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0  INTRODUCTION

The hybrid electric vehicle (HEV), an eco-friendly 
and energy-saving vehicle, has been a very popular 
in vehicle design and manufacturing [1] to [4]. The 
power-split device (PSD) is a core component of 
a multi-power coupling system in a series-parallel 
HEV [5], because it can achieve energy coupling and 
conversion among the engine, motor, and generator 
under different working modes.

Based on the principle of differential, Yu et al. 
[6] proposed a PSD by which the multiple power 
coupling and decoupling can be achieved. In order to 
avoid the difficulty in the arrangement and installation 
of transmission gears in the PSD housing, the design 
of a PSD is explored in this paper. 

In a traditional drive vehicle, the transmission is 
very compact, and the space is insufficient. However, 
new drive source and drive components are added 
in the hybrid electric drive vehicle, so the minimum 
optimization of the volume and quality is more 
important. The design and optimization of this kind 
of PSD are challenging. In particular, lightweight 
design has attracted intensive effort due to its great 
contribution to cost, material volume and time savings 
in engineering design [7] and [8]. 

With the field of complex engineering, numerous 
single optimization algorithms, such as the Karush-
Kuhn-Tucker method [9], non-gradient optimization 
[10], genetic algorithm [11], and particle swarm 
optimization [12] are proposed to optimize structures. 
However, a single optimization algorithm does not 

always achieve a global solution [13] and can be 
time-consuming. Hybrid optimization algorithms, 
such as the combination of the global search (genetic 
algorithm or evolution strategies) and the local 
search (descent method) [14], the SASP method 
(hybridization of simulated annealing and the descent 
method) [15], the simulated annealing and the local 
proximal bundle method [16], the combination of the 
particle swarm optimization and the genetic algorithm 
[17], are of significant interest for the rapid speed 
of convergence and robustness in seeking globally 
optimal solutions [18]. 

In order to obtain a globally optimal solution and 
reduce computing time, this study adopts a hybrid 
optimization strategy based on the combination of 
a multi-island genetic algorithm (MIGA; a global 
optimizer), and a nonlinear programming quadratic 
line search (NLPQL; a local optimizer). In the MIGA, 
each group is divided into several subgroups called 
“islands”. The selection, crossover, and mutation 
operations are performed in the subgroups, and the 
immigration operation is periodically performed 
among different targeted islands. The MIGA is a 
pseudo-parallel genetic algorithm, which can both 
avoid a local optimal solution as far as possible 
and accelerate convergence [19]. When solving 
constrained nonlinear mathematical problems, the 
NLPQL algorithm shows stability, rapid convergence, 
and the capacity to seek globally optimal solutions 
[20]. As the NLPQL can quickly determine the local 
optimal solution near the starting point, it can reduce 
the computing time during the optimization process.
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This study proposes a new PSD and focuses on 
the sufficient level of stiffness of PSD housing, which 
ensures the minimum meshing misalignment between 
planet gear and half-axle gear. In such a case, a hybrid 
optimization strategy combining the MIGA and 
NLPQL based on a surrogate model is adopted. In this 
optimization, finite element analysis (FEA) is used to 
investigate the PSD housing stiffness. The surrogate 
models of weight and stiffness of the PSD housing 
are established. The hybrid strategy demonstrates 
higher efficiency and a stronger ability to find better 
solutions compared with a single MIGA.

1  DESIGN OF A NEW PSD

1.1  Transmission System with a PSD

An integrated power distribution system including a 
PSD is shown in Fig. 1. The main parts of this system 
are the engine, the engine clutch, the gear reduction 
unit, the input clutch, the PSD, the motor, the gear 
acceleration unit for the generator, the generator 
clutch and the generator.

Fig. 1.  Integrated power distribution system of parallel-series HEV 
with PSD

The torque generated by the engine is introduced 
by the input axle and is passed to the PSD through the 
gear reduction unit. Then, according to the principle 
of the differential mechanism, the torque drives three 
planet gears and two half-axle gears. The input clutch 
connects with the left-housing, so that the parts of PSD 
housing cannot rotate. In this way, the bevel planet 
gear in PSD only rotates on own axis. The left side 
of the motor connects with the half-axis gear, and the 
right side connects with the rear axle. The electricity, 
which is produced by the generator, is stored in the 
battery. When the motor is working, the battery 
supplies electricity to it. The generator is connected to 
the generator clutch, and its operation can be stopped 
when the generator clutch disengages.

1.2  Structure of PSD

The PSD and the gear transmission train are shown 
in Fig. 2. The thrust bearing is applied at the shafts of 
each bevel planet gear to decrease the sliding friction 
between the bevel planet gears and the PSD housing; 
furthermore, the uneven distribution of the loading on 
the gear tooth is also improved. 

     a) PSD housing                        b) transmission train

c) mid-housing

Fig. 2. PSD; 1) left-housing; 2) mid-housing; 3) right-housing; 4) 
bevel planet gears; 5) left half-axle gear; 6) planet gear axle; 7) 

right half-axle gear; 8) outer ring 9) inner ring; 10) threaded hole; 
11) axle holes; 12) radial plate; 13) ladder hole

The left and right-housing is connected to the 
mid-housing of the PSD, which is composed of an 
outer ring and an inner ring. The ladder hole, which 
is opened on the inner ring, accommodates the roller 
bearing as well as makes the left spline axle through 
it. Hence, the driving torque transmitted to left and 
right half-axle gears becomes an output from one side 
of PSD. 

2  FEA OF PSD HOUSING

2.1  Forces and Boundary Conditions of PSD Housing

Bevel planet gears and half-axle gears are the core 
transmission components of the PSD. The PSD 
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housing deflection, which is introduced by the 
insufficient stiffness, usually leads to the meshing 
misalignment of the gears. The meshing misalignment 
increases the transmission error and transmission 
noise, and decreases transmission efficiency and gear 
life. In this paper, FEA is adopted to evaluate the PSD 
housing stiffness. 

Before the finite element models are created, 
the loads applied to the PSD housing are computed. 
The engine torque M (100 Nm) is transmitted to the 
PSD housing by the left spline  axle, and then M is 
allocated to the bevel planet gears through planet gear  
axles. The forces applied to PSD housing are shown 
in Fig 3.

Fig. 3.  Forces applied to PSD housing

Fal and Far are the axial forces of the half-axle  
gears, which are applied to the left- and right-housing 
by half-axle gears. Ftx (Ft1, Ft2, Ft3) is the resultant 
force of the circumferential forces of the bevel planet 
gears, which is applied to the PSD housing. Fax (Fa1, 
Fa2, Fa3) is the resultant force of the axial force created 
by the bevel planet gear meshing transmission and 
the centrifugal force created by the bevel planet gear 
revolution, which is also applied to the PSD housing. 
Fal, Far, Ftx and Fax are defined as:

 F F T
dal ar
m

= =
6 tan sin ,α δ  (1)

 F T
dtx
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=
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 F T
d

Fax
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=
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 is the torque applied on the bevel 

planet gears, F m n r= ( )π
30

2  is the centrifugal force 

of the bevel planet gear, m is the weight of the bevel 
planet gear, n is the rotational speed of the revolution, 
r is the reference radius of the half-axle gear, α is 
the pressure angle of the bevel planet gear, δ is the 
reference cone angle of the bevel planet gear, dm is the 
reference diameter of the bevel planet gear at the tooth 
width midpoint.

The boundary conditions should be determined 
before a simulation is conducted. The engine 
transmits the input torque M (100 Nm) to the left-
housing, and the torque is distributed to the two half-
axle  gears through the differential planetary gear 
train. In static load analysis, a hypothesis is proposed 
that the half-axle gears are fixed, so the torque M is 
applied to the left-housingof the PSD. Fax, Fal and 
Far can be converted into the pressure P acting on 
the corresponding plane, the loading results and the 
boundary conditions of the PSD housing are shown in 
Fig. 4.

Fig. 4.  Loads and boundary conditions of PSD housing
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2.2 Results of FEA

The loads and boundary conditions are applied to the 
finite element models, and FEA is conducted. The 
results of Von Mises equivalent stress are shown in 
Fig. 5. The maximum stress, approximately 92 MPa, 
occurs on the joint between the radial plate and inner 
ring of the mid-housing. Displacements are shown in 
Fig. 6 in the contour and vector forms. The maximum 
displacement is 0.025 mm.

Fig. 5.  Von Mises equivalent stress [MPa]

Fig. 6.  Displacement [mm]

Deflections of the inner and outer rings are 
shown in Fig. 7. The inner ring turns a certain angle 
relative to the outer ring, which leads the planet gears 
to deflect β angle. The outer ring expands b along the 
radial direction, which leads the planet gear to deflect 
along the axial direction. All of these events lead to 
the meshing misalignment among the bevel planet 
gears and the half-axle gears. The insufficient stiffness 
of the PSD housing affects the accuracy of gear 
meshing, which is considered to be a key constraint 
condition in designing the structural parameters of the 
PSD. Thus, this study aims to secure the PSD housing 

stiffness for decreasing the meshing misalignment 
when optimizing the weight of the PSD housing.

Fig. 7.  Deflections of PSD housing

3  OPTIMIZATION BASED ON SURROGATE MODEL

The surrogate model method uses a simple mathematic 
model to replace a complex structural optimization 
problem, which can reduce computing costs and 
simplify problems. This paper adopts it in the design 
optimization of PSD housing. First, the design 
variables, the objective functions and the constraint 
conditions are determined; then, the design of the 
experiment based on the OLHD is implemented, and 
the surrogate models are created with response surface 
method according to the experimental data.

3.1  Mathematical model of optimization

3.1.1  Design Variables

Based on the FEA results, the structure sizes of the 
inner ring, the outer ring and the radial plate have 
significant effects on the stiffness and weight of the 
PSD housing. Therefore, their sizes are selected as the 
design variables, as shown in Fig. 8.

Fig. 8.  Design variables

Design variables are expressed in matrix form, 
shown in Eq. (4):
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 X X X X X X X X X T
= [ ]1 2 3 4 5 6 7 8, , , , , , , .  (4)

3.1.2  Objective Function

To meet the lightweight design requirement, 
minimizing the weight of the PSD housing is 
considered the objective function, as shown in Eq. (5):

 Min W = f (X), (5)

where W is the weight of the PSD housing and X is the 
design variable matrix related to W.

3.1.3 Constraint Conditions

(1)  Constraints of Design Variables: The ranges 
of design variables are determined under the 
geometric non-interference of the PSD housing 
structure, as shown in Table 1.

Table 1.  Ranges of design variables

Design variables X1 X2 X3 X4 X5 X6 X7 X8

Upper bound [mm] 20 20 15 12 17 20 8 8
Lower bound [mm] 5 5 5 5 5 5 3 3

(2) Stiffness Constraint of the PSD Housing: 
According to the results of the FEA, the 
insufficient stiffness of the PSD housing will 
make the bevel gears deflect along the  axle, 
which will lead to the stress concentration. The 
tooth surface is shaped like a drum in order to 
alleviate the above problems. In this study, the 
stiffness index is determined by comparing the 
changes of the contact stress along with the skew 
angles, which is between standard and modified 
tooth profiles. The value of the drum-gear profile 
[21] is presented in Eq. (6):

 ∆g b fg= × +−0 25 10 0 53. . ,  (6)

where Δg [μm] is the drum size of the tooth profile, 
b [mm] is the gear width, fg = A(0.1b+10), A is the 
constant related to the accuracy magnitude of the gear 
as shown in Table 2. This paper adopts the accuracy 
magnitude 7, accordingly, A = 2.5.

Table 2.  Constant A related to the accuracy

Accuracy magnitude 0 1 2 3 4
A 0.63 0.71 0.8 1.0 1.25
Accuracy magnitude 5 6 7 8
A 1.6 2.0 2.5 3.15

The gear parameters are used in Eq. (6) to obtain 
Δg = 14.2 μm. An axial modification is adopted [22], 
i.e. the theoretical involute of the two end surfaces of 
the modification gear rotates from the central axis to 
the gear tooth. The rotation angle is determined by the 
size of the drum-shape. Finally, the endpoints of the 
two theoretical involutes are connected into an arc. 
The arc radius is equal, which is used as the scanning 
trajectory of the tooth surface. With the variation of 
the skew angle β, the maximum contract stress of the 
modified and unmodified tooth profile is shown in 
Fig. 9.

Fig. 9.  Maximum contact stress of modified and unmodified tooth 
profile

As shown in Fig. 9, when the axial skew angle 
is smaller, the contact stress of the modified gear is 
heavier. However, with the increasing of the skew 
angle, the maximum contact stress of the modified 
gear increases dramatically. When the skew angle is 
more than 0.04°, the maximum contact stress of the 
unmodified gear exceeds that of the modified gear. 
When the skew angle is 0.1°, the load distribution 
along the width of the gear tooth is very uneven, and 
the gear meshing line is shorter; the maximum contact 
stress increases by 85% compared with the normal 
meshing.

The skew angle β can be effectively reduced by 
improving the PSD housing stiffness. The uneven load 
distribution of the gear tooth can also be improved. 
Therefore, in the optimization process, the PSD 
housing stiffness is selected as the constraint condition 
to ensure that the uneven load distribution of the gear 
tooth, which is mainly caused by the insufficient 
housing stiffness, is minimized.

According to the above analysis, in the PSD 
housing optimization, the skew angle of the bevel gear 
is restricted to less than about 0.04°. The relationship 
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between the skew angle of the bevel gear axis and the 
deflection of axis endpoint is presented in Table 3. 

Table 3.  Relationship between the skew angle of the bevel gear 
axis and the deflection of axis endpoint

Skew angle of the bevel gear axis 
[°]

Deflection of axis endpoint
[mm]

0.01 0.0049
0.03 0.014
0.05 0.024
0.07 0.034
0.1 0.0489

By fitting calculation based on Table 3, the 
maximum deflection of the PSD housing is no more 
than about 0.02 mm. Thus, the constraint can be 
defined in the following form: 

 U ≤ 0.02 mm. (7)

3.2 Establishment of the Surrogate Model

3.2.1 Design of experiment based on OLHD

The surrogate models are created based on the design 
matrix. In this study, the design matrix is generated 
using the design of experiment (DOE) and the real 
responses of the sample points are calculated by the 
FEA. The typical DOE includes the orthogonal design, 
uniform design, full factorial design, OLHD, etc. The 
OLHD improves the uniformity of the LHD by space-
filling and balance [23]. Thus, OLHD is selected as 
the DOE in this study.

3.2.2 Surrogate Model

The surrogate model uses a simple mathematical 
model to replace a complex relation between the 
design variables and corresponding response during 
structural optimization process. At the same time, the 
calculation cost can be reduced effectively, and the 
results are very close to the true values [24] and [25]. 
RSM uses different order polynomials to express the 
relationship between the design variables and their 
responses. One of the most used RSM is the second 
order polynomial model, which has the advantages of 
low computational cost, better approximation effect, 
being easy to solve, etc. Therefore, in this paper, the 
second order polynomial RSM is adopted to establish 
the surrogate models. The mathematical model of the 
second-order polynomial RSM can be expressed in 
Eqs. (8) and (9):

 
y x x x xi i

i

n

ii
i

n

i ij
i

j

j

n

i j= + + +
= = =

−

=
∑ ∑ ∑∑α α α α0
1 1 1

1

2
2 ,

 (8)

A n nn n n

T
= … … … −α α α α α α α α α0 1 11 22 12 13 1, , , , , , , , , , , ,( )  (9)

where y is the output variable, xi is the design variable, 
n is the number of design variables, and A is the 
undetermined coefficient vector, αi, αii and αij are the 
regression coefficient. 

The required sample points of RSM for 
establishing surrogate models are (n+1)×(n+2)/2, 
in which n is the number of design variables. In this 
optimization process, it has 8 design variables, so 50 
sets of the sample points obtained using OLHD are 
used to establish the surrogate models of the PSD 

Table 4.  Coefficient of surrogate model of weight and maximum deflection

Term
Weight 

coefficient
Deflection 
coefficient

Term
Weight 

coefficient
Deflection 
coefficient

Term
Weight 

coefficient
Deflection 
coefficient

constant 0.72134406 0.1048929 x72 9.5887E–04 1.8691E–04 x3x4 –1.008E–05 2.02E–05
x1 0.00112139 –0.0016603 x82 7.3471E–04 1.1818E–04 x3x5 –4.582E–05 2.99E–05
x2 –3.846E–04 –0.0011450 x1x2 –3.775E–06 9.82E–06 x3x6 1.2846E–05 1.22E–05
x3 6.6751E-04 –0.0017529 x1x3 4.1338E–05 5.65E–06 x3x7 1.789E–05 3.19E–05
x4 –0.0058554 –0.0023501 x1x4 1.2887E–05 1.36E–05 x3x8 –2.83E–05 3.83E–05
x5 –6.502E-05 –0.0028529 x1x5 1.1903E–04 1.21E–05 x4x5 1.9922E–04 2.11E–05
x6 6.2272E-04 –0.0023899 x1x6 1.2612E–04 1.00E–05 x4x6 –5.799E–05 3.47E–05
x7 0.04281933 –0.0050861 x1x7 –2.012E–04 2.65E–05 x4x7 –9.699E–05 2.79E–05
x8 0.08717993 –0.0033694 x1x8 1.4735E–05 1.90E–05 x4x8 –4.054E–05 1.82E–05
x12 –5.226E–06 2.66E–05 x2x3 4.899E–06 6.81E–06 x5x6 –8.481E–06 3.98E–05
x22 –2.143E–05 1.29E–05 x2x4 2.8431E–04 8.62E–06 x5x7 –2.522E–04 6.35E–05
x32 6.8029E–07 1.86E–05 x2x5 1.3477E–04 1.46E–05 x5x8 –7.093E–05 2.37E–05
x42 3.4382E–04 4.42E–05 x2x6 2.0653E–04 1.47E–05 x6x7 –1.367E–05 3.04E–05
x52 3.4432E–05 3.25E–05 x2x7 –5.845E–05 3.83E–06 x6x8 5.5E–06 2.71E–05
x62 –8.587E–06 2.39E–05 x2x8 –3.486E–05 5.62E–06 x7x8 6.5998E–05 4.39E–05
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housing weight and maximum deflection. In the 
meantime, the other 20 sets of sample points, which 
can be used to test the accuracy of the surrogate 
models, are also obtained in the same manner. Based 
on the 50 sets of sample points, the surrogate models 
are established using the second-order polynomial 
RSM, and the coefficients of weight and deflection 
are presented in Table 4.

According to the sample points obtained using 
OLHD, the influence degree of the design variables 
on output W and U are obtained based on the statistics 
principle, as shown in Fig. 10a and b, respectively.

a) 

b) 
Fig. 10. Influence degree of design variables on W and U;  

a) Influence degree of design variables on W, b) Influence degree 
of design variables on U

As the surrogate model is an approximate 
equation between design variables and response 
function, conducting an error analysis of a surrogate 
model is necessary before replacing the true model. 
The accuracy of the surrogate model is usually 
measured via the multiple correlation coefficient R² in 
engineering application, which is defined as Eq. (10). 
The value of R² is between 0 and 1. The accuracy of 
the surrogate model is higher when R² is close to 1, 
and the accuracy is acceptable when the value of R² 
exceeds 0.9 in engineering applications [26]. 

 R S
S

S
S

E

T

R

T

2 1= − = ,  (10)

where SR is the regression sum of squares,  
S y yR i

i

n

= −( )
=
∑ 

2

1

. SE is the residual sum of squares, 

S y yE i i
i

n

= −( )
=
∑ 

2

1
. ST is the total deviation sum of 

squares, ST = SE + SR.
Using the error analysis, the R² values of the 

surrogate models of the housing weight and the 
maximum deflection equal 0.99995 and 0.96758, 
respectively, which indicates that the surrogate models 
can be used to predict performance.

3.3 Optimization Algorithm and Hybrid Optimization 
Strategy

A hybrid optimization strategy that combines the 
MIGA for global optimization and the NLPQL for 
gradient optimization is used to obtain the optimal 
results. Brief explanations of the MIGA and NLPQL 
algorithms are given, and the hybrid strategy is then 
explained.

3.3.1 Optimization Algorithm

A genetic algorithm (GA) is an effective method of 
global search optimization, which has been widely 
used in engineering optimization problems [27]. 
The MIGA is an enriched algorithm based on GA. 
However, compared with a traditional GA, the MIGA 
is more efficient in finding the global optimum and 
more suitable for problems that have difficulty in 
obtaining gradient information. The MIGA is an 
exploration optimization method that uses “selection”, 
“crossover” and “mutation” mechanisms to obtain 
the optimal design. The MIGA avoids obtaining a 
local optimal solution, thus can avoid the precocious 
phenomenon [28].

The NLPQL is used for gradient optimization 
to reduce the computing cost in the process of 
optimization. When the NLPQL is used to solve 
nonlinear mathematical problems, it has superior 
stability and fast convergence, and can easily obtain 
the global optimal solution [29].

3.3.2 Hybrid Optimization Strategy

The MIGA-NLPQL hybrid optimization strategy is 
performed as follows: firstly, the MIGA is used to 
determine the target area of the extreme value in the 
design space. Next, the NLPQL is used for the accurate 
optimization in target area defined by the MIGA to 
obtain the optimal design results. The flowchart of 
the hybrid optimization based on surrogate models is 
shown in Fig. 11.
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Fig. 11.  Flowchart of hybrid optimization based on surrogate 
models

First, the advantages of the MIGA are brought 
into full play in rapidly roughly locating the sensitive 
target area in the overall design space, so that the 
low efficiency of the global optimization algorithm 
in detail can be avoided. Then, the global optimal 
results, which are obtained from MIGA optimization, 
are used in the NLPQL optimization module. Thus, 
the advantages of the gradient optimization algorithm 
of the NLPQL are brought into full play on local 
optimization, and the optimal solution can be found 
accurately. Misguided results, which are caused 
by seeking  optimal results in highly nonlinear or 
discrete design spaces using the gradient optimization 
algorithm, can be avoided.

3.4 Optimization Results

In the optimization process, eight structural sizes 
are selected as design variables that belong to a 
multidimensional design, which  is difficult to search 
in order to find the optimal value. To solve this 
problem, the MIGA-NLPQL hybrid optimization 
strategy is adopted in this study. In comparison 
with the optimization results of the MIGA-NLPQL 
and the single MIGA, the advantages of the hybrid 
optimization strategy are demonstrated. The iteration 
processes of the MIGA-NLPQL and MIGA are shown 
in Figs. 12 and 13, respectively.

The optimization process is time-consuming, 
so the number of optimization steps can determine 

its efficiency. Fig. 12 shows that the total iteration 
of the MIGA is 2000 steps. The objective function 
begins convergence at about 400 steps, and the 
global optimal solution is obtained at 1662 steps. 
Figs. 13a and b show the iteration process of hybrid 
optimization; the iteration steps total about 1360. In 
the hybrid optimization, the MIGA calculates about 
1000 steps and the NLPQL calculates about 360 
steps. In Fig. 13a, a preliminary optimal solution is 
found at about 770 steps by the MIGA. Although the 
convergence of the objective function is not ideal, it 
shows a convergent trend. In this hybrid optimization 
strategy, the MIGA is only used to find the preliminary 
global optimal solution, so the convergence does not 
affect the NLPQL for further optimization. Fig. 13b 
shows the optimization process of the NLPQL. The 
objective function begins to converge when iterating 
at about 200 steps and the global optimal solution is 
finally obtained at 352 steps around the preliminary 
optimal solution found by the MIGA. Therefore, the 
total iteration steps of the hybrid optimization strategy 
are 1122, which is less than the 1662 steps of a single 
MIGA. In comparison with the iteration process of 
the MIGA, the computing cost is obviously reduced; 
therefore, the MIGA-NLPQL is more efficient than 
the single MIGA algorithm. 

Fig. 12. Iteration process of single MIGA

The results of the optimization are shown in Table 
5. The second row, “Initial”, stands for the initial 
design without optimization; the third row, “MIGA”, 
stand for the results based on the MIGA technique; the 
fourth row, “MIGA-NLPQL”, stands for the results 
received from the hybrid strategy, “MIGA-NLPQL”. 
“Rounded results” stands for the results after rounding 
according to the hybrid strategy of the MIGA-NLPQL.

Comparing the optimization results of the single 
MIGA and MIGA-NLPQL with the original design, it 
is shown that the weight of PSD housing is reduced 
by 26% after optimization using the single MIGA and 
by 26.6% after optimization using the MIGA-NLPQL. 
Furthermore, the computing time of the MIGA-
NLPQL 1360 steps is less than the computing time of 
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the MIGA 2000 steps. Therefore, the MIGA-NLPQL 
strategy can perform more efficiently to reduce 
calculation time and has a stronger ability to obtain 
optimal results than a single MIGA. The rounded 
results of the MIGA-NLPQL are selected as the final 
design parameters. Table 6 shows the geometric 
dimensioning and the performances of the original 
and the final designs of PSD housing.

The values of the objective functions U and 
W obtained by the surrogate models are 0.0095 and 
1.1686, respectively. The optimal design is verified 
by FEA as shown in Fig. 14. The error between the 
surrogate model and the FEA of U is 13.6%, and that 
of W is 10.4%;  which the error values of U and W 
are within the acceptable range, it can be verified 
that the surrogate model can be used to replace 
the performance of PSD. As shown in Fig. 14, the 
maximum displacement of FEA results is 0.011 mm, 
which satisfies the constrict condition of deflection. In 

Table 5.  Optimization results of MIGA-NLPQ and MIGA

Design variables [mm] Response value Computing 
stepsX1 X2 X3 X4 X5 X6 X7 X8 U [mm] W [kg]

MIGA 5.203 5.130 14.656 5.525 13.248 19.843 3.004 3.0 0.0088 1.1774 1360
MIGA-NLPQL 5.0 5.0 15.0 5.371 12.359 17.603 3.0 3.0 0.0095 1.1686 2000
Rounded results 5.0 5.0 15.0 5.4 12.4 17.6 3.0 3.0 / / /

Table 6.  Comparison of the original and the final designs

Design variables [mm] Response value
X1 X2 X3 X4 X5 X6 X7 X8 U [mm] W [kg]

Original designs 15 15 7 7 15 15 6 5 0.025 1.592

Final designs 5.0 5.0 15.0 5.4 12.4 17.6 3.0 3.0 0.0095 1.1686
Optimization rates / / / / / / / / 62% 26.6%

a) 

b) 
Fig. 13.  Iteration process of a) MIGA in MIGA-NLPQL, and b) NLPQL in MIGA-NLPQL

Fig. 14.  FEA of optimal PSD; a) Displacement [mm], b) Von Mises 
equivalent stress [MPa]



Strojniški vestnik - Journal of Mechanical Engineering 60(2014)7-8, 525-535

534 Li, F. – Qin, Y. – Pang, Z. – Tian, L. – Zeng, X.

comparison with previous optimization, the maximum 
displacement is reduced by 56%. The maximum 
stress of the optimal PSD is 93.2 MPa, which occurs 
at the holes of end covers, and the stress of the joint 
between the radial plate and inner ring of the mid-
housing is improved. The above analysis shows 
that the optimization of PSD is reasonable, and the 
performances of PSD are improved.

4  CONCLUSIONS

This paper proposes a new PSD design scheme used 
in HEVs to improve the support form of bevel planet 
gears. To decrease the meshing misalignment of the 
internal gears caused by the lack of PSD housing 
stiffness, improving the stiffness is imperative. 
However, increasing stiffness and reducing weight are 
often contradictory. Therefore, the optimization design 
of PSD housing is performed, where the minimum 
weight is selected as the optimization objective and 
the stiffness is selected as the constraint. To enhance 
the optimization efficiency and obtain global optimal 
results simultaneously, the hybrid optimization 
strategy of the MIGA-NLPQL, based on a surrogate 
model, is adopted in this paper. In this way, the 
weight of PSD housing is reduced by 26.6% under the 
stiffness constraint. The design optimization shows 
that the MIGA-NLPQL hybrid optimization strategy 
has strong optimization ability and rapid convergence 
speed, as proven by the comparison between the 
single MIGA and MIGA-NLPQL results. 
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