 1. The values, which 
are denoted in the table by an asterisk, are assumed to 
be fixed and are not subject to identification.

As can be seen from Fig. 4, a very good agreement 
between the calculated and measured F – ΔL curves 
and the effective Young’s modulus degradation as a 
function of the elongation of gauge length is obtained 
for the optimised GHM model.

To provide elements for a comparative analysis 
between different constitutive models, the same 
procedure for the parameters’ identification has been 
used for Hill48 model, but considering a reduced 
experimental data set. In the Hill48 model parameters 
identification, only the deviation in F – ΔL curves is 
considered as the cost function. The corresponding 
parameter values for the Hill48 constitutive models are 
tabulated in Table 1, where σ σ εε

y y eq
p= ( )   represents 

the control points of the cubic spline for the definition 
of the hardening behaviour.

4  VALIDATION OF THE MODEL ON SPRINGBACK TEST

The developed constitutive model is experimentally 
validated by numerically simulating a springback 
test. The test consists of the bending and releasing 
of rectangular stainless steel sheet specimens that 
were previously plastically prestrained to different 
degrees in the rolling direction. In the experiment, the 
rectangular specimens are first uniaxially stretched 
to a certain level of plastic deformation and then 
released. As a measure of plastic prestrain, let us 

Fig. 4.  Inverse identification results: experiment vs. calculation
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introduce geometrically defined longitudinal plastic 
strain ε p 0 0=ln(( + )/ )L L L∆ , which is defined with 
the elongation of the respective gauge length. Such 
plastically prestrained specimens are then clamped, 
in the second part of the experiment, into a special 
bending tool (Fig. 5a) and subsequently bent in an 
angle of γ = 90° (Fig. 5b). As a result, the initially 
homogeneous plastic strain state, which is due to 
the applied plastic prestrain in the first part of the 
experiment, is now subject to change into a non-
homogeneous one because of the developed plastic 
strains by bending.

Nevertheless, the applied plastic prestrain and its 
amount still has a decisive role in the resulting non-
homogeneous plastic strain and stress distribution, 
which will be clearly seen from the exhibited 
springback behaviour (Fig. 5c).

Lastly, in the considered experiment, after the 
removal of the bending load and re–established 
equilibrium of the bent specimen under residual 
stresses, its deviation from perpendicularity (γ = 90°), 
denoted in Fig. 5a by angle α, is measured. In fact, 
in this experiment, the angle α is a clearly visible 
measure of the exhibited springback behaviour of the 
bent steel sheet. From a photograph of one set of the 
bent specimens, shown in Fig. 5c, one can clearly see 
how the degree of plastic prestrain is directly related 
to the intensity of the exhibited springback. More 
extensive springback, which is evidenced with a 
larger amount of plastic prestrain, may be attributed 
to the following: greater actual yield stress due to the 
occurred hardening, thinner specimens, and lower 
effective Young's modulus. All of these effects are a 
direct consequence of the previous plastic prestraining, 
with their variation being proportional in a non-linear 
way to the degree of the applied plastic prestrain.

Fig. 5.  Springback test; bending of prestrained specimens; a) 
experiment, b) simulation, c) bent specimens

Table 2.  Comparison of the springback angle, experiment vs. 
calculations (rolling direction)

prestrain εp 
[-] in rolling 

direction

angle α [°] bending in rolling direction

experimental
numerical

GHM Hill48
0 10.3 10.2 10.2

0.053 13.9 14.2 14.0
0.097 17.4 17.4 16.9
0.144 20.8 20.5 19.6
0.203 24.8 24.1 22.7
0.244 26.8 26.1 25.3
0.300 30.4 30.3 27.9
0.353 33.1 33.5 30.7
0.402 36.8 36.6 33.5

The measured springback angle α is then 
compared in the validation test with the results 
obtained by a numerical simulation of the considered 
springback test. The computer simulation is based 

Table 1.  Values of the identified and assumed fixed parameters

GHM [ -, N/mm2] Hill48 [ -, N/mm2]

R11* R22 R33* R12 R13 R23* R11* R22 R33* R12 R13

1 0.944 1 0.921 1 1 1 0.940 1 0.914 1

q1* q2* q3* An σM
0 σM

0 03. R23* σ y0 σ y0 045. σ y0 09. σ y0 135.

1.5 1 2.25 0.151 301.8 405.1 1 300.9 442.8 559.5 661.8

σM
0 05. σM

0 1. σM
0 15. σM

0 2. σM
0 25. σM

0 3. σ y0 18. σ y0 225. σ y0 28. σ y0 32. σ y0 37.

465.3 611.7 730.3 844.5 947.9 1048.3 751.7 833.1 926.2 991.1 1070.9

σM
0 34. σM

0 38. σM
0 46. E0 ν 0* - σ y0 41. σ y0 46. E0 ν 0* -

1129.5 1208.1 1367.3 208800 0.3 - 1130.4 1190.9 208000 0.3 -
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on the FEM code ABAQUS/Explicit by using the 
VUMAT subroutine for the implementation of the 
GHM model. In the simulation, 100 shell elements 
with a reduced integration (S4R) and 11 through 
thickness section points were used to model the 
specimen, while the tools were assumed to be rigid. 
The results of the calculated and measured springback 
angle a for the ‘rolling direction specimens’ are 
presented in Table 2, whereas in Table 3, the respective 
springback angle α values for the ‘transverse direction 
specimens’ are displayed.

Table 3.  Comparison of the springback angle, experiment vs. 
calculations (transverse direction)

prestrain εp [-] 
in transverse 

direction

angle α [°] bending in transverse direction

experimental
numerical

GHM Hill48
0 9.8 9.6 9.6

0.056 15.2 13.6 13.3
0.090 17.7 15.9 15.3
0.147 20.7 19.5 18.5
0.200 23.9 22.5 21.0
0.234 26.8 25.3 23.6
0.300 30.4 28.3 26.1
0.340 33.0 31.7 29.2
0.368 35.8 34.0 31.3

From Tables 2 and 3, it can be seen that the 
approach presented here, which is formulated as the 
GHM model, gives much more accurate results. From 
the histograms, plotted in Figs. 6 and 7, showing for 
both considered constitutive models the respective 
absolute value of the established relative deviations 
between the simulated and the experimental 
springback, the advantage of the GHM model is even 
more distinct.

It is beyond all doubt that the overall departure 
of the calculated springback from the experimental 
one is smaller when the GHM model is used in 
comparison with the Hill48 model. Nevertheless, 
some further detailed perceptions can be extracted 
from the obtained results:
• When plastic prestraining in the rolling direction 

is small, both of the constitutive models that are 
considered here give similar results because the 
stiffness degradation is negligible and anisotropy 
has a minor influence.

• At a higher degree of plastic prestraining in the 
rolling direction, however, the Hill48 model 
underestimates springback, as is seen in Table 2. 
The main cause lies in the fact that it neglects the 
degradation of the effective Young’s modulus. 

There, the advantage of the GHM model becomes 
visible.

• The deviations from the experimental evidence 
are larger in the case of prestraining in the 
transverse direction for both models. The error 
may be attributed to the adoption of the isotropic 
evolution of the stiffness degradation in the GHM 
model and the adoption of the Hill48 anisotropy, 
the latter having limited possibility of anisotropy 
modelling due to its simplicity. Nevertheless, 
the springback prediction with the GHM model 
is, again, much more precise than the classical 
approach. 

Fig. 6.  Absolute value of relative deviations of springback (rolling 
direction)

Fig. 7.  Absolute value of relative deviations of springback 
(transverse direction)

5  CONCLUDING REMARKS

This paper presents a construction of the advanced 
constitutive model which simultaneously considers 
sheet anisotropy, damage evolution, and stiffness 
degradation in sheet metal during forming. From 
the comparative analysis of the numerical and 
experimental results for springback in the investigated 
validation test, it can be concluded that only 
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simultaneous modelling of the stiffness degradation 
and anisotropy can be a true key for resolving 
the problem of physically reliable simulation of 
springback. It is clearly seen from the obtained results 
that, in the calculations of springback, neither stiffness 
degradation nor anisotropy in sheet metal should be 
neglected. One way to take those effects into account 
is the approach elaborated and validated in this article, 
which has resulted in the so-called GHM model. 
Although the stiffness degradation due to occurrence 
of damage could be tackled in a much more 
sophisticated way (which is, however, a matter of 
further research), the approach used with the effective 
Young’s modulus degradation considered covers the 
phenomenological background adequately enough to 
qualitatively demonstrate its impact on the numerical 
springback behaviour.
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