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0  INTRODUCTION

Rubber materials are widely used for sound and 
vibration control and are usually bonded and 
compressed between rigid plates. In order to predict 
the vibration transferred through the rubber material 
in a finite-element model, knowledge of the material 
properties, such as the Young’s modulus, the damping 
factor and the Poisson’s ratio is essential.

An element of rubber material bonded to rigid 
plates, shown in Fig. 1, possesses an apparent Young’s 
modulus Ea, which is due to the restrained motion of 
the upper and lower bonded surfaces, greater in value 
than the Young’s modulus E of the rubber material [1] 
to [4].

Fig. 1.  Single-degree-of-freedom (SDOF) system, with ground 
excitation, measured displacement x1 of the mass M and the 

displacement x2 of excitation

For a block with a circular cross-section Gent and 
Lindley [5] derived a correlation in the form:

 E E Sa = +( ),1 2β  (1)

where S is the ratio of one loaded surface to the force-
free surface and β is a numerical constant. For rubbers 

that are square, circular or moderately rectangular in 
cross-section β = 2 should be used and for rubbers 
with the addition of carbon black, somewhat smaller 
values should be used [5].

For very large shape factors S some contribution 
to the total deflection may be anticipated from the 
bulk compression of the rubber. To account for this, 
Gent and Lindley [5] derived the equation:
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where B is the Bulk modulus.
In deriving Eqs. (1) and (2) it was assumed that 

the material is virtually incompressible in terms of 
volume, that the cross-section of the block, normal 
to the direction of the applied load, remains plane 
and horizontal and also that the free vertical surfaces 
take up parabolic forms. Horton et al. [6] eliminated 
the assumption of a parabolic profile and derived a 
different expression:
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where B is again the Bulk modulus. Horton et al. [6] 
found that the results given with Eq. (3) are closely 
approximated by:
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and for a circular block of incompressible material, 
when B = ∞, can consequently be written as:
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Williams and Gamonpilas [7] used the 
Timoshenko and Goodier [8] equilibrium equations 
and derived an expression in the form:
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Sim and Kim [9] developed a procedure to find a 
relationship between the ratio of the apparent Young’s 
modulus to the Young’s modulus, Poisson’s ratio and 
shape factor. The downside of this method is that the 
transmissibility needs to be measured on two different 
specimens (one thin and one thick).

To run FEM calculations it is essential to know 
the actual Young’s modulus. This is also important 
with other types of material models, see for instance 
[10].

In this paper a comparison of different equations 
for an estimation of the Young’s modulus from an 
apparent Young’s modulus derived from the transfer 
functions of a single-degree-of-freedom (SDOF) 
system will be presented. It will be shown that there 
is a significant difference in the estimated Young’s 
modulus when different equations are used, especially 
when the Poisson’s ratio of the rubber material is 
smaller than the theoretical value of 0.5. The point of 
view presented above will be verified in this paper by 
using transfer functions obtained from a finite-element 
model of specimens having various shape factors and 
Poisson’s ratios.

1  THEORETICAL BACKGROUND

The rubber is utilized so that its behavior is governed 
by the complex Young’s modulus . Here it is assumed 
that the temperature remains constant with time, so 
that the complex Young’s modulus may be written 
as [11]:

 E E Eω ω δ
ω

* ( ),= +1 i  (7)

where Eω  is the real part and δ
ωE  is the ratio of the 

imaginary to the real part of the complex Young’s 
modulus Eω

* , and is known as the damping factor and 
i is equal to −1 .

For a single-degree-of-freedom SDOF system, 
shown in Fig. 1, the transmissibility of the system, 
which is defined as the displacement ratio [11]:
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and with real and imaginary parts of the 
transmissibility, RE = Re(T) and IM = Im(T), known 
from the measurement, the frequency-dependent 
apparent Young’s modulus can be obtained [11]:
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Now the apparent Young’s modulus needs to 
be converted to the Young’s modulus of the rubber 
material. In the literature, [5] to [7], several equations 
were used. By transforming the Gent and Lindley [5], 
Eq. (1), frequency-dependent Young’s modulus of the 
rubber material is derived:
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or using Eq. (2) and taking the Bulk modulus:
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where ν is Poisson’s ratio, into account indicates that 
the frequency-dependent Young’s modulus of the 
rubber material is:

 E E
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Similarly, by rearranging Horton et al. [6], 
Eqs. (3) and (4), and taking into account the Bulk 
modulus, Eq. (11), the frequency-dependent Young’s 
modulus of the rubber material is obtained:
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Next, the frequency-dependent Young’s modulus 
is obtained by rearranging Horton et al. [6], Eq. (5), 
and is written in the form:

 E E
S

a
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The last equation is obtained by rearranging 
Williams and Gamonpilas [7], Eq. (6), where the 
frequency-dependent Young’s modulus is expressed 
as:
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2  ESTIMATION OF THE YOUNG’S MODULUS  
FROM THE FREQUENCY-RESPONSE FUNCION

The frequency-response functions were obtained 
with a finite-element model in Ansys Workbench 
v14.5. The finite-element model represents a cuboid 
aluminum mass with a cross-section of 20×20 mm 
and a height of 5 mm, a cylindrical rubber with a 
diameter of 20 mm and different heights (20, 10, 5, 
2.5 and 1.25 mm), a cylindrical aluminum mass with 
a diameter of 50 mm and a height of 15 mm, and an 

accelerometer on the top surface of the aluminum 
mass, which was modeled as a mass point of 4.6 g, 
shown in Fig. 2a. The mesh was generated with a 
higher-order 3-D 20-node solid element that exhibits 
quadratic displacement behavior, SOLID186 and 
element MASS21 for the mass point. The generated 
mesh is shown in Fig. 2b.

The material was assumed to behave as a linear 
elastic material with a constant Young’s modulus of 
4 MPa, defined in Ansys Engineering data, as was 
shown in [11] that the numerical calculations are in 
good agreement with the experimental measurements. 
Various Poisson’s ratios, from almost incompressible 
(ν = 0.4999) to compressible (ν = 0.45, 0.47 and 0.49) 
solids, were studied. Other material data are shown in 
Table 1.

Fig. 2.  Model in a) ANSYS Workbench and b) mesh

Table 1.  Material parameters defined in ANSYS Workbench

Aluminum Rubber
density [kg/m3] 2850 1200
Young’s modulus [MPa] 7.1×104 4
Poisson’s ratio [-] 0.33 0.4999 to 0.45
damping factor [-] - 0.01

The harmonic analyses for combinations of five 
shape factors and four Poisson’s ratios, in total 20 
cases, were made in the frequency band from 20  to 
5000 Hz, with a frequency resolution of 1 Hz. Then 
Eq. (9) was used to calculate the frequency-dependent, 
apparent Young’s modulus and Eqs. (10) and (12) to  
(16) were used to calculate the values of the Young’s 
modulus from the apparent Young’s modulus. For the 
purpose of a clearer presentation the percentage error 
Eerror  in the estimated values of the Young’s modulus 
Ew to the actual Young’s modulus defined in the 

finite-element model Eactual was calculated with the 
following equation:

 E E E
Eerror

actual

actual

=
−

⋅ω 100%.  (17)

The percentage errors for various shape factors 
and depending on the value of Poisson’s ratio are 
presented in Figs. 3 to 6. 

3  DISCUSSION

Percentage errors in the estimation of the Young’s 
modulus from the frequency-response functions 
calculated with the finite-element model, for  
ν = 0.4999, are presented in Fig. 3 and the percentage 
errors at 100 Hz are also shown in Table 2. 
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From this it can be concluded that Eqs. (10) and 
(12) give the best result when the shape factor  is 
small (large thickness of the rubber) and the error 
increases with higher shape factors (with decreasing 
thickness of the rubber). It can also be seen that with a 

greater shape factor Eq. (12) gives better results than 
Eq. (10), since for very thin blocks some contribution 
to the total deflection may be anticipated from the 
bulk compression of the rubber, as discussed by Gent 
and Lindley [5].

Fig. 3.  Percentage errors of the estimated Young’s modulus to the 
actual Young’s modulus for different shape factors,  

(full) S = 0.25, (dashed) S = 0.5, (full with circle) S = 1,  
(dashed with circle) S = 2 and (full with x) S = 4,  

and equations (red) Eq. 10, (green) Eq. 12, (blue) Eq. 13, 
(magenta) Eq. 14, (cyan) Eq. 15, (yellow) Eq. 16, at ν = 0.4999

Fig. 4.  Percentage errors of the estimated Young’s modulus to the 
actual Young’s modulus for different shape factors,  

(full) S = 0.25, (dashed) S = 0.5, (full with circle) S = 1,  
(dashed with circle) S = 2 and (full with x) S = 4,  

and equations (red) Eq. 10, (green) Eq. 12, (blue) Eq. 13, 
(magenta) Eq. 14, (cyan) Eq. 15, (yellow) Eq. 16, at ν = 0.49

Fig. 5.  Percentage errors of the estimated Young’s modulus to the 
actual Young’s modulus for different shape factors,  

(full) S = 0.25, (dashed) S = 0.5, (full with circle) S = 1,  
(dashed with circle) S = 2 and (full with x) S = 4,  

and equations (red) Eq. 10, (green) Eq. 12, (blue) Eq. 13, 
(magenta) Eq. 14, (cyan) Eq. 15, (yellow) Eq. 16, at ν = 0.47

Fig. 6.  Percentage errors of the estimated Young’s modulus to the 
actual Young’s modulus for different shape factors,  

(full) S = 0.25, (dashed) S = 0.5, (full with circle) S = 1,  
(dashed with circle) S = 2 and (full with x) S = 4,  

and equations (red) Eq. 10, (green) Eq. 12, (blue) Eq. 13, 
(magenta) Eq. 14, (cyan) Eq. 15, (yellow) Eq. 16, at ν = 0.45
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Table 2.  Percentage error in the estimation of the Young’s modulus  
using different equations, at 100 Hz and ν = 0.4999

h [mm] 20 10 5 2.5 1.25
S [-] 0.25 0.5 1 2 4

Eq. (10) 2.58 0.90 -3.66 -9.47 -29.72
Eq. (12) 2.65 0.99 -3.48 -8.98 -28.33
Eq. (13) -8.08 -9.43 -9.28 -10.83 -28.75
Eq. (14) -12.83 -10.88 -9.5 -10.95 -28.75
Eq. (15) -12.9 -10.97 -9.68 -11.44 -30.14
Eq. (16) 11.91 34.54 92.74 171.91 158.93

Estimated values of the Young’s modulus with 
Horton et al.[6], Eq. (13), are underestimated by 
approximately 10%, compared to the actual value of 
the Young’s modulus defined in the finite-element 
model. Eqs. (14) and (15), which are approximations 
of Eq. (13), are very close together, where the 
maximum difference in the error compared to Eq. (13) 
is about 5% at S = 0.25 and smaller than 1.6% at  
S = 0.5. In the case of greater shape factors the 
difference is even smaller.

The difference in the estimation of the Young’s 
modulus from Eqs. (10) and (12) to (15) is due 
to the approximation that with compression free 
vertical surfaces take up a parabolic form, Gent and 
Lindley [5], Eqs. (10) and (12), and that the profile 
of the compressed block is not quite parabolic, 
Horton et al. [6], Eq. (13) and its approximations 
Eqs. (14) and (15). Apparently, the Gent and 
Lindley [5] approximation of the parabolic profile, 
Eqs. (10) and (12), is the best fit for the calculations in 
Ansys. The maximum difference in percentage errors 
between Eqs. (10) and (12) to (15) for a small shape 
factor is 15.5% at S = 0.25 and 12% at S = 0.5 and 
at higher shape factors it is only 1.8% at S = 4. From 
this it can be concluded that Eqs. (10) and (12) give 
the best results for all the addressed shape factors and 
Eq. (13), and its approximations Eqs. (14) and (15), 
give comparable results only for large shape factors 
(thin rubber).

The results given with Williams and Gamonpilas, 
Eq. (16), are not as expected. In the case of a small 
shape factor the percentage error is 11.9% at S = 0.25 
and is comparable to Eqs. (13) to (15), but in the 
case of a larger shape factor the Young’s modulus is 
overestimated by 34.54% at S = 0.5 and even 158.93% 
at S = 4.

In the case that the rubber material is hardened by 
the addition of fillers, like carbon black, its Poisson’s 
ratio is smaller than the theoretical 0.5. Consider 
that the Poisson’s ratio is ν = 0.49. In this case the 
percentage errors in the estimation of the Young’s 

modulus from the frequency-response functions 
calculated with finite-element models, are shown in 
Fig. 4 and the percentage errors at 100 Hz are also 
shown in Table 3.

It can be seen that Eqs. (10) and (15) do not 
take the Poisson’s ratio into account and compared 
to the first case, this time error is greater than with 
Eqs. (12) to (14) that include the Poisson’s ratio. 
From this it can be concluded that Eqs. (10) and (15) 
are not appropriate for an estimation of the Young’s 
modulus when the shape factor S ≥ 1. In this case 
Eq. (16) provides better results than in the case of 
incompressible rubber (ν = 0.4999), but still does not 
come close to the results given with Eqs. (12) to (14). 
For Poisson’s ratio ν = 0.49 Eq. (13) seems to offer 
the best performance in the estimation of the Young’s 
modulus in the whole range of shape factors, followed 
by Eq. (14) and then Eq. (12).

Table 3.  Percentage error in the estimation of the Young’s modulus  
using different equations, at 100 Hz and ν = 0.49

h [mm] 20 10 5 2.5 1.25
S [-] 0.25 0.5 1 2 4

Eq. (10) 1.45 -2.14 -14.26 -39.85 -72.19
Eq. (12) 8.29 6.67 1.18 -7.37 -17.14
Eq. (13) -2.32 -3.44 -3.98 -8.66 -17.30
Eq. (14) -7.02 -4.84 -4.18 -8.68 -17.31
Eq. (15) -13.87 -13.65 -19.62 -41.16 -72.36
Eq. (16) 10.85 31.35 76.16 100.83 49.08

In the case that the Poisson’s ratio is ν = 0.47 or 
ν = 0.45, the percentage errors in the estimation of 
the Young’s modulus from the frequency-response 
functions calculated with the finite-element model are 
shown in Fig. 5 and Fig. 6 respectively. It is clear that 
when the shape factor S ≥ 1, Eqs. (10) and (15) are 
again not appropriate for an estimation of the Young’s 
modulus. The estimation with Eq. (14) gives the best 
results and is followed by Eq. (13). Here, the results 
with Eq. (16) are improved compared to the rubber 
with the Poisson’s ratio ν = 0.4999 and ν = 0.49 and 
for S ≤ 0.5 are even better than the results given with 
Eqs. (12) to (14), but start to deviate for larger shape 
factors S ≥ 1.

It should be noted that for small shape factors the 
Young’s modulus can be estimated for a very narrow 
frequency band, e.g., for S = 0.25 about 100 Hz and in 
the case of higher shape factors the Young’s modulus 
can be estimated in a wider frequency band, e.g., for  
S = 0.5 about 1000 Hz at ν = 0.4999 as shown in Fig. 3. 
The upper limit of the frequency band is limited with 
wave effects that may develop at high frequencies of 
the transmitted vibrations as intense peaks resulting in 
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a deterioration of the transmissibility, as reported by 
Rivin [12] and Snowdon [1], [13] and [14].

It is interesting that in the case S ≤ 0.5 for all 
variants of Poisson’s ratio Eq. (10) gives the best 
results and the percentage error is smaller than 10.8%, 
which appears at S = 0.5 and ν = 0.45 and even smaller 
in the case of S = 0.25 where it is 2.6% at ν = 0.4999.

From this a general conclusion can be made, that 
for an estimation of the Young’s modulus of rubber 
material to use with the finite-element analysis, it 
is possible to adapt the rubber dimensions to obtain 
a shape factor of around 0.5 and use the simplest 
Eq. (10) developed by Gent and Lindley [5]. With this 
approach it is possible to quite accurately estimate 
the Young’s modulus of a rubber material, only the 
Poisson’s ratio needs to be measured individually 
with a seperate procedure. Eq. (10) also gives the best 
results for all the shape factors if the rubber is almost 
incompressible, ν = 0.4999. Otherwise, if the shape 
factor S ≥ 1 Eq. (13) and its approximation Eq. (14) 
give the best result, but the Poisson’s ratio of the 
rubber needs to be known in advance.

4  CONCLUSIONS

For an almost incompressible material (ν = 0.4999), 
Gent and Lindley [5], Eqs. (10) and (12) offer the 
best accuracy for the actual Young’s modulus, which 
was an input for the finite-element model, followed 
by Horton et al. [6], Eq. (13), with its approximations 
Eqs. (14) and (15).

In the case that the Poisson’s ratio of the rubber 
material is not theoretical, ν = 0.5, for the shape factor 
S ≤ 0.5 Eq. (10) quite accurately estimates the Young’s 
modulus of the rubber material; however, as far as 
the shape factor S ≥ 1, Eq. (13) and its approximation 
Eq. (14) give the best results.

With the proper selection of rubber dimensions, 
to have a shape factor of around 0.5, it is possible to 
use the simplest equation for the estimation of the 
Young’s modulus from the apparent Young’s modulus, 
Eq. (10), and use the estimated Young’s modulus for 
the finite-element analysis.

The downside is that the Poisson’s ratio still needs 
to be measured individually, before it can be inputted 
into the appropriate equation.
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