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0  INTRODUCTION

The spiral bevel gear (SBG), with its high contact 
ratio, high strength and smooth driving, is widely 
used to transmit dynamic power in various mechanical 
products, including vehicles, mining machinery, 
aerospace engineering, and helicopters [1] to [4]. 
Typical SBGs are shown in Figs. 1a and b. The SBG 
has been a subject of research for almost a century, 
and there is a significant amount of literature on the 
mathematical model of SBGs. The tooth surface of an 
SBG is a complicated curved surface with a kinematic 
performance directly bonded to the special cutting 
process [5]. The mathematical model has significantly 
contributed to the Computer-Aided Design and 
Manufacturing (CAD/CAM) of SBGs, because the 
mathematical model of SBG can be constructed 
to determine the processing method [6] and [7], to 
calculate machine-tool settings [8] to [11], to optimize 
tooth surface topography [12] to [15], to build models 
of Finite Element Analysis (FEA) [16] to [18], Tooth 
Contact Analysis (TCA) and Loaded Tooth Contact 
Analysis (LTCA) [19] to [21], and to develop new 
SBG types, as shown in Fig. 2. Therefore, the study 
of the mathematical model construction significantly 
influences the technological development of the SBG.

The most popular method of manufacturing SBGs 
is that used by Gleason, Oerlikon, and Klingeinberg. 
The basic structural forms of special machines include 
the traditional cradle-type hypoid and computer 
numerical control (CNC) hypoid generators. The 
typical feature and manufacturing principle of these 
special machines are to cut the workpiece using 

a rotating cutter head. To analyse the process of 
manufacturing SBGs, the mathematical model of 
the tooth surface can be considered to be a spatial 
trajectory of the cutter blade [22].

a)                                   b)
Fig. 1.  3D model of the typical SBG; a) SBG of drive axle of vehicle, 

and b) SBG of aerospace transmission

To eliminate the restriction of the applied range, 
reduce processing costs, and improve the universal 
properties of the special manufacturing system, new 
manufacturing technologies and design methods of 
SBGs in universal machines could be investigated. 
The mathematical model based on geometry 
characteristics can guide the manufacture of SBGs in 
universal milling machines. The overview, analysis 
and comparison of mathematical models are valuable 
for improving the manufacturing process, machine 
tool technology, and design method.

This paper reviews almost all related literature 
on the mathematical model of SBGs and primarily 
summarizes three methods: the matrix method, the 
vector method and the geometry method. The matrix 
method and vector method are based on the special 
machining processes. The relationship between the 
manufacturing principle of a particular machine and 
the mathematical model is illustrated. As the geometry 
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method provides a theoretical model for the new 
manufacturing method, its development trend is also 
analysed and discussed.

1  MATRIX METHOD

The matrix method is a mathematical tool used to 
induce spatial transformation in different coordinate 
systems. Litvin et al. [23] was the first to use the 
matrix method specifically to build a mathematical 
model of an SBG. 

The conjugation theory of space surfaces [24] and 
[25], which includes the global and local conjugation 
theories, is essential to establish a relationship between 
different surfaces in building the mathematical model 
of an SBG. The imaginary generating gear, formed by 
the motion of a rotating cutter blade, maintains line 
contact with the workpiece during the manufacturing 
process, in accordance with global conjugation theory 
and the meshing equation [25]. Based on the local 
synthesis method [26], the tooth surfaces of the gear 
and pinion conform with local conjugation theory at 
the mean contact point; therefore, this theory is used 
to determine the pinion machine-tool settings of the 
special machine. The universal conjugation theory of 
spatial surfaces is shown by Eq. (1) and the meshing 
equation is shown by Eq. (2).
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In Eq. (1), r1, r2 are surface vectors of Surface 
1 and surface 2, m is the relative position vector 
between coordinate systems of Surface 1 and Surface 
2. In Eq. (2), sg, θg are surface parameters of the cutter 

head, ϕ1 is workpiece spindle rotational angle, n is the 
normal vector of conjugate plane of gear surface, v12 
is the relative velocity between Surfaces 1 and 2.

Litvin et al. [23] used the matrix method to 
synthesize and optimize the tooth surface of SBGs. 
Matrix transformation effectively represents the 
spatial transformation of the position vector of 
the cutter blade. However, the meshing equation 
is decided by the hypothetical conjugate surface 
instead of the approximate actual non-conjugate 
tooth surface. Therefore, a gap is created between the 
mathematical model and the actual SBG tooth surface. 
Based on differential geometry and the theory of 
conjugate surfaces, Fong and Stay [27] investigated 
the mathematical model of SBGs generated by 
circular plane cutter. In [23], a matrix translation 
corresponding to the manufacturing process was 
illustrated, and tooth parameters were solved with the 
meshing equation. Moreover, a modular arrangement 
facilitates the conversion of the mathematical model 
into computer language. Fong and Stay [28] also 
investigated a mathematical model of the Gleason 
SBG and derived the undercutting equations through 
this model, which developed a method used to check 
the undercutting condition of SBGs. Rao et al. [29] 
compared a mathematical model created with the 
matrix method with a geometry model and computed 
the deviation, which confirmed the high uniformity 
of the two models. Handschuh [30] described a 
matrix method to build the SBG mathematical 
model proposed by Litvin and reviewed advances in 
applications for analysing SBGs. Clearly, building a 
mathematical model is the foundation for the thermal 
and structural analysis of SBGs. For example, Fuentes 
et al. [31] described how to build an accurate SBG 
mathematical model for finite element analysis in 
FORTRAN instead of CAD software. 

Fig. 2.  Application of mathematical model of SBGs
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Flank modifications primarily include lengthwise 
crowning, profile modification of tools, and a flank 
twist from toe to heel. These modifications affect the 
result of the mathematical model, as shown in Table 1. 

To determine the machine-tool settings of the 
tilted-head cutter, Litvin et al. [32] developed a 
series of matrix transformations corresponding to the 
manufacturing process, especially the cutter spindle 
angle and cutter swivel angle. To build a mathematical 
model of an SBG manufactured by modified roll, 
Lin et al. [33] illustrated the kinematic mechanism 
of a modified roll generation train for manufacturing 
an SBG and proposed a method to calculate the 
variable of roll ratio ηa, which is presented by Eq. 
(3). Fuentes et al. [31] proposed a design method for 
SBGs manufactured by modified roll. The variable of 
roll ratio was calculated with the parabolic function 
of transmission error and TCA output, and this 
function also provided the variable of roll ratio in 
terms of design. A CNC hypoid generator facilitates 
the implementation of nonlinear and higher-order 
kinematic correction motion to manufacture SBGs. 
Stadtfeld and Gaiser [34] proposed the theory of 
Ultimate Motion Graph and Ultimate Motion Concept 
(UMG/UMC), which is an effective theory for the 
flank modifications of a CNC hypoid generator. 
Fourth-order kinematic correction motion was used 
to generate the gear geometry with low noise and 
high strength. However, the relationship between 
machine-tool settings and flank modifications 
was not described, because it is difficult to build a 
mathematical model of SBGs. To reduce transmission 
error, Simon [35] proposed a method to determine 
optimal polynomial functions. Fifth-order Polynomial 
functions were used to determine the relationship 
between the angle of the cradle rotation and the 
workpiece. Based on modified machine-tool settings, 
Fan [36] proposed a mathematical model expressed 
in terms of the sixth-order polynomial function of the 
cradle roll increment and angle. This model can be 
used to simulate the flank modifications manufactured 
by CNC hypoid generators.

Table 1.  Modified parameters of different flank modifications [34]

Flank modifications Modified parameters Expression

Lengthwise crowning
Cutter radius R0

Modified radial motion SR = R(ϕc)
Profile modification of tool Tooth profile rt = r(sg, θg)

Flank twist from toe to 
heel

Variable of roll ϕ1 = s(ϕc)
Helical motion Em =E(ϕc)

Cutter tilted i, j

In Table 1, R0 is the cutter radius, SR is the radial 
setting of the cutter head, ϕc is the cradle rotational 
angle, rt is the vector of cutter tool, Em is the blank 
offset for gear or pinion, i is the cutter swivel angle 
and j is the cutter spindle angle.
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In Eq. (3), C is the distance between the cradle 
centre and the rotational centre of the input shaft, ϕa is 
the angle of rotation of cradle, a0 is half the distance 
between two cam guide ways, ϕe is the angle of 
rotation of the input shaft, ru is the pitch radius of the 
generating cams, Ti and Tp are the tooth numbers of the 
index interval and pinion, and Ra is the instantaneous 
roll ratio of the cam-follower reciprocator.

Considering the different cutting methods and 
flank modifications, Fong [37] proposed a universal 
mathematical model that utilizes the matrix method 
and facilitates the compilation of object-oriented 
computer programming. In the future, more details 
about the simulation of universal face hobbing for 
SBG can be added to this model.

Face milling and face hobbing are two major 
cutting systems used to manufacture SBG. The 
differences between these systems are shown in Table 
2.

Table 2.  Features of two major cutting systems

Cutting system Face milling Face hobbing
Indexing motion Single indexing Timed continuous
Lengthwise tooth 
curve

Circular arc Extended epicycloid

Tooth depth system
Uniform or tapered 
tooth depth system

Uniform tooth depth 
system

Finish machining Grinding and lapping Lapping

Machining feature High tooth accuracy
High production 
efficiency

As face hobbing combines the timed continuous 
indexing and generating rolling, it is a more 
complicated process. The mathematical model is 
closely related to the generalized kinematic model of 
face hobbing. Fan [38] proposed a complete modelling 
of a face-hobbing SBG generated with a Phoenix®II 
hypoid generator. This method divided the creation of 
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a mathematical model into four sections, disassembled 
the kinematic motion of the machine, and expressed 
the machine-tool settings as a function of the cradle 
increment angle. Shih et al. [39] proposed a universal 
mathematical model of face-hobbing generation with 
a wide application range. Vimercati [40] proposed 
a mathematical model of SBG that can be used to 
simulate the cutting process of face hobbing, and 
confirmed its high accuracy through an actual case. 
Compared with that of face milling, the complexity 
of the mathematical model of a face-hobbing SBG 
is primarily reflected in the mathematical model of 
the cutter blade and the relative motion between the 
imaginary generating gear and workpiece.

The traditional cradle-type hypoid generator 
is being gradually replaced by the CNC hypoid 
generator. The machine-tool settings of the CNC 
hypoid generator are transformed from those of 
the virtual traditional cradle-type universal hypoid 
generator, and the mathematical model is also built 
by the traditional method. Shih and Fong [41] 
proposed a mathematical model of the Cartesian-type 
hypoid generator. The machine-tool settings of three 
rectilinear motions and three rotational motions in the 
Cartesian system were converted from a previously 
proposed universal hypoid generator [39]. Simon [42] 
developed an algorithm to ensure the relationship 
between the machine-tool settings of the CNC hypoid 
generator and those of the cradle-type generator. In 
the future, a method to directly build the mathematical 
model of SBG generated by CNC hypoid generator 
can be investigated.

As the tooth surface of an SBG is the motion 
trajectory of the cutter blade, the mathematical model 
of the cutter blade is of key importance. A straight 
cutting blade is often used to cut the workpiece during 
face milling [27], [28], [30] and [31]. To obtain 
high strength and low noise, however, a parabolic 
profile blade is used to generate the SBG. Litvin et 
al. [43] provided equations for three shapes of blade 
profile and confirmed the satisfactory transmission 
performance of SBG generated by a parabolic profile 
blade. The mathematical model of the face-hobbing 
cutter blade is more complex. Fan [38], Vimercati 
[40], and Shih and Fong [41] provided the matrix 
equation of the position vector of the cutter blade in 
face hobbing generation. Vimercati [40] also analysed 
an actual face-hobbing cutter head and presented 
a complex equation of a curved blade with Toprem. 
The equation was obtained by analysing the complex 
cutter blade, which included the bottom, fillet, Toprem 
and curved blade. However, a more accurate model of 
the tooth surface is required to analyse genuine cutter 

geometric models. Xie [44] described a genuine face-
milling cutter geometric model with the parameters of 
blade angle, rake angle and relief angle. In simplified 
cutter geometry, the side and circular cutting edges of 
the blade are expressed on the normal plane. In [44], 
the blade rake plane was used to replace the normal 
plane, which matches real cutter geometry. Obviously, 
this research provided a method to improve the 
accuracy of the mathematical model of the face-
milling cutter blade, and more studies are expected to 
extend to the face-hobbing cutter geometric model.

The mathematical model based on the matrix 
method has been developed into basic technology for 
computer-integrated methods to design, manufacture 
and analyse SBGs in special hypoid generation. As 
the mathematical model follows the manufacturing 
principle of special machine, it closely matches the 
actual gear. Although complicated, the matrix method 
is a clear spatial transformation process that yields 
a universal mathematical model adopted by most 
existing cutting systems. However, this method can be 
used only in special hypoid generation. Furthermore, 
the nonlinear meshing equation is difficult to solve, 
especially in the tooth root segment. The formation of 
the generated surface equations and their derivatives 
lead to inefficiency in solving the computer 
programming and contact algorithms.

2  VECTOR METHOD

The vector method, proposed by Di Puccio et al. 
[45], is an alternative formulation of gear theory; 
this formulation of the mathematical model of 
SBGs is clearer and more compact. The advantage 
of the vector method is that only vector formulation 
is used to express the surface model. The spatial 
transformation of the vector method conforms with 
the principle of rotating vectors. The vector method 
also avoids using the reference coordinate system in 
building mathematical models of SBGs.

Fig. 3.  Vector rotation of position vector

The vector is rotated to translate the cutter blade 
spatially, and vector rotation around a mobile axis can 
simulate all translation processes in one expression. 
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According to Fig. 3, the vector p is the rotation of 
the position vector p0 around the unit vector a by an 
angle β0, and the vector p  can be obtained by rotating 
position vector p around the unit vector b by an angle 
α0. The vector translation process can be expressed as 
Eq. (4) [45].
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The derivative of the vector method with respect 
to the surface parameters is a simplified expression 
for solving the meshing equation. Eq. (5) [45] shows 
that the derivatives of the tooth surface parameters are 
compact.
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The meshing equation is represented by vector 
formation and requires no reference system. To avoid 
the application of a kinematic concept and relative 
differentiation, the meshing equation can be expressed 
as Eq. (6) [45].
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Di Puccio et al. [45] described the relative 
concept and formula derivation of the vector method 
in gear theory, analysed its application in building a 
mathematical model of an SBG, and described the 
characteristics of vector method through a numerical 
example of aerospace transmission application. 
However, this application is involved in a simple face-
milling process of the traditional cradle-type special 
generator. A complementary description of the vector 
method was proposed by Di Puccio et al. [46]. The 
principle of vector rotation around a mobile axis was 
proposed to express the complex spatial translation of 
the position vector of the cutter blade; this principle 
might even be used in supplemental spatial motions 
of the modern free-form cutting machine. A numerical 
example illustrates the convenience of constructing a 
mathematical model of SBGs. Further research could 
be conducted to build universal mathematical models 
by vector method.

The curvature of SBG tooth surfaces is analysed 
to evaluate their geometric features, mechanical 
properties, and physical characteristics. Di Puccio 
et al. [47] compared the different characteristics of 
Litvin’s approach [48], Chen’s approach [49], Wu 
and Luo’s approach [50], and the vector method for 
curvature analysis. In [47], vectors and tensors were 
introduced to analyse the curvature in vector method, 
and curvature tensors were used to simplify the 
analysis. Puccio et al. [51] used the proposed vector 
method to analyse curvature. The vector method 
can avoid using the reference system and provides 
explicit formulas to analyse curvature. Indeed, the 
vector method is a more compact and computationally 
efficient method for analysing curvature than other 
methods.

The vector method and matrix method are applied 
to simulate the similar machining processes and actual 
transformation path of the cutting blade, as shown in 
Fig. 4. However, they have different formulations in 
building mathematical models, as shown in Table 3 
[37] and [46]. By avoiding the reference system, the 
vector method for expressing tooth surface is more 
compact and cleaner. Obviously, the vector method 
is an alternative formulation for the mathematical 
modelling of SBGs, and it facilitates the simplification 
of computer programming and the improvement of 
computational efficiency. Thus, the application range 
of the vector method could be extended.

In Fig. 4, q is the instalment angle for the cutter 
head, γm is the machine root angle, xb is the sliding 
base for gear or pinion, xp is the increment of machine 
centre to back.

In Table 3, Rg is the cutter head point radius, 
αg is the blade angle of the cutter head, ηa is the 
instantaneous roll ratio, [L1t (ϕc)], [Lq] is the 3×3 
homogeneous transformation matrix, [Mij] is the 4×4 
homogeneous transformation matrix from coordinate 
systems Sj to Si .

3  GEOMETRY METHOD 

Based on the principle of the geometry method, the 
geometry model of an SBG is determined by basic 
geometric parameters instead of machine-tool settings. 
In fact, the geometry model is a theoretical model, and 
it emphasizes the guidance for manufacturing SBG. 
Geometric characteristics include tooth profile and 
centreline. The tooth profile primarily includes the 
spherical involute, approximate spherical involute, 
and circuit arc. Many spirals, such as the logarithmic 
spiral, circular cut spiral and involute spiral, can serve 
as the tooth centreline.
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Fig. 4.  Transformation of cutting blade vector in machining process [37]

Table 3.  Comparison of matrix method and vector method [37] and [46]
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3.1  Logarithmic Spiral Bevel Gear

The logarithmic spiral bevel gear (LSBG) provides 
excellent transmission performance with a constant 
spiral angle. Huston and Coy [52] provided the 
geometric characteristics and model of LSBG and 
proposed the concept of the “ideal SBG”. Tsai and 
Chin [53] investigated the tooth surface geometry of 
LSBG and provided an equation of logarithmic spiral 
on pitch plane, which is presented in Eq. (7). The 
geometry model of LSBG can be obtained with Eq. 
(8).

 r R em= ⋅ ⋅cotψ θ . (7)

In Eq. (7), r is the radial distance on the pitch 
plane, θ  is the polar angle on the pitch plane, r = Rm  
when θ = 0, ψm is the mid-spiral angle, as shown in 
Fig. 5.

Fig. 5.  Logarithmic spiral on pitch plane [53]

However, the consistency of the LSBG tooth 
centreline between the manufactured gear model 
and the geometry model is a key issue in the 
manufacturing process. Li et al. [54] investigated the 
meshing equation and the spatial relationship between 
the cutter blade and workpiece. This investigation is 
a theoretical exploration of the processing technology 
of LSBGs, and further research on its application in 
an actual manufacturing process can be conducted. Ju 
[55] developed a strategy to control the tool path of a 
finger-milling cutter of five-axis universal milling in 
manufacturing processes. A geometry model was built 
in Pro/e and translated into NC code in UG CAM. 
This method provides guidance for manufacturing 
LSBG. However, the accuracy of the generated LSBG 
still could be improved. Alves et al. [56] proposed 
a reliable design and manufacturing method of a 
universal five-axis milling machine, including a 
geometry analysis of the tooth surface, LTCA, and 
tooth modifications. The accuracy of the generated 
LSBG was validated via surface measurements. 

In Eq. (8), Xt , Yt and Zt are the coordinate of the 
tooth surface, α is the root cone angle, β is the involute 

generating angle, and θ is the polar angle on X–Y 
plane, as shown in Fig. 6.
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Fig. 6.  Spiral tooth centreline on X-Y plane [53] 

Duan et al. [57] proposed a theory of loxodromic 
normal circular-arc spiral bevel gear (LCBG), which 
is a typical LSBG. The tooth profile is a circular arc; 
the tooth alignment curve is a logarithmic spiral, and 
the centre of the tooth profile is located on the tooth 
alignment curve. The mathematical expression of the 
tooth profile and tooth alignment curve was proposed. 
The manufacturing process was investigated by Duan 
et al. [58], including the parameters of the form 
milling cutter, contact conditions, and relative motion 
relationship between the form milling cutter and the 
workpiece, which illustrated excellent machinability 
in the universal four-axis machining centre. Duan et 
al. [59] developed a complete process of designing and 
manufacturing LCBGs, introduced the basic idea of 
the mathematical model of LCBGs, and investigated 
the determination method of the tool path and tooth 
alignment curve. The manufacturing programming of 
LCBGs was used to achieve geometric characteristics, 
which provided a new generation theory of 
manufacturing LCBGs.
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In short, an LSBG is an excellent transmission 
component, in theory. However, the manufacturing 
techniques of LSBGs are still to be improved. The 
challenge in manufacturing LSBGs is to achieve 
its geometric characteristics, especially the tooth 
centreline.

3.2  Circuit Cut Spiral Bevel Gear

Because the tooth centreline is a circuit spiral, a 
“circuit cut” SBG is conveniently manufactured by a 
rotary cutter blade and other special tools, which is the 
manufacturing principle adopted by Gleason. Tsai and 
Chin [53] proposed an equation for the tooth centreline 
on a pitch plane, as described in Eq. (9). The geometry 
model was built with a spherical involute and circuit 
spiral, and an actual Gleason SBG was used to verify 
its accuracy.

In Eq. (9), Rc is the cutter radius. Point O is the 
gear centre, and Point C is the cutter centre, as shown 
in Fig. 7.

Al-Daccak et al. [60] introduced a method to 
build a model of a circuit-cut SBG by using an exact 
spherical involute, which was defined as the curve 
on a sphere. The spherical involute was generated by 
rolling the circuit plane over the base cone, and a solid 
model of SBG can be created by twisting spherical 
involute along the tooth centreline.

Tsai and Chin [53] proposed the approximate 
spherical involute, which is obtained via a rectangle 
tangent plane rolling over the base cone. Shunmugam 
et al. [61] investigated a mathematical model with an 

exact spherical involute, which is obtained via a circuit 
tangent plane rolling over the base cone, as shown in 
Table 4. The ideal model is formed by the trace line 
on the tangent plane rolling over the base cone. Eq. 
(10) shows that the points of the tooth surface can be 
achieved by changing the value of the parameters α1 , 
β1 and υ.

Fig. 7.  Top view of circular-cut tooth centreline on pitch plane [53]
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Table 4.  Comparison of two spherical involutes [53] and [61]
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In Table 4 and Eq. (10), Xp, Yp, Zp are the 
coordinates of typical point P of the spherical 
involute.  r0 is the radius of the sphere in case of 
spherical involute (the cone distance), β is the rotation 
angle of the tangent plane over base cone, α0 is the 
base cone angle, and υ is the polar angle of a point on 
the circular arc.

Suh et al. [62] proposed a sculpted surface 
machining method for manufacturing SBGs with a 
three-axis CNC milling machine interfaced with a 
rotary table. The bi-parametric surface model can 
be derived via spatial translation with geometric 
characteristics. The CC point was sampled from a 
bi-parametric surface model, and a CC-parametric 
scheme was applied to control the tool path. Although 
the machining time is not ideal, the broad cutting 
range and generating a special type of gear can be 
implemented, which shows potential applications of 
this method. Suh et al. [63] investigated the method 
of manufacturing SBGs with a crown. The crown 
model was built via crown functions in longitudinal 
and involute curve directions. This geometry model 
was implemented in the GearCAM system with four-
axis CN milling, which verified the validity of this 
manufacturing method.

Tsai and Hsu [64] investigated a manufacturing 
and design method for the new point contact-type 
SBG. The mathematical model was built using tooth 
profiles and circular-arc contact paths.

Safavi et al. [65] invented the form milling 
method of manufacturing SBGs with an additional 
PLC module. Commercial software was used to build 
a CAD model, simulate the manufacturing process, 
and generate tool paths. This method provides a 
more automatic and simple process technology for 
manufacturing SBGs. However, the application 
of commercial software based on the specific 
manufacturing principle requires further research to 
verify the precision of generated gear.

Zhang et al. [66] developed a generating method 
for SBGs with spherical involute tooth curves. The 
tooth surface model was formed by the relative rolling 
motion of the tracing line on the tangent plane. The 
motion of the cutting edge of the cutter simulated the 
actual tracing line rolling on the base cone. The same 
tracing line was applied to cut a pair of gears, and the 
pinion ensures stable and proper meshing conditions. 
The kinematic velocity and processing principle 
were used to illustrate the control theory of the CNC 
machine. The construction of the machine, as well as 
motion control, is simple and not subject to restriction 
of gear size. This research also analysed the straight 
tracing line. Additional research can focus on other 

types of tracing lines, such as the logarithmic spiral, 
circuit arc spiral, and involute spiral. To confirm its 
excellent transmission performance, the research 
on contact characteristics of SBGs generated by this 
method should be conducted.

The mathematical model of the circuit arc SBG 
and manufacturing method based on its geometric 
characteristics are reviewed in this section. As the 
tooth centreline can easily be controlled, a circuit 
arc SBG has a wider application range. In particular, 
Gleason’s manufacturing principle is a typical 
application of the geometry model.

3.3  Involute Spiral Bevel Gear

The involute spiral bevel gear is another SBG type, 
which is a theoretical model of Klingeinberg and 
Oerlikon’s method. Tsai and Chin [53] formulated 
the equation of an involute spiral on a tangent 
plane. Additional research focusing on the contact 
characteristics and transmission performance of this 
gear type can be conducted. The current application 
is in Klingeinberg and Oerlikon’s gear manufacturing 
method. However, the mathematical model of involute 
SBG could be applied to more situations generated by 
the universal milling machine. The tool path is also 
a challenge in implementing new manufacturing 
methods.

As analysed from sections 3.1 to 3.3, the process 
of building a mathematical model of an SBG can be 
simplified with the geometry method, which avoids 
the difficulties of solving the meshing equation and 
spatial transformation. The geometry model can 
be easily built using CAD software; based on the 
geometry model, several manufacturing methods 
have already been developed. The geometry method 
provides a theoretical model and can be used to 
explain the manufacturing principle.

4  CONCLUSIONS 

The development of CAD/CAM technology has made 
mathematical models indispensable in the design and 
manufacturing of SBGs. To analyse the process of 
building a mathematical model and the application of 
a mathematical model in design and manufacture, this 
paper reviews the methods of building mathematical 
models of SBGs, including the matrix method, vector 
method, and geometry method.

The matrix method and vector method are special 
methods based on the special machining principle of 
SBGs. The mathematical models are derived from 
actual machine-tool settings and are thus consistent 
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with the actual manufacturing tooth surfaces. These 
two methods have a close relationship with the 
manufacturing process; this relationship benefits 
the application of the loop manufacturing system. 
Coordinate transformation in matrix representation 
can produce a clear spatial translation process. 
However, matrix expression is complicated, and 
converting it into computer language is difficult. The 
vector method presents a more compact and clearer 
formulation and does not need any coordinate system 
in vector rotation. Although the expression forms of 
spatial transformation are different, the theory and 
application range of these two methods are similar. 
Solving the meshing equation of both methods is 
complicated, especially in the tooth root segment.

The geometry model places more emphasis on 
the theoretical model, which is used to develop new 
manufacturing principles. To research new types of 
SBGs, the geometry model could be built primarily 
for the presentation of a design idea.

Several research fields, which could be further 
targeted, include:
(1)  The matrix and vector methods are modelling 

methods based on manufacturing principles. 
Further research may illustrate more details 
of new manufacturing methods, including the 
machine motion, cutter geometric model, and 
the relationship between the cutter blade and 
workpiece, which will benefit the application of 
building a mathematical model of SBGs by these 
two methods.

(2)  The geometry method is proposed as a “theoretical 
model”, and it is a breakthrough in the study of 
new SBG theories. However, the rationality of 
current methods of controlling the tool path with 
commercial software will be further confirmed. 
Thus, more research on building the relationship 
between geometric features and the machining 
process could be conducted. Future studies on 
the application of the geometry model are likely 
to consider the shapes of the milling cutter and 
the tool path. In practice, the disk milling cutter 
is an efficient tool, but the tool path is difficult to 
control; the finger milling cutter is easy to control, 
but its productivity can be improved. Further 
research on the application of the geometry model 
can focus on new process technology, such as the 
forging manufacturing technique, roll forming, 
and powder forming technology.

(3)  The manufacture of large-scale SBGs is a 
challenge because of the high demand for control 
accuracy and large machining distortion. The 
application of the mathematical model may 

provide more reliable and effective methods for 
manufacturing large-scale SBGs.

(4) The transmission performance and contact 
characteristics are different in various types of 
SBGs. The evaluation criterion can be built by 
analysis methods, such as FEM, TCA, and LTCA. 
The evaluation results can be used to guide the 
application of different types of SBGs in power 
transmission.
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