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0  INTRODUCTION

Engineering applications usually require a 
homogeneous material; however, this is sometimes 
impossible to achieve. Alloys and castings, for 
example, are very susceptible to inhomogeneities. 
And while some inhomogeneities can be avoided 
completely, others, like porosity, can only be reduced. 
Despite many studies that have shown the detrimental 
effect of such inhomogeneities on fatigue life [1, 
2], castings are still widely used in the automotive 
industry due to their favourable strength-to-weight 
ratio. 

By knowing that inhomogeneities cannot be 
completely avoided, the question arises: when does 
the level of the inhomogeneities start to significantly 
influence the fatigue behaviour of the structures? 
In our study we have focused on the AlSi9Cu3 
aluminium alloy, since it is often used in the 
automotive industry for complex cast parts such as 
engine supports. We narrowed our study to macro-
porosity inhomogeneities for a few reasons: a) it can 
be relatively easily introduced into specimens by 
varying the casting parameters, b) it can be detected 
using non-destructive inspections and c) it can be 
estimated with numerical simulations [3]. 

In the production process, when macro-porosity 
is discovered within a cast part, the part is normally 
discarded. This leads to a decreased throughput of 
good products as well as increased production costs. 
However, the size and location of the observed 
macro-porosity could not be such that it significantly 
diminishes the load capacity or the fatigue life of 
the cast part. Discarding such a part is economically 

unjustified. Our study focuses on the effect of different 
levels of porosity on the fatigue life and answering 
the question: when does the reduction in fatigue-life 
become statistically significant?

The effects of porosity on aluminium alloys have 
been researched before. Linder et al. [4] recorded a 
15% drop in the material’s strength when increasing 
the porosity from an initial 0.7 to 4.1%. Wang [5] 
discovered that it is not only the percentage of porosity 
within the material, but also the size of the pores, that 
defines the effect on the fatigue-life. 

When designing parts that experience dynamic 
loads, the fatigue strength of a material has to be 
known. It is usually determined by loading the 
specimens with dynamic loads at two different 
amplitude-load levels. Based on the scatter of the 
fatigue-life N the durability curve representing a 
certain probability of rupture can be identified. When 
the materials’ structure is not homogenous, the fatigue-
life scatter is expected to increase. Fatigue-life tests 
can be stress or strain controlled. Loading a material 
containing inhomogeneities causes a localized increase 
in the stress and strain. Often, plastic deformation 
occurs around the inhomogeneities. Therefore, in 
cases where inhomogeneities are expected within the 
material, strain-controlled tests are preferred to ensure 
better control of a stress-strain state in the specimen. 
Considering that macro-pores were expected within 
the specimens, as well as a large scatter of the fatigue-
life data, it was decided to perform the experiments 
at many different amplitude-strain levels. The results 
from this testing form a cloud of points in the ε–N 
diagram. The results also indicated that despite the 
tests being strain-controlled the plastic component of 
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the strain-life curve was not captured. Therefore, when 
performing statistical analyses, the same methods 
were applied as are used in stress-life fatigue-data 
analyses (see also Eq. (1)).

Since the literature is very scarce on this topic (no 
systematic survey of the statistical methods that could 
be applied for testing statistical differences between 
the fatigue-life curves was found) our goal was to 
find statistical methods that would first enable an 
identification of the fatigue-life reduction due to the 
level of porosity and, second, evaluate the statistical 
significance of the observed reduction. Three 
approaches were researched and compared to find the 
most suitable one for comparing different fatigue-life 
curves. The statistical significance was first estimated 
using a simple transformation of the fatigue-life 
data points (ε, N) into a one-dimensional parameter 
combined with an analysis of the variance analysis 
(ANOVA). This parameter requires the assumption of 
equal slopes for all the fatigue-life curves. However, 
as it is shown later in the paper, that is not always the 
case. With the intent to avoid the assumption of equal 
slopes as well as the assumption of a linear relation 
between log ε and log N - a multivariate analysis of 
variance (MANOVA) for sets of non-transformed 
data points was employed. Finally, the estimation of 
a joint regression model with dummy variables for 
different groups of fatigue-life data combined with a 
significance test for the sets’ dummy variables was 
carried out.

The theoretical background of the applied 
statistical methods is presented in Section 2. The 
experimental work is presented in Section 3, together 
with the used samples, the sample manufacturing 
and the testing plan. Three levels of porosity are 
defined, together with a non-destructive method for 
the detection of this porosity. The fatigue curves are 
presented at the end of this section. The results are 
presented in Section 4 and the concluding remarks are 
given in Section 5.

1  THEORETICAL BACKGROUND

1.1 One-Dimensional Fatigue-Life Parameter Combined 
with the Univariate Analysis of Variance (ANOVA) 

ε-N curves are usually characterized by the Coffin-
Manson relationship [6] and [7]. However, due to 
the small amount of experimental data in our case it 
turned out that the plastic part of the Coffin-Manson 
curve was not well expressed. That is why we decided 
to apply only a linear ε–N fatigue-life curve equation 
that should approximate a high-cycle fatigue regime. 

By doing so we adopted a fatigue-life curve that is 
steeper than the elastic part, and more gradual than 
the plastic part, given by the Coffin-Manson relation. 
The relationship between the number-of-cycles-to-
failure N and amplitude strain level ε can be written 
as follows:
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From this equation it follows that:
 N N constk k

1 2 2 1ε ε− −= = .  (2)

Therefore, a point with two coordinates (N and ε) 
can be transformed into a one-dimensional parameter 
using Ni∙εj-k. This means that each of the measured 
data points should be reduced to a single value of 
this parameter if there was no scatter between the 
individual fatigue-life data points (ε, N). Of course, 
because of the scattered fatigue-life data, the values of 
the one-dimensional parameter are also scattered.

If two fatigue-life curves are not identical, this 
parameter would be different for each of the two 
curves. As a result, the identity of two or more fatigue-
life curves can be checked by testing the equality 
of the one-dimensional parameters from Eq. (2) for 
different data sets. However, this approach assumes 
the equality of the fatigue-life curve slopes k for 
different groups of fatigue-life data. Therefore, when 
the slopes of the fatigue-life curves are not identical, 
the reduction to a one-dimensional parameter is made 
for the average parameter k . Since the s fatigue-life 
data are reduced to a one-dimensional parameter, the 
significance between the different data sets is then 
tested using the one-way ANOVA test [8].

1.2  Multivariate Analysis of Variance (MANOVA)

MANOVA [9] is a multivariate extension of ANOVA. 
Its objective is to determine whether different groups 
of data are significantly different with respect to 
a given set of variables. The null and alternative 
hypotheses for multivariate statistical significance 
testing in MANOVA are for two groups of the 
bivariate variable x = (x1, x2):
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where μij is the mean of the ith variable for the jth group. 
The statistical distance between the mean vectors of 
the two groups is measured with the Mahalanobis 
distance (MD). The MD is given by [10]:
 MD Sik i k i kx x x x= −( ) −( )−' ,1  (4)
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where x is a p×1 vector of the coordinates and S is a 
p×p covariance matrix. The MD2 between the mean 
vectors is directly proportional to the differences 
between the two groups. The MD2 can then be 
transformed into various test statistics to determine 
whether it is large enough to claim that the difference 
between the groups is statistically significant. For 
multiple dependent variables the multivariate analogue 
for the differences between the groups is a function 
of the eigenvalue(s) λi of the SSCPb∙SSCPw-1 matrix. 
Where SSCPb is between groups sum of squares and 
cross products matrix and SSCPw is within group sum 
of squares and cross products matrix. To test the null 
hypothesis against its alternative, eigenvalues λi of the 
SSCPb∙SSCPw-1 matrix are combined together using, 
e.g., Pillai’s trace (V), Hotelling’s trace (T2) or Wilks’s 
lambda (Λ), Eq.(5) to (7), respectively.
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where λi is the eigenvalue for the ith discriminant 
variate and K is the number of variates. In our case we 
have two dependent variables and two groups for the 
independent variable and therefore K = 1. Because the 
MD is used to measure the distance between the group 
mean values and the MD is based on an elliptical 
distribution of the sample points around the group 
mean vector, the vectors (ε, N) cannot be used directly, 
but must be transformed into their logarithms (log(ε), 
log(N)).

Although the MANOVA reduces to a one-
dimensional parameter, it does have a significant 
advantage over the one-dimensional parameter 
introduced in Section 1.1, i.e., no transformation is 
carried out considering the slope of a regression line.

1.3  Linear Regression with Dummy Variables

Linear regression models the relationship between 
one dependent and one or more independent variables 
by fitting a linear equation to the observed data. The 
equation of the ε–N fatigue-life curve, as defined 
in Section 1.1 (see Eq. (1)), becomes linear on a 
logarithmic scale. When generalized by N1 = N and ε1 
= ε Eq. (1) can be written as follows:
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If b0 = k–1 log(N2) + log(ε2) and b1 = –k–1 then 
Eq. (8) can be written as:

 log log .ε( ) = + ⋅ ( )b b N0 1  (9)

Different specimen groups can be considered by 
introducing dummy variables (DV) into Eq. (9). When 
analyzing the differences between two groups of data, 
one DV is needed and Eq. (9) becomes:
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The regression coefficients b0 and b1 are the 
intercept and the slope, respectively, of a reference 
group. To account for the effect of the group, b2∙DVi 
is used to model the variation of the intercept between 
the groups and b3∙DVi is used to model the variation of 
the slope between the groups. 

When analyzing three groups of data, two DVs 
are needed and Eq. (9) becomes:
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The regression coefficients b0 and b1 are the 
intercept and the slope, respectively, of a reference 
group. To account for the effect of the second group, 
b2∙DVi1 is used to model the variation of the intercept 
and b4∙DVi1 is used to model the variation of the slope 
between the second group and the reference group. 
Similarly, b3∙DVi2 is used to model the variation of the 
intercept and b5∙DVi2 is used to model the variation of 
the slope between the third group and the reference 
group.

2  EXPERIMENTAL DATA

Standard specimens according to the ASTM E606 
[11] standard were manufactured from the AlSi9Cu3 
alloy using pressure die casting – see Fig. 1. 
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Fig. 1.  Shape and dimensions of standard specimen

In order to study the effect of different porosity 
levels on the fatigue life the porosity had to be 
introduced into the specimens. This was achieved by 
not applying the usual pressure of 710 bar in the third 
phase of casting, used to condense the aluminium. 
A total of 33 specimens were manufactured. The 
condition of the specimen’s interior was unknown 
after the manufacturing process. To determine the 
level of porosity induced in each specimen, the 
samples were X-rayed in two perpendicular planes. 
Based on the acquired x-ray images, three levels of 
porosity were defined:
• level A: no macro-pores are visible in the narrow 

part of the specimen, Fig. 2a,
• level B: in the narrow part of the specimen a 

small number of macro-pores (usually only one) 
are detected, Fig. 2b,

• level C: in the narrow part of the specimen a large 
number of macro-pores are detected, Fig. 2c.

Fig. 2.  X-ray images of samples; a) porosity level A,  
b) porosity level B (macro-pores are indicated with arrows) and,  

c) porosity level C

Out of the 33 samples examined, 15 were 
characterized with the porosity level A, 10 were 
characterized with the porosity level B and 8 were 
characterized with the porosity level C. In addition, 
another series of AlSi9Cu3 fatigue-life data from 
our previous research [12] was included in the study. 

These data correspond to homogenous specimens and 
represent the reference data from another production 
series of the specimens. These data were marked with 
MJ, after the first author of the previous research. To 
define the amplitude-strain levels for the fatigue-life 
experiments, destructive tensile tests were performed 
for one specimen of each porosity level. The tensile-
test results were compared to the results of the 
homogenous specimens of AlSi9Cu3 from [12]. The 
results are listed in Table 1 and shown in Fig. 3.

Table 1.  Material parameters of porous and homogenous AlSi9Cu3

Por.  
level

E 
[MPa]

Rp02
[MPa]

Rm 
[MPa]

εrup 
[%]

A 79631 178 323 4.35
B 70777 154 271 2.31
C 69143 152 248 2.48

MJ #1 80212 164 304 4.93
MJ #2 74761 137 312 5.21
MJ #3 78649 136 303 4.85

Fig. 3.  Tensile tests of porous specimens and homogenous 
specimens

When the material’s structure is not homogenous, 
the fatigue-life scatter is expected to increase 
compared to the homogenous structure [2]. Therefore, 
the specimens were loaded at many different 
amplitude-strain levels. The dynamic tests were fully 
reversal, strain controlled, with the amplitude-strain 
levels between 0.1 and 0.4%. All the fatigue-life 
experiments were performed on a MTS 810.22 servo-
hydraulic test stand at the company CIMOS, Slovenia. 
The strain was measured using an MTS 632.53F-14 
extensometer with a measuring distance of 12 mm. 
The tests were performed under atmospheric pressure 
and at a temperature of 21 °C.

The experimental fatigue-life data for the four 
groups (MJ, A, B and C) are presented in Fig. 4. In the 
same figure the ε–N curves modelled by Eq. (1) and 
representing 10, 50 and 90% probability of rupture 
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are also shown. The scatter of the ε–N curves was 
modelled using a Weibull probability density function:
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In Eq. (12) the scale factor η is dependent on the 
amplitude-strain level via the Basquin equation:

 η η ε ε= = > <+ ⋅ ( )( ) ; , ,log10 0 00 1
1

c c cc0  (13)

where:
 c N k c k0 2 2 1= ( ) + ⋅ ( ) = −log log , .ε  (14)

and the shape factor β is constant. The parameters c0, 
c1 and β were determined according to the procedure 
that was derived by Klemenc and Fajdiga [13].

From the diagram in Fig. 4 we can see that the 
fatigue curves differ from each other with respect to 
the level of porosity. The specimens with porosity 
levels B and C display a much greater scatter than 
the specimens from the groups with level A and MJ. 
When observing a certain strain level we find that the 
specimens C have the shortest fatigue life, followed by 
the specimens B, and the specimens A, which have the 
longest fatigue life. There is also a slight discrepancy 
between the specimens A and the specimens MJ. This 
suggests that the production series influences the 
fatigue life to a certain degree.

Fig. 4.  Fatigue curves for A, B and C levels of porosity and 
homogenous specimens MJ

3  RESULTS AND DISCUSSION

We had a relatively small number of specimens 
and the specimen groups were of unequal size 
(14 samples with level-A porosity, 9 samples with 
level-B porosity, 7 samples with level-C porosity 
and an additional 16 unaltered MJ samples). This 
can affect the outcome of the statistical analysis and 

can lead to a false conclusion regarding the statistical 
significance of the differences in the fatigue life. To 
assess the influence of the different sample-set sizes 
on the statistical significance, additional fatigue-life 
data were generated in accordance with the ε–N curve 
models from Fig. 4. The data for each specimen group 
were generated using a Weibull random generator 
with its parameters set-up according to Table 2 for 
the amplitude-strain levels between 0.1 and 0.4%. 
First, the number of sample points in each group was 
levelled to match the largest sample set (16 sample 
points). Second, to study the effect of the sample-set 
size on the statistical significance, additional sample 
points were generated so that the sample-set sizes were 
increased to 40 and 80 samples. The experimentally 
obtained and simulated data points are shown in Fig. 
5. A regression equation for each data set is displayed 
on the presented plots. The slope of the regression line 
and the parameter c1 are correlated with the following 
relation c1 = –1/slope. In the following subsections the 
significance of the fatigue-life reduction due to the 
macro porosity is analysed.

Table 2.  Parameters of A, B, C and MJ fatigue curves 

Por. level c0 c1 β
A 1.2622 -6.0001 2.1329
B -1.1397 -8.0143 0.7252
C -1.1281 -6.8248 0.7980

MJ 1.2630 -5.3798 3.5454

3.1  ANOVA for the One-Dimensional Fatigue-Life Parameter 

The experimental results with two dimensions (ε, N) 
were transformed into a one-dimensional parameter, 
as described in Section 2.1, see Fig. 6. The four groups 
of data were then compared using a one-way ANOVA, 
with the results being presented in Table 3.

Table 3.  ANOVA results for one-dimensional parameter with the 
number of different porous specimens in each sample

Sample F-stat. p-val.
14 A+10 B+7 C+16 MJ 13.743 0.000

16 A+16 B+16 C+16 MJ 18.151 0.000
40 A+40 B+40 C+40 MJ 25.914 0.000
80 A+80 B+80 C+80 MJ 48.877 0.000

The analyses of the experimental samples showed 
that the differences between the original groups of 
the fatigue-life data are statistically significant (F = 
13.743 and p < 0.05); where the p-value is defined 
as the smallest significance level at which the null 
hypothesis would be rejected [8]. By increasing 
the number of samples in each set, the differences 
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a)   b)

c)   d)
Fig. 5.  Sample sets with regression equations for different porosity levels; a) experimental samples, b) 16, c) 40, and d) 80 samples

between the groups remain significant (p < 0.05). 
When comparing the results from the sample sets with 
40 samples and the sample sets with 80 samples, the 
tests become even more significant, implying that 
there is no justification for increasing the size of the 
sample sets beyond 40 samples per set.

While this approach manages to distinguish 
between the groups, one should keep in mind that the 
slopes are assumed to be equal within the statistical 
scatter. From Fig. 5 it is clear that the slopes do vary 
between the groups and therefore the results of the 
ANOVA analysis are unreliable in our case.

3.2  Multivariate Analysis of Variance

The analyses were carried out by always comparing 
two groups of the fatigue-life data at the same time: 
groups A and MJ, groups A and B, groups A and C and 
groups B and C. The results are given in Tables 4 to 7, 
respectively.

The discussion of the results is divided into 
two parts: first, the analyses involving group A are 
addressed and, second, the analyses of groups B and 
C are addressed. When comparing group A with the 
other groups, the power of the multivariate tests is 
large (power ≈ 1.00), suggesting that the probability 

of rejecting the null hypothesis (see Eq. 3) when 
it is false is very low. Regardless of the size of the 
sample set the multivariate test statistics (Pillai’s 
trace, Wilks’s lambda and Hotelling’s trace) indicate a 
statistically significant effect for the level of porosity 
at p < 0.05. The higher the porosity level, the greater 
is the effect on the fatigue life. But there can be more 
than one reason for a statistical significance found 
by a multivariate test, for example, the data could be 
shifted along the centre line or they could be shifted 
vertically downwards or upwards, to the left or to the 

Table 4.  MANOVA results for groups A and MJ

14-16 16-16 40-40 80-80

V
Val. 0.475 0.469 0.548 0.544
p 0.000 0.000 0.000 0.000

T2
Val. 0.905 0.886 1.212 1.195
p 0.000 0.000 0.000 0.000

Λ
Val. 0.524 0.530 0.451 0.455
p 0.000 0.000 0.000 0.000

Power 0.99 0.99 0.99 1.00

lo
g 

ε  
lo

g 
N p 0.000 0.000 0.001 0.001

Power 0.984 0.987 0.919 0.923
p 0.002 0.002 0.098 0.248

Power 0.894 0.896 0.379 0.207
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a)        b) 

c)        d) 
Fig. 6.  Graphical presentation of one-dimensional parameter N · ε–k  for; a) experimental sample set, b) 16 samples in set, c) 40 samples in 

set and d) 80 samples in set; group A = (0), group B = (1), group C = (2), group MJ = (3)

right. After each multivariate test a univariate test was 
performed to determine which variable contributes to 
the differences between the two groups. The univariate 
tests indicate that log(N) contributes to the differences 
between the groups, regardless of which group is being 
compared to group A and regardless of the sample-set 
size. The univariate tests yield a different result for 
log(ε). The only case where it reaches a significance 
level is in the analysis of groups A and MJ, when the 
number of samples was no more than 16 samples per 
set. The reason for this can be found in Fig. 6. Note 
that the tests for specimens A and specimens MJ were 
not performed in the same strain range; therefore, the 
univariate tests are significant with respect to log(ε). 
When the number of specimens is increased and the 
data is more equally distributed across the strain 
range, the test becomes significant. A similar reason 
explains why log(ε) is not significant when comparing 
group A to group B, and group A to group C. Despite 
all the MANOVA tests involving the group A being 
significant, we can see from Table 3 that the ANOVA 

test for the variable log(N) and an increased number of 
data points is not significant at the 0.1% significance 
level, which implies that the difference is not due to 
the porosity, but due to the production series.

Table 5.  MANOVA results for groups A and B

14-10 16-16 40-40 80-80

V
Val. 0.713 0.653 0.704 0.701
p 0.000 0.000 0.000 0.000

T2
Val. 2.485 1.888 2.380 2.347
p 0.000 0.000 0.000 0.000

Λ
Val. 0.286 0.346 0.295 0.298
p 0.000 0.000 0.000 0.000

Power 0.99 0.99 0.99 1.00

lo
g 

ε  
lo

g 
N p 0.004 0.001 0.000 0.000

Power 0.859 0.960 0.999 1.00
p 0.971 0.847 0.925 0.950

Power 0.040 0.044 0.035 0.032

When discussing the analysis results of groups B 
and C it is clear that all the test statistics show a non-
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significant difference between the groups (p = 0.081). 
The univariate tests indicate that none of the means are 
significantly different for the two groups. However, a 
level of statistical significance (p < 0.05) is reached 
as soon as the sample sets are made equal and the 
number of samples in each set is increased to 16. At 
this point log(N) becomes significant, while log(ε), 
like in the other analyses, never does. Nevertheless, it 
can be concluded that the statistical difference in the 
fatigue-life data is the smallest between the groups 
representing level-B and level-C porosity.

Table 6.  MANOVA results for groups A and C

14-7 16-16 40-40 80-80

V
Val. 0.824 0.818 0.869 0.878
p 0.000 0.000 0.000 0.000

T2
Val. 4.684 4.500 6.634 7.212
p 0.000 0.000 0.000 0.000

Λ
Val. 0.175 0.181 0.130 0.121
p 0.000 0.000 0.000 0.000

Power 0.99 0.99 0.99 1.00

lo
g 

ε  
lo

g 
N p 0.000 0.000 0.000 0.000

Power 0.999 1.000 1.000 1.000
p 0.471 0.494 0.740 0.824

Power 0.127 0.107 0.049 0.040

Table 7.  MANOVA results for groups B and C

14-7 16-16 40-40 80-80

V
Val. 0.301 0.281 0.182 0.301
p 0.081 0.008 0.000 0.000

T2
Val. 0.431 0.392 0.222 0.432
p 0.081 0.008 0.000 0.000

Λ
Val. 0.698 0.718 0.817 0.698
p 0.081 0.008 0.000 0.000

Power 0.99 0.99 0.49 0.82

lo
g 

ε  
lo

g 
N p 0.49 0.013 0.066 0.003

Power 0.515 0.725 0.453 0.854
p 0.436 0.567 0.806 0.871

Power 0.142 0.060 0.439 0.036

Using MANOVA we can detect a multivariate 
significance even in the cases where no univariate 
significance is detected. The MANOVA weaknesses 
are displayed in Table 4 when observing the univariate 
results for log(ε): it is clear that the MANOVA would 
fail to identify data belonging to the same fatigue 
curve if the tests were carried out at different strain 
levels.

3.3  Linear Regression Using Dummy Variables

Altogether, four regression models with dummy 
variables were built: the first comparing groups A 

and MJ, the second comparing groups A, B and C 
and the third comparing groups B and C. Based on 
the considered number of fatigue-life data groups 
in the individual regression models, the number of 
required dummy variables was defined. The dummy-
variable coding system is given in Table 8. The linear-
regression coefficient together with their significances 
are presented in Tables 9 to 12.

Table 8.  Indicator variable coding system for performed analysis

Model Group DV1 DV2

A - MJ
A 0 /

MJ 1 /

A - B - C
A 0 0
B 1 0
C 0 1

B - C
B 0 /
C 1 /

A - BC
A 0 /

BC 1 /

Table 9.  Regression with indicator coding results for groups A and 
MJ

Sample bi p-value

14A+16MJ
R2adj=0.939

b0 0.088 0.180
b1 -0.148 0.000
b2 0.106 0.234
b3 -0.031 0.104

16A+16MJ
R2adj=0.938

b0 0.086 0.161
b1 -0.147 0.000
b2 0.107 0.210
b3 -0.032 0.088

40A+40MJ
R2adj=0.969

b0 0.158 0.000
b1 -0.159 0.000
b2 0.029 0.399
b3 -0.019 0.008

80A+80MJ
R2adj=0.976

b0 0.167 0.000
b1 -0.162 0.000
b2 0.038 0.070
b3 -0.020 0.000

The analysis with group A and group MJ was 
carried out with the intension to investigate the 
effect of the production series on the fatigue life. 
Observing the results (see Table 9) we see that the 
adjusted R2 values are very high (R2 > 0.93); where 
the R2 coefficient is defined as the squared correlation 
of the dependent variable and the fitted values. [9] 
Experimental sample sets and sets with 16 samples are 
not significantly different with respect to all the model 
parameters (intercept and slope). The fact that neither 
the slope nor the intercept differ significantly at the 5% 
significance level between the two groups indicates 
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that micro-porosity does not have a significant 
impact on the fatigue life. Increasing the sample-set 
size to 40 samples and above the significance of the 
slope differences increases. Even when the set size 
is increased to 80 the intercepts are not significantly 
different at the 5% significance level.

Once we established that the production series 
does not have a significant effect on the fatigue life, an 
analysis was conducted to see whether macro-porosity 
has a significant effect on the fatigue life. Groups 
B and C were compared to the reference group A. 
Observing the results of the analysis (Table 10) we see 
that in the experimental data and the 16 sample data 
sets the intercepts of groups B and C are significantly 
different from that of group A (p < 0.05). The slopes, 
however, are not significantly different (p > 0.05). 
When the number of samples per set is increased to 40 
the slopes as well as the intercepts of groups B and C 
differ significantly from group A. From these results 
it is possible to conclude that the macro-porosity in 
the critical cross-section has a significant effect on the 
fatigue life. The results also suggest that there is no 
point in increasing the sample-set size beyond 40.

Table 10.  Regression with indicator coding results for groups A, B 
and C

Sample bi p-value

14A+10B+7C
R2adj=0.722

b0 0.088 0.442
b1 -0.148 0.000
b2 -0.377 0.015
b3 -0.500 0.002
b4 0.046 0.136
b5 0.067 0.080

16A+16B+16C
R2adj=0.691

b0 0.086 0.391
b1 -0.147 0.000
b2 -0.396 0.003
b3 -0.456 0.001
b4 0.056 0.036
b5 0.058 0.043

40A+40B+40C
R2adj=0.882

b0 0.158 0.001
b1 -0.159 0.000
b2 -0.441 0.000
b3 -0.425 0.000
b4 0.058 0.000
b5 0.040 0.001

80A+80B+80C
R2adj=0.908

b0 0.167 0.000
b1 -0.162 0.000
b2 -0.395 0.000
b3 -0.421 0.000
b4 0.052 0.000
b5 0.039 0.000

Once the significance in the differences between 
groups A, B and C was identified, groups B and C were 

compared in a separate analysis (see Table 11). The 
experimental samples show no significant difference 
between the two groups in terms of slope or intercept 
(p > 0.05). However, increasing the sample size to 40 
does increase the adjusted R2 value. Neither the slope 
nor the intercept reach the level of significance (p > 
0.05).

After failing to find a significant difference 
between the levels of porosity B and C we conducted 
an additional analysis in which we joined the samples 
with porosity levels B and C to form a new group 
named BC. Group BC contains all the specimens 
with macro-pores within the structure. Only the 
experimental samples were analyzed (see Table 12). 
The results show that the intercept as well as the slope 
differ significantly between the groups (p < 0.05). The 
adjusted R2 value (R2 =0.721, Table 12) is roughly the 
same as in the analysis with three porosity levels (R2 

=0.722, Table 9).

Table 11.  Regression with indicator coding results for groups B 
and C

Sample bi p-value

14A+16MJ
R2adj=0.939

b0 -0.290 0.019
b1 -0.102 0.002
b2 -0.123 0.448
b3 0.021 0.643

16A+16MJ
R2adj=0.938

b0 -0.310 0.001
b1 -0.092 0.000
b2 -0.059 0.602
b3 0.002 0.938

40A+40MJ
R2adj=0.969

b0 -0.283 0.000
b1 -0.101 0.000
b2 0.016 0.683
b3 -0.019 0.083

80A+80MJ
R2adj=0.976

b0 -0.228 0.000
b1 -0.110 0.000
b2 -0.026 0.307
b3 -0.012 0.076

Table 12.  Regression with indicator coding results for groups A and 
joined groups BC

Sample bi p-value

14A+17BC
R2adj=0.721

b0 0.088 0.443
b1 -0.148 0.000
b2 -0.469 0.001
b3 0.064 0.019

5  CONCLUSIONS

The study showed that macro-porosity at a critical 
specimen cross-section affects the fatigue life of an 
AlSi9Cu3 aluminium alloy. Among the three defined 
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levels of porosity, the level without macro-porosity 
was proven to have the least impact on fatigue. 
However, if larger pores are present within the 
critical cross-section of the sample, the fatigue life is 
drastically reduced.

The performed statistical analysis using three 
different methods provides guidelines for selecting the 
proper approach for large-scatter fatigue-data analysis. 
Despite reducing to a single-dimensional value the 
MANOVA proved to have a major advantage over the 
one-dimensional fatigue parameter combined with the 
one-way ANOVA. The MANOVA does not include 
a transformation where the slope would be regarded; 
therefore, allowing the researcher to compare fatigue 
curves with various slopes. The downside is that 
the MANOVA is not able to identify sample sets 
belonging to the same fatigue curve if the fatigue-life 
data in different data sets are shifted along the fatigue-
life curve in the direction of the amplitude-strain 
levels. Linear regression with indicator variables 
proved to be the most informative approach, offering 
information about the significance of the differences 
between groups as well as the sources of the observed 
differences. Based on the results it is possible to 
identify data belonging to the same fatigue curve, even 
if the data are acquired for different strain ranges.

Our analysis also provides some guidelines for 
planning an experiment to investigate the fatigue 
life of inhomogeneous materials. A large amount of 
experimental data are always desired; however, for 
large sample sizes even small differences between 
different sample sets become statistically significant. 
When proving that even production series differ 
between each other, it would also be useful to assess 
the practical significance of the differences between 
groups. For that reason we suggest no more than 40 
samples per data set in order to obtain relevant results 
regarding the significance of the differences between 
the groups.

The results of this study clearly show that 
specimens without macro-porosity do not exhibit a 
major change in the fatigue life between different 
production series if the processing parameters are 
kept constant. On the other hand, the presence of 
macro-porosity within the critical cross-section of 
the specimen has a detrimental effect on the fatigue 
life and reduces it drastically, regardless of the pore 
distribution. One of the most significant added 
values of our research was that we have calculated 
the magnitude and the statistical significance of the 

fatigue-life reduction due to the macro-porosity. This 
is a very favourable result for a practical application, 
since macro-porosity can be estimated beforehand 
using numerical simulations and by knowing its effect 
we can estimate whether the predicted macro-porosity 
for different cross-sections of the product would result 
in a significant fatigue-life reduction for that product.
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