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0  INTRODUCTION

In the last decades considerable effort has been 
dedicated to the development of hardening models 
based on the underlying physical mechanisms 
involved in plastic deformation of crystalline 
materials. Due to the complexity of the processes 
involved, most physically based models to date 
combine the theoretical knowledge of deformational 
behaviour with a series of empirical rules obtained 
from experimental observations. The plastic 
response of metals is determined by the production 
and migration of defects in the crystal lattice called 
dislocations [1]. Despite suggestions that a complete 
description of work hardening in terms of dislocation 
theory may never be possible, in-depth research on 
pure metals and heterogeneous solids has clarified 
many aspects of the complex processes involved [2] 
and [3]. 

Dislocation-based models are expected to have 
a wider applicability and better predictability than 
phenomenological formulations over larger ranges 
of strain, strain rate and temperature. Since they are 
based on the description of microstructural evolution, 
they can be handily combined with models of other 
structure-dependent processes affecting physical 

properties of the material like recristalization and 
recovery, e.g. in [4] to [6]. Earlier dislocation-based 
models of strain hardening, see [7] to [9], were 
mainly concentrating on explaining stage III of the 
hardening process and were able to describe a gradual 
decrease of the hardening rate, which in many cases 
is a nearly linear function of yield stress. This type 
of strain hardening behaviour can be explained in 
terms of constitutive models using a single internal 
variable related to the mean dislocation density 
[10]. Under deformation conditions in which plastic 
instabilities are avoided, the gradual decrease of 
the hardening coefficient is interrupted by a new 
hardening stage characterized by a nearly constant 
hardening rate which is eventually followed by 
a final drop-off leading to stress saturation [3]. 
Moreover, stored dislocations in crystalline materials 
are rarely distributed homogeneously throughout the 
structure, implying that a satisfactory description of 
the mechanical state in terms of the mean dislocation 
density is inadequate. To overcome this inconsistency 
and correctly describe the hardening behaviour 
following phase III, two-internal-variable models had 
to be invoked [11].

Estrin et al. [10] presented a dislocation-density-
based model aimed at describing the hardening 
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behaviour of cell-forming crystalline materials 
studying also the effect of texture variation on 
strain hardening. Argon and Haasen [3] proposed a 
mechanism of work hardening related to a cellular 
dislocation microstructure in which hardening of cell 
interiors occurs through the build-up of long range 
internal stresses associated with lattice misorientations 
between dislocation cells. In [12] Ma and Roters 
presented a constitutive model for fcc crystals which 
follows individual slip-system hardening and can 
therefore directly account for latent hardening. A 
model for heterogeneous alloys was developed in 
[13] with the density of mobile dislocations added 
as an additional internal variable. Recently, several 
dislocation models focused on understanding the 
dislocation mechanisms accompanying stress reversal 
have been proposed in an effort of explaining the 
material response following deformation path 
changes, e.g. in [14] and [15]. In the presence of a 
heterogeneous dislocation distribution, long range 
internal stresses are an unavoidable consequence of 
compatibility requirements during deformation in the 
stress-applied state [3]. Experiments by Mughrabi [11] 
and Mughrabi et al. [16] have shown that in the loaded 
state both cell walls and cell interiors are subjected 
to stresses in the same direction as the applied stress, 
however stresses in walls are far larger than the 
applied ones while those in cell interiors are smaller. 
Essman [17] and [18] used fast neutron irradiation 
to pin dislocations of copper single crystals strained 
into hardening stages I and II. While he found no 
evidence of long range stresses in stage I the curvature 
of dislocations in the unstressed crystals strained into 
stage II allowed him to estimate long range internal 
stresses of the order of half the forward yield stress.

Dislocation-based hardening models provide 
evolutionary equations for dislocation densities and 
their relation to the shear strength of single crystals. In 
order to relate the latter to the macroscopic values of 
stress and strain measured on a polycrystal aggregate, 
the model has to be complemented by a description of 
polycrystal deformation. In this work a visco-plastic 
Taylor-type model is used. In recent years several 
variants of Taylor-type models have been introduced 
with the common quality of allowing for the active 
slip systems, slip rates, rates of lattice rotation and 
the deviatoric stress to be calculated for each grain 
separately. As a result, calculation time is much 
smaller compared to crystal plasticity FE methods 
or self-consistent models [19] and [20] in which 
grains are treated as inclusions within a homogenized 
medium having the average constitutive behaviour of 
the entire aggregate.

During plastic deformation of metals, most of 
the mechanical energy expended is dispersed as 
heat. The remaining part, often referred to as stored 
energy, is retained in the metal as the energy of the 
elastic field of the dislocation structure. The energy 
storage phenomenon in metals was discovered by 
Taylor and Quinney [21]. The retained energy can 
be measured by one or two-step methods. In one-
step techniques the measurements take place directly 
during the deformation process. These methods are 
usually regarded as more accurate, however the need 
for special equipment and measuring procedures 
employed has favoured the use of two-step techniques 
with a shorter processing time and substantially lower 
costs [22]. In two-step methods the already deformed 
material is subjected to a protocol of heat treatment 
during which the heat flow caused by thermal 
processes in the specimen is measured.

It has been proposed in [23] and [24] that 
indentation hardness can provide a simple method 
for determining stored energy, since it is a local 
mechanical property which depends on yield stress 
and therefore on the local dislocation density. In this 
work the relationship between stored energy, yield 
stress and Vickers hardness for tensile-deformed 
copper has been studied and compared with previously 
published results and models.

1  CONSTITUTIVE MODELS

1.1  Bergström Hardening Model

In 1970 Bergström [8] presented a dislocation-based 
constitutive model aimed at describing the hardening 
behaviour of polycrystalline α-Fe at room temperature. 
The model distinguishes between three components of 
yield stress: 

 σ σ σ ε σ ρ= + +0 ( ) ( , ) ( , ).*T T Tp
d  (1)

In Eq. (1) σ0, σ* and σd are the lattice resistance, 
the strain-rate dependent temperature stress and the 
dislocation-density dependent hardening component, 
respectively. The contribution of σ* is usually small for 
fcc structured metals and is often neglected. Therefore 
the effect of temperature and strain rate on flow stress 
is usually introduced indirectly by describing their 
influence on the hardening rate affecting σd [25]. 
The hardening component σd is related to the mean 
dislocation density ρ by the Taylor relationship:

 σ α ρd Gb= ′ ,  (2)
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where α´ is a constant describing the average 
interactions between dislocations, G is the shear 
modulus and b is the magnitude of the dislocation 
Burgers vector. Eq. (2) can be derived from a series 
of different interaction mechanisms (e.g. cutting of 
forest dislocations) and is widely used in dislocation-
density-based models as well as in more sophisticated 
single-crystal constitutive relations [26].

The density of mobile dislocations is considered 
to be constant while the variation of the total 
density is determined by four envisioned dislocation 
mechanisms: immobilization, re-mobilization, 
annihilation and creation, from which an evolutionary 
equation relating dislocation density to tensile strain 
ε p is deduced as:

 d d U Ap pρ ε ε ρ/ ( ) ,= ′ − ′ − ′Ω  (3)

where Uʹ is a measure of the rate at which mobile 
dislocations are immobilized or annihilated and is 
inversely proportional to the dislocations mean free 
path, Ωʹ expresses the probability of remobilization 
and annihilation through reactions between mobile 
and immobile dislocations and Aʹ gives the rate of 
density variation from strain-invariant sources (e.g. 
grain boundaries and free surfaces).

Since plastic deformation of metals occurs by 
irreversible shear in discrete slip systems, a more 
commonly used approach is to relate the dislocation 
density to the total shear strain of metal grains. In this 
case Eqs. (1) to (3) must be rewritten in terms of shear 
quantities. Neglecting σ* in Eq. (1), we obtain:

 τ τ τ τ α ρ= + = +0 0d Gb ,  (4)

 d d U Aρ γ γ ρ/ ,= ( ) − −Ω  (5)

where τ and γ are the shear strength of active slip 
systems and the total shear deformation of the crystal, 
respectively. Since we only consider the total shear 
deformation, equal and concurrent hardening of all 
slip systems is implied. In the field of crystal plasticity 
this kind of hardening is often termed isotropic [10]. 
In order to integrate Eq. (5), the function U(γ) must be 
specified. In the original study [8] it was considered 
to be constant and the relation between strain and 
dislocation density was supposed to be nearly 
linear. This was justified by observing that a cellular 
dislocation structure consisting of hard dislocation 
walls and soft cell interiors forms in the very early 
stages of deformation and that the cell diameter 
d rapidly attains a constant value which does not 
appreciably change on further straining. As the mean 

free path z is considered to be proportional to the 
cell diameter it follows that U has a constant value. 
Under these assumptions an analytical expression 
linking strain and dislocation density can be deduced. 
However, other investigations, e.g. in [26] and [27], 
have shown that typically in fcc structured metals the 
cell size d decreases with density according to:

 d K= / ,ρ  (6)

where K is a dimensionless constant ranging approx. 
from 10 to 20 for Cu [26]. Assuming that the 
dislocation mean free path is proportional to the cell 
size, U can be written as:

 U U= 0 ρ .  (7)

where U0 is a constant. Since 1/ρ0.5 can be interpreted 
as the mean distance between dislocations, Eq. (6) is 
often seen as a manifestation of the so called principle 
of similitude, which states that dislocation structures 
refine themselves during straining in a self similar way 
thus retaining all ratios between different dimensions 
of the dislocation arrangement. The physical origin of 
what is called similitude is not yet understood and the 
related coefficient is not predictable from dislocation 
theory [26]. 

1.2  Estrin Hardening Model

The majority of dislocation-based models developed 
for describing hardening after phase III consider 
the material as a two-phase composite consisting 
of cell walls with a high dislocation density and 
dislocation-poor cell interiors. Different evolutionary 
equations for dislocation densities in the two phases 
give rise to separate stages of hardening. In most of 
these models the shear strength of individual phases 
is determined by the local dislocation density. In [3] 
Argon and Hassen presented a comprehensive elastic 
analysis explaining the role of specific dislocation 
arrangements and their resulting long-range stresses. 
Since these stresses are in self-equilibrium, they do 
not affect the yield strength of the material, however, 
they are fundamental for the two phases to deform in 
a coherent way. If such a deformation is supposed, 
the total shear strength is obtained by an expression 
resembling the so called rule of mixtures:

 τ τ τd w cf f= + −( )1 ,  (8)

where τw, τc and f are the shear strength of cell walls, 
the shear strength of cell interiors and the volume 
fraction of cell walls, respectively. In [10] Estrin et 
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al. presented a 2D model for describing hardening of 
cell-forming metal crystals at large strains. The model 
was later generalized for the 3D case and arbitrary 
strain paths in [28]. One of the main assumptions 
of the model states that dislocation generation only 
occurs in walls, while annihilation takes place both in 
walls and cell interiors. The density in cell interiors 
ρc is affected by three processes, namely the creation 
of dislocations in walls, the loss of dislocations due 
to them becoming part of the wall structure and the 
mutual annihilation of dislocations, resulting in the 
following evolutionary equation:

 
d
d b bd f

kc w
c

ρ
γ

α ρ β
ρ= −

−( )
−

* *

/ ,
3

6
1 1 3 0  (9)

where α* is the fraction of dislocation sources operated 
by dislocations coming from walls, β* is the fraction 
of interior dislocations becoming part of the wall 
structure and k0 is a measure of the rate of annihilation 
of dislocations within the specific phase. Dislocation 
density in cell walls ρw is increased by dislocations 
coming from cell interiors as well as the activation of 
dislocation sources by interior dislocations and again 
reduced by mutual annihilation:
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.  (10)

The specific numeric values appearing in Eqs. 
(9) and (10) are a result of assuming a cubic shape 
of cells with side length d. Mechanisms leading to 
the development of cellular dislocation patterns are 
not considered in the model. Shear strengths of the 
two phases are related to the dislocation densities 
therein according to the same Taylor relationship, 
Eqs. (2) and (4), as is used in the Bergström model. 
The constitutive description is completed by a scaling 
relation for the average cell size and a description of 
the evolution of the wall volume fraction. The average 
cell size is defined by Eq. (6) using the average 
dislocation density ρa as the scaling measure:

 d K K f fa w c= = + −( )/ / .ρ ρ ρ1  (11)

The principle of similitude implies a constant 
volume fraction of cell walls. However, this 
assumption is not supported by experimental 
observations showing that after an initial increase f 
monotonically decreases to a saturation value at larger 
strains [10]. The variation of f is described by:

 f f f f e= + −( ) −( )∞ ∞0 exp / ,γ γ  (12)

where f∞ and f0 are the saturated and initial values and 
γe is a constant describing the rate of decrease of f. 

1.3  Polycrystal Model

The hardening models presented above describe 
the relationship between the shear strength of slip 
systems and the accumulated shear deformation 
of individual crystals. In order to relate these to the 
macroscopic values of deformation and stress, a 
model of polycrystal deformation has to be used. 
The following description of kinematic behaviour of 
crystals subjected to large deformations is based on 
the assumption of multiplicative decomposition of the 
total deformation gradient into an elastic and plastic 
part first proposed by Lee [29]. Three configurations 
of the material are introduced: initial, intermediate 
and current, see Fig. 1.

Fig. 1.  Decomposition of deformation

The deformation is characterized by the velocity 
gradient tensor L and the total deformation gradient 
F describing the deformation of the material from the 
initial to the current configuration:

 F x X L x xij i j ij i j= ∂ ∂ = ∂ ∂/ , / ,  (13)

where x(X) and X are the current and initial 
coordinates of the material particle, respectively. 
From Eq. (13) an expression for the time derivative of 
the deformation gradient can be deduced:

 F v
X

v
x

x
X

LF=
∂
∂

=
∂
∂







∂
∂






 = .  (14)

Plastic deformation is a result of dislocation slip 
occurring on favourable crystallographic planes and in 
specified directions, together forming a slip system. 
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A pair of orthogonal vectors {bs, ns}, where bs is a 
unit vector parallel to the slip direction and ns is a unit 
vector normal to the slip plane is used to describe slip 
system s.

The total deformation gradient F is decomposed 
into an elastic Fe and a plastic part Fp. It is supposed 
that during plastic deformation the material flows 
through the invariant lattice while in the following 
elastic part the lattice deforms attached to the 
material. The elastic deformation gradient comprises 
eventual elastic deformations and rigid body rotations. 
Since our study is focused only on the rigid-plastic 
model of single crystal kinematics, no “real” elastic 
deformations are considered. The elastic part of the 
total deformation gradient thus reduces to a rigid 
rotation R:

 F F F RF= =e p p .  (15)

For the plastic deformation in the initial 
configuration we can write a relation similar to Eq. 
(14):

 F L Fp p p= .

The plastic velocity gradient L p is given by a 
linear superposition of shear rates on all slip systems:

 Lp s
i
s
j
s

s
b n=∑ γ ,  

where γ s  is the shear rate of system s. The velocity 
gradient L p can be decomposed into a symmetric 
strain rate Dp and a skew-symmetric rotation rate Wp, 
also known as spin:

 L D Wp p p= + .  (16)

Decomposing the dyadic product bsns into a 
symmetric part mij

s  and a skew-symmetric part qij
s  

allows us to write the strain and rotation rate in terms 
of shear rates on active slip systems:

 D p s
ij
s

s
m=∑ γ ,  (17)

 W p s
ij
s

s
q=∑ γ .  (18)

By inserting Eq. (15) into Eq. (14), the total 
velocity gradient can be written as:

 L FF RR RL R= = +−
 

1 T p T .  (19)

Similarly to Eq. (16) the total velocity gradient 
can be additively decomposed into a strain and 
a rotation rate (L=D+W). Since RṘT is a skew-
symmetric matrix, we obtain:

 D RD R D= =p T p R, ,  (20)

 W RR RW R RR W= + = + 

T p T T p R, .  (21)

The strain rate D is a simple transformation of Dp 
from initial into current configuration, however the 
rotation rate W contains an additional contribution. 
The polycrystal model must provide a value for the 
velocity gradient in crystals. In Taylor-type models L 
for each of the constituent grains is considered to be 
equal to the imposed macroscopic velocity gradient 
L*. Using Eqs. (17) and (20) the strain rate D* can be 
written as:

 D D* , .= =∑ γ s ij
s R

s
m  (22)

In prescribing the macroscopic strain rate D* it is 
assumed that the volume does not change (Dii

* = 0). 
The sum of right-hand sides of Eq. (22) for ij = 11, 22, 
33 is also zero because of the orthogonality between 
the rotated vectors b and n. As a result only five of the 
six Eqs. (22) are independent. The fcc crystal structure 
of copper has 12 potentially active slip systems of the 
{111}<110> type. Since there are more unknown slip 
rates than equations prescribing the deformation, the 
solution of Eq. (22) is not unique. In his original work 
Taylor assumed that out of the possible combinations 
of five active slip systems the one with the minimal 
rate of internally dissipated frictional work will be 
active. This assumption however still does not lead to 
a unique solution for strain rates [19]. To overcome 
this limitation of models based on a rate insensitive 
idealization of slip, Asaro and Needleman [30] 
proposed a simple rate-dependent model in which the 
shear rate γ s  is uniquely defined by:

  γ γ τ τ τs s n s= 0

1
/ ),

/
sign(  (23)

where τs is the shear stress in slip system s, τ is 
the shear strength of the system described by the 
hardening models, γ 0  is a reference shear rate and the 
parameter n characterizes the material rate sensitivity. 
If n approaches zero, a substantial amount of slip 
only occurs in systems where the shear stress reaches 
values near the shear strength. The rate-independent 
response of the material is therefore retrieved as 
n→0. In practice it is found that for values of 0.03 or 
lower, the stresses obtained from Eq. (23) differ only 
slightly from those obtained from the rate-insensitive 
Taylor-Bishop theory [30]. Using Eqs. (17) and (23), 
the deviatoric part of the prescribed strain rate can be 
written as:
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       D m m mij ij
s R

s
kl
s R

kl

n

kl
s R

kl
* , , / ,/ ( ),= ′ ′∑γ σ τ σ0

1
sign  (24)

where ′σ kl  is the deviatoric part of the Cauchy stress 
tensor. Given a prescribed strain rate D* Eq. (24) 
represents a system of five independent nonlinear 
equations for five independent deviatoric components 
of stress. In our model the Newton-Raphson method 
was used in order to solve the system of stresses. It 
should be emphasized that in this approach all slip 
systems are considered to be active. Once the slip rates 
have been calculated, the spin of the crystal lattice is 
determined from Eqs. (18) and (21): 

 

RR WT s
ij
s R

s
q= −∑* , .γ  (25)

The last expression is used to update the 
orientation of the crystal. A detailed description of 
evaluating the incremental rotation matrix using 
Eq. (25) and the Rodrigues formulation for finite 
rotations employed in our model can be found in [31]. 
The resulting rotation is used to calculate the new 
direction of vectors b and n from which follows the 
crystallographic texture evolution.

Using the polycrystal model, the increment of 
shear deformation of the ith crystal dγi and the shear 
strength of the crystal´s slip systems τi can be related 
to the imposed deformation increment dεp and the 
tensile stress acting on the crystal σi via the Taylor 
factor M:

    d d M d Mi s i
s

i i
p

i i i iγ γ γ ε σ γ τ= = =∑ ( ) , ( ) .  (26)

Finally two approaches can be taken to express 
the macroscopic value of tensile stress. In most cases, 
due to smaller computational costs, all the constituent 
crystals are considered to harden equally in relation 
to the average deformation of the polycrystal 
aggregate. An average Taylor factor M̅(γ) is used to 
relate the average shear deformation increment of the 
constituent grains dγ r to the macroscopic deformation 
increment:

 d N M d Mdr
i

p
i

N pγ ε ε= ( ) =
=∑1
1

/ ,  (27)

where N is the number of grains included in the 
aggregate. Similarly the average Taylor factor is then 
used to link the macroscopic value of tensile stress 
to the average shear strength τr(γr) described by the 
hardening models, which in this case is supposed to be 
equal for all grains:

 σ τ=M r .  (28)

The second approach is to use the hardening 
models as constitutive equations directly describing 
the hardening of single crystals. The total stress is 
then computed as the average stress contribution from 
all grains in the polycrystal:

 σ τ=
=∑( / ) .1
1

N Mi ii

N  (29)

In the first approach, a homogeneous distribution 
of dislocation density throughout all the grains of the 
polycrystal aggregate is supposed, with each grain 
hardening simultaneously to the same extent. In 
the second case, each grain is considered to harden 
according to the same hardening law but to a different 
extent due to the different total shear deformation 
imposed. Therefore a heterogeneous dislocation 
distribution is assumed with different dislocation 
densities in each of the constituent grains.

2  EXPERIMENTAL METHODS

Commercial rods made of 99.98% purity copper 
supplied by AlCu d.o.o. were machined to a cylindrical 
shape of gauge length 35 mm and diameter 7 mm 
according to standard ISO 6892-1 to get proportional 
test pieces, see Fig. 2. After machining the specimens 
were annealed in a protective atmosphere at 500 °C 
for 30 minutes. The tensile tests were carried out at 
24 °C using a Zwick/Roell Z050 testing machine at a 
constant deformation rate of 0.5 mm/min. 

The specimens were subjected to various tensile 
forces in the plastic region up to fracture-point with 
two specimens loaded to each pre-set force value. As 
the differences between the force-displacement curves 
were found to be negligible, samples deformed to the 
same tensile force were assumed to be subjected to the 
same tensile stress.

Cross-sectional samples for DSC (2×) and 
hardness measurements were obtained from each 
deformed specimen by cutting circular discs with a 
thickness of 1 to 1.5 mm (calorimetry) and 5 to 6 mm 
(hardness) from the gauge length perpendicular to the 
tensile axis. Two cutting methods were used in order 
to estimate possible effects of the cutting process on 
stored energy and hardness results. One sample from 
each specimen was first cut using a wire ED machine. 
The second group of samples was obtained using a 
Struers Secotom-15 cut-off machine at a cutting speed 
of approx. 42 m/s and a feed rate of 0.3 mm/min. Since 
ED machining causes a local increase of temperature 
and mechanical cutting induces further hardening 
in the surface layers, an opposite effect on hardness 
and stored energy was expected from the two cutting 
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processes. However, no appreciable differences in 
either of the measured quantities for differently cut 
samples were found, from which it was concluded that 
neither of the cutting methods had a noticeable effect 
on the measured results. 

Fig. 2.  Dimensions of tensile test specimens (in mm)

Stored energy measurements were performed 
using a Mettler Toledo TGA/DSC1 machine 
incorporating a heat-flux type differential scanning 
calorimeter. Alumina crucibles were used and the 
DSC was purged by nitrogen gas with a flow of 50 ml/
min. Samples were heated from room temperature to 
500 °C at a constant rate of 10 °C/min. The weight of 
the samples was between 250 to 450 mg.

Hardness measurements were carried out using an 
Emcotest Durascan 20 testing machine with a standard 
Vickers 136° pyramidal diamond indenter. All the 
measurements were made at room temperature; the 
load was set to 5 kg and applied for a standard dwell 
time of 15 s.

3  RESULTS AND DISCUSSION

A random distribution of 1000 grain orientations 
was generated representing an initially isotropic 
polycrystal aggregate. Three approaches for 
reproducing the experimental stress-strain curve were 
used in order to evaluate the differences in dislocation-
density predictions resulting simply from different 
modelling options. In approach A Eqs. (27) and (28) 
were employed and the texture development was 
neglected, therefore the Taylor factors were constant 
and equal to their values at zero strain. The same 
equations with texture evolution taken into account 
were used in B, while in C Eq. (29) was employed 
with again considering texture changes. 

The measured stress-strain curve of the material 
is presented in Fig. 3 along with the modelled curves 
and loading stresses of specimens. Material and model 
parameters used in the computations are given in 
Table 1 and Fig. 4. It is evident that a good description 
of hardening can be achieved by any of the employed 
modelling approaches and both hardening models. 
The differences between the modelled curves are 
negligible and cannot be seen from Fig. 3 where they 
seemingly overlap each other and the experimental 
results.

Fig. 3.  Measured stress-strain curve and spec. load

Table 1. Parameters of the Bergström model

Approach U0 [mm-1] A [mm-2] Ω [-]

A 1.059×105 -2.998×108 3.507
B 1.116×105 -2.779×108 3.875
C 9.414×104 -3.418×108 3.222

Fig. 4.  Predicted dislocation density (Bergström model)

Predicted dislocation densities from the 
Bergström model are presented in Fig. 4. Surprisingly, 
the mean densities from B and C are almost identical. 
This results justifies using the simpler approach 
B even though the heterogeneous distribution of 
dislocation density related to the actual deformation 
of single crystals theorized in C is probably better-
founded. Approach C also allows us to predict the 
range of density present in the individual grains of 
the polycrystal. On the other hand, using approach A 
results in markedly different predictions from B and 
C (approx. 6% at final strain). Using constant values 
of Taylor factors is the most common approach for 
incorporating dislocation-based hardening models in 
continuum mechanics FE computations, e.g. in [32]. 
However if we are interested in dislocation density 
predictions, not accounting for texture evolution must 
lead to erroneous results [10], with approach A in our 
case overestimating the extent of hardening compared 
to B and C.
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Differential calorimeters measure differences in 
heat flow between the test sample and the reference as 
a function of time or temperature. With no appreciable 
thermodynamic processes taking place only a slight 
variation of this difference can be observed. However, 
at the onset of a thermal event in the material, an abrupt 
change in the difference of heat flows occurs which is 
visible as a peak in the DSC curve. The area bounded 
by the peak and a measured or approximated baseline 
is equal to the material`s change of enthalpy. In our 
study the non-isothermal heat treatment of samples 
produced exothermic peaks related to recrystallization. 
Since the pressure work and the entropy contribution 
due to dislocation annihilation are both negligible 
[22], the measured enthalpy change can be equated 
to the free energy present in the form of the elastic 
energy of the dislocation structure. Contributions 
from other possible strain-induced defects (e.g. point 
defects and twins) along with the enthalpy change due 
to altering grain boundaries during recrystallization 
are neglected. In Fig. 5 the DSC curve of one of the 
calorimetry samples cut from tensile specimen 3 is 
presented. The measured stored energies were in the 
range of 20 to 160 mJ (0.07 to 0.36 J/g). Meaningful 
results could only be obtained from specimens 1 to 10 
as the values from specimens 11 to 14 were too low 
to be accurately determined by the used equipment. 
The measured values of stored energy are somewhat 
lower than those published in studies where one-step 
and slow annealing methods were used, see [22] and 
[33], however comparable to other results obtained by 
DSC, e.g. in [23].

Fig. 5.  DSC curve of sample taken from specimen 3

Since two-phase dislocation models imply the 
existence of long-range internal stresses, the energy 
stored in the material after unloading is not only 
the self energy of dislocations, but also the energy 
of the long-range stress field. Different measuring 
techniques will produce different results, since they 
measure different portions of this energy. Long-range 

stresses are often associated with the Bauschinger 
effect and other transient hardening phenomena 
observable during changes in the direction of straining 
[15] and [34]. It has been reported in [34] that a mild 
heat treatment below the recrystallization temperature 
tends to remove the permanent Bauschinger softening 
which is attributed to long-range compatibility 
stresses even though no appreciable changes in 
dislocation density can be observed at this stage 
[33]. It is reasonable to presume that during heating 
below the recrystallization point small changes in the 
dislocation structure occur causing long-range stresses 
to slowly anneal out. Although only one peak is 
present in the DSC curve some exothermic processes 
may still be proceeding during the flat phases of 
the curve in a slow, continuous manner therefore 
being undetectable by the DSC method. In one-step 
techniques this contribution is measured directly 
while in slow annealing methods it can usually only 
be estimated [22]. We can therefore assume that 
the energy measured by DSC is that of a relaxed 
dislocation structure with a negligible contribution 
from long-range stresses.

Dislocations densities resulting from approach C 
were used in stored energy evaluations. A relatively 
simple model for the energy of dislocations was 
employed in which predominantly edge-type 
dislocations are assumed to accumulate during the 
hardening process (ν = Poisson`s ratio, ρm = density):
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Eq. (30) gives the self energy of edge-type 
dislocations with P/ρi0.5 taken as the upper and the 
magnitude of the Burgers vector b as the lower cut-off 
radius, while Q describes the energy of the dislocation 
core. Both P and Q are dimensionless parameters. By 
taking P = 1, an alternating dipolar arrangement of 
positive and negative dislocations is assumed with a 
shielding distance of the order of the mean dislocation 
spacing. A similar expression can be derived by 
considering the total energy of a dislocation dipole 
in a finite cylinder, see [35], yielding only negligibly 
different results from Eq. (30). For Q a value of 1 is 
used which is near the lower limit of energy usually 
attributed to dislocation cores [36]. 

Using P = 1 as the proportionality factor between 
the upper cut-off radius and the mean dislocation 
spacing generally leads to an underestimated value of 
stored energy [33] and [37], which is also the case in 
our study, see Fig. 6. The best fit with the measured 
results was obtained by taking P = 800. This value of 
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P gives an unrealistically high upper cut-off radius 
for a random dislocation arrangement. However, it 
should also be acknowledged that there are two main 
reasons why the evaluated dislocation density is likely 
to be underestimated in our computations. The first 
is the applied polycrystal model. Taylor-type models 
represent an upper-bound regarding the stiffness of the 
polycrystal aggregate, therefore they predict the lower 
values of shear strength and dislocation density. The 
lower bound is represented by the so called Sachs-type 
models. The ratio of average Taylor factors between 
upper and lower bound models is approx. 1.37. 

Fig. 6.  Stored energy results

The second reason is the dependence of the 
strengthening coefficient α on dislocation density 
which is not described by the applied hardening 
models. It has been noted in [26] that dislocation 
densities evaluated by using constant values for α 
are probably underestimated since the line tension 
of dislocations declines with increasing density and 
the measured values of α usually pertain to lower 
concentrations in which experimental observations 
of dislocations are feasible. However, to the authors’s 
knowledge, this effect has not been included in any 
of the dislocation-density-based hardening models 
presented to date. A description of the drift of the 
hardening coefficient is provided in [26] by Eq. 
(A3). By using αref = 0.34 and ρref = 107 mm-2 from 
[38] in Eq. (A3) [26] and scaling the Taylor factors 
evaluated from our polycrystal model by 0.86, the 
computed dislocation density is increased enough 
to satisfactorily predict experimental stored energy 
results with P = 1. It should be noted that scaled 
values of Taylor factors and strengthening coefficient 
used are still well within reported experimental and 
computational values.

In one-internal-variable models, the relation 
between shear strength and dislocation density is 
unique. On the other hand, two-internal-variable 
models allow for different dislocation arrangements to 

result in equal values of shear strength. Since different 
dislocation arrangements also result in different 
stored energy predictions, it follows that, given a 
known energy model, the measured values of stored 
energy can be used to determine the parameters of 
the hardening model. For evaluating the energy of the 
dislocation structure described by the Estrin model, 
Eq. (30) must be modified in order to account for the 
heterogeneous dislocation distribution: 
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Material parameters presented in Tables 1 and 2 
were determined from the experimental data by the 
least square method in combination with a simplex 
optimization algorithm. For the Bergström model only 
the stress-strain curve was modelled with the three 
constants in Eqs. (5) and (7) used as fitting parameters. 
Both, the stress-strain curve and the results of energy 
measurements (taking P = Q = 1 in Eq. (31)) were 
used to determine material parameters of the Estrin 
model in Eqs. (9) to (11), while those in Eq. (12) were 
only allowed to vary slightly within bounds estimated 
from experimental results presented by Müller et al. 
in [39]. 

Fig. 7.  Predicted dislocation density (Estrin model)

Table 2.  Parameters of the Estrin model

α* [-] β* [/] k0 [-] K [-]

0.027738 0.018175 4.8876 42.726

f∞ [-] f0 [-] γe [/]
0.21678 0.29529 15.699

The mean dislocation density predicted by the 
Estrin model is, naturally, considerably higher than in 
the case of the Bergström model, see Fig. 7, since the 



Strojniški vestnik - Journal of Mechanical Engineering 60(2014)7-8, 462-474

471Stored Energy Predictions from Dislocation-Based Hardening Models and Hardness Measurements for Tensile-Deformed Commercial Purity Copper  

calculated stored energy values were substantially too 
low using the same parameters in Eq. (30).

In [40] Zehetbauer and Seumer used TEM, 
calorimetry and electrical resistivity measurements to 
study the evolution of dislocation density in 99.95% 
purity copper deformed at room temperature. Despite 
the heterogeneous distribution of dislocations the shear 
strength was found to be proportional to the square 
root of the average dislocation density, perfectly 
in line with the one-internal-variable description 
of hardening. By using a constant Taylor factor of 
3.06 they determined the strengthening coefficient α 
to be 0.27. Taking into account the evolution of the 
average Taylor factor given by our polycrystal model 
the best fit is obtained with α = 0.263. This result can 
be implemented into the Bergström model by simply 
setting the value of the strengthening coefficient 
to 0.263. On the other hand the parameters of the 
Estrin model have to be determined purposely to 
retrieve the same experimentally determined average 
density-strength relationship (and naturally reproduce 
the measured stress-strain curve). The coefficients 
used to describe the hardening of different phases in 
this instance need not to be equal to that determined 
for the average density. The predicted dislocation 
densities from both models (using approach C) in the 
aforementioned cases are presented in Fig. 8.

Fig. 8.  Predicted dislocation densities

The best description of the measured stored 
energy values is achieved by taking P = 6 for the 
results from the Bergström model and P = 7.3 for 
the dislocation densities predicted by the Estrin 
model, see Fig. 9. Considering that dislocations 
are arranged in different slip systems these results 
present a very reasonable estimate of the upper cut-
off radius of the order of the actual average spacing 
between dislocations. Naturally, using these results 
in the previously presented procedure of determining 
material parameters of the Estrin model, the same 
results as those already exhibited in Fig. 8 can be 

retrieved. Interestingly, despite the vastly diverse 
density distribution predicted by the two models the 
average energy per line length differs by only ≈ 8%.

Fig. 9.  Stored energy values

Fig. 10.  Results of hardness measurements

In [23] and [24] an expression predicting a 
linear relationship between the stored energy and 
the squared value of yield stress was used. It is 
evident from results presented in Figs. 6 and 9 that 
a nearly linear model also results from our study and 
adequately describes stored energy evolution. In the 
same research a linear dependence was also supposed 
between yield stress and hardness, which in our case 
is not a satisfactory approximation. Fig. 10 shows that 
the measured hardness values cannot be described by 
a linear function but can be adequately approximated 
by a linear combination involving both yield stress and 
hardening rate (which in turn can also be described 
as a function of yield stress). This finally provides a 
relation between hardness and stored energy through 
their mutual dependence on yield stress, which for 
stored energy is given by Eqs. (4), (29), and (30) in 
the case of the one-internal-variable Bergström model.

4  CONCLUSIONS

Standard specimens made from 99.98% purity copper 
were annealed and subjected to different tensile 
stresses in the plastic region of deformation. DSC 
and indentation hardness analyses were performed on 
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cross-sectional samples cut from the gauge length of 
tensile specimens. The measured stress-strain curve 
was described using dislocation-based constitutive 
models. Two hardening models and their integration 
into a visco-plastic Taylor-type model of polycrystal 
deformation are presented. Three approaches for 
reproducing the experimental stress-strain curve 
were used to evaluate the differences in dislocation-
density predictions resulting from different modelling 
options. Unexpectedly, only negligible differences 
were found in the predicted mean dislocation densities 
between assumed homogeneous and heterogeneous 
density distribution through the polycrystal, while 
not accounting for texture evolution had a substantial 
influence on the results. A good description of the 
hardening curve was achieved by all the employed 
modelling approaches and both hardening models.

Values of stored energy were found to be lower 
than those measured in previous research studies by 
one-step and slow annealing methods. This probably 
results from the inability of the DSC method to 
measure energy released prior to recrystallization 
when during heating a slow relaxation of long 
range internal stresses occurs. For stored energy 
computations, dislocation densities from approach C 
were used. Since the part of Eq. (30) that is nonlinear 
in dislocation density is only logarithmic, stored 
energy predictions from B and C, similarly to the mean 
dislocation density, only barely differ. A simple model 
predicting a nearly linear increase of stored energy 
with dislocation density was found to adequately 
describe stored energy evolution. Supposing a dipolar 
dislocation distribution (P = 1) always resulted in an 
underestimation of the measured results. It should be 
mentioned that in many studies concerning the energy 
of lattice defects, the self energy of dislocations is 
still evaluated by using P = 1 and simply neglecting 
the core contribution Q, e.g. in [41], without any 
experimental validation. Besides from assuming an 
inadequately over-relaxed dislocation arrangement, 
the differences in measured and computed stored 
energy can also be attributed to an underestimated 
value of dislocation density. The scaled values of 
Taylor factors and strengthening coefficient used 
for illustrating the effect of parameter and model 
uncertainties on dislocation density and stored energy 
predictions are well within reported experimental and 
computational values. 

Due to their good descriptive abilities dislocation-
based models are becoming a popular option for 
describing hardening characteristics of fcc metals. 
Frequently, these models are only calibrated to 
obtain a good description of hardening, while their 

physical foundation in the theory of dislocations is 
disregarded. In these cases they can be viewed as 
purely phenomenological formulations. Recently a 
few approaches for ensuring dislocation densities 
and other dislocation structure parameters to stay 
within physically reasonable boundaries have been 
presented, e.g. in [42]. The use of two-internal 
variable models presents several difficulties regarding 
the determination of the exact values of material 
parameters. It is virtually impossible to determine 
the exact values of the hardening coefficients inside 
separate phases. Furthermore experimental studies 
regarding the exact density distribution are still 
quite scarce and hardly any general conclusions can 
be retrieved from them (for example the estimated 
values of the ratio of dislocation densities in cell 
interiors and cell walls vary from around 0.5 in [43] 
to 0 in [3]). Various researchers have questioned the 
use of composite type models especially since the vast 
majority of experimental studies have found the shear 
strength to be proportional to the square root of the 
average dislocation density regardless of the exact 
arrangement of dislocations, e.g. in [40]. This has also 
lead to the development of hybrid models in which the 
evolution of dislocation densities in separate phases 
of the cellular structure is still described by different 
evolutionary equations while the shear strength of the 
crystal is given by the Taylor relationship in terms of 
the average dislocation density only, e.g. in [42].

The dependence of yield stress and stored 
energy on dislocation structure in two-internal-
variable models allows us to use the measured 
stress-strain curve and stored energy results to 
determine the parameters of the Estrin hardening 
model using pre-established yield stress and retained 
energy expressions. Even though both measured 
results are satisfyingly described by the model in 
combination with Eq. (31), it is evident from previous 
considerations that uncertainties regarding material 
parameters, the applied polycrystal model, the stored 
energy model and the accuracy of measurements 
of stored energy prevent us from claiming that the 
evaluated dislocation density and distribution are an 
accurate representation of the dislocation structure 
present in the material. Energy models and stored 
energy measurements are not accurate enough 
to capture the effects of smaller variations in the 
dislocation arrangement. Therefore they must not 
be regarded as an alternative to direct observations 
of the evolution of dislocations structures during 
hardening or other methods of measuring dislocation 
density usually used for validating dislocation-based 
hardening models. Their use in our research should 
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instead be viewed as a quick and inexpensive way 
of assuring that the dislocation densities evaluated 
from hardening models remain within a physically 
acceptable range.

Finally very reasonable values of dislocation self-
energies which can be used in procedures of validation 
and determination of model parameters were obtained 
from experimentally determined results regarding 
dislocation density evolution presented by Zehetbauer 
and Seumer [40]. 

As expected for strongly hardening materials, the 
relationship between yield stress and Vickers hardness 
in our case could not be adequately approximated 
by a linear function. Instead a linear combination of 
yield stress and hardening rate was derived, giving 
a considerably better description of the measured 
hardness values. For slow and non-hardening 
materials our approximation closely resembles the 
relationship used in [23] and [24].

5  ACKNOWLEDGMENTS

This research was partly financed by the European 
Union (European Social Fund, Programme for Human 
Resources Development for the Period 2007-2013).

6  REFERENCES

[1] Schoek, G. (1956). Dislocation theory of plasticity of 
metals. Advances in Applied Mechanics, vol. 4, p. 229-
279, DOI:10.1016/S0065-2156(08)70374-0.

[2] Cottrel, A.H. (1985). Dislocations and Properties of 
Real Materials. The Institute of Metals, London.

[3] Argon, A.S., Haasen, P. (1993). A new mechanism 
of work hardening in the late stages of large strain 
plastic flow in f.c.c. and diamond cubic crystals. Acta 
Metallurgica et Materialia, vol. 41, no. 11, p. 3289-
3306, DOI:10.1016/0956-7151(93)90058-Z.

[4] V.d. Boogaard, A.H, Huétink, J. (2006). Simulation 
of aluminium sheet forming at elevated temperatures. 
Computer Methods in Applied Mechanics and 
Engineering, vol. 195, no. 48-49, p. 6691-6709, 
DOI:10.1016/j.cma.2005.05.054.

[5] Lin, J., Dean, T.A. (2005). Modelling of microstructure 
evolution in hot forming using unified constitutive 
equations. Journal of Materials Processing Technology, 
vol. 167, no. 2-3, p. 354-362, DOI:10.1016/j.
jmatprotec.2005.05.026.

[6] Marx, V., Reher, F.R., Gottstein, G. (1999). Simulation 
of primary recrystallization using a modified 3D 
cellular automaton. Acta Materialia, vol. 47, no. 4, p. 
1219-1230, DOI:10.1016/S1359-6454(98)00421-2.

[7] Kocks, U.F. (1976). Laws for work-hardening and 
low-temperature creep. Journal of Engineering 

Materials and Technology, vol. 98, no. 1, p. 76-85, 
DOI:10.1115/1.3443340.

[8] Bergström, Y. (1970). A dislocation model for the 
stress-strain behaviour of polycrystalline α-Fe with 
special emphasis on the variation of the densities 
of mobile and immobile dislocations. Materials 
Science and Engineering, vol. 5, no. 4, p. 193-200, 
DOI:10.1016/0025-5416(70)90081-9.

[9] Mecking, H., Kocks, U.F. (1981). Kinetics of flow and 
strain-hardening. Acta Metallurgica, vol. 29, no.11, p. 
1865-1875, DOI:10.1016/0001-6160(81)90112-7.

[10] Estrin, Y., Tóth , L.S., Molinari, A. Bréchet, Y. (1998). 
A dislocation-based model for all hardening stages in 
large strain deformation. Acta Materialia, vol. 46, no. 
15, p. 5509-5522, DOI:10.1016/S1359-6454(98)00196-
7.

[11] Mughrabi, H. (1987). A two-parameter description of 
heterogeneous dislocation distributions in deformed 
metal crystals. Materials Science and Engineering, vol. 
85, p. 15-31, DOI:10.1016/0025-5416(87)90463-0.

[12] Ma, A., Roters, F. (2004). A constitutive model for 
fcc single crystals based on dislocation densities and 
its application to uniaxial compression of aluminium 
single crystals. Acta Materialia, vol. 52, no. 12, p. 
3603-3612, DOI:10.1016/j.actamat.2004.04.012.

[13] Roters, F., Raabe, D., Gottstein, G. (2000). Work 
hardening in heterogeneous alloys – a microstructural 
approach based on three internal state variables. Acta 
Materialia, vol. 48, no. 17, p. 4181-4189, DOI:10.1016/
S1359-6454(00)00289-5.

[14] Barlat, F., Ferreira Duarte, J.M., Gracio J.J., Lopes, 
A.B., Rauch, E.F. (2003). Plastic flow for non-
monotonic loading conditions of an aluminum alloy 
sheet sample. International Journal of Plasticity, 
vol. 19, no. 8, p. 1215-1244, DOI:10.1016/S0749-
6419(02)00020-7.

[15] Viatkina, E.M., Brekelmans, W.A.M., Geers, M.G.D. 
(2007). Modelling the evolution of dislocation 
structures upon stress reversal. International Journal of 
Solids and Structures, vol. 44, no. 18-19, p. 6030-6054, 
DOI:10.1016/j.ijsolstr. 2007.02.010.

[16] Mughrabi, H., Ungár, T., Kienle, W., Wilkens, 
M. (1986). Long-range internal stresses and 
asymmetric X-ray line-broadening in tensile-
deformed [001]-orientated copper single crystals. 
Philosophical magazine A, vol. 53, no. 6, p. 793-813, 
DOI:10.1080/01418618608245293.

[17] Essmann, U. (1965). Elektonenmikroskopische 
untersuchung der versetzungsanordnung verformter 
kupfereinkristalle I. Die versetzungsanordnung im 
bereich I. Physica Status Solidi, vol. 12, no. 2, p. 707-
722, DOI:10.1002/pssb.19650120218.

[18] Essmann, U. (1965). Elektonenmikroskopische 
untersuchung der versetzungsanordnung verformter 
kupfereinkristalle II. Die versetzungsanordnung im 
bereich II. Physica Status Solidi, vol. 12, no. 2, p. 723-
747, DOI:10.1002/pssb.19650120219.

http://dx.doi.org/10.1016/S0065-2156(08)70374-0
http://dx.doi.org/10.1016/0956-7151(93)90058-Z
http://dx.doi.org/10.1016/j.cma.2005.05.054
http://dx.doi.org/10.1016/j.jmatprotec.2005.05.026
http://dx.doi.org/10.1016/j.jmatprotec.2005.05.026
http://dx.doi.org/10.1016/S1359-6454(98)00421-2
http://dx.doi.org/10.1115/1.3443340
http://dx.doi.org/10.1016/0025-5416(70)90081-9
http://dx.doi.org/10.1016/0001-6160(81)90112-7
http://dx.doi.org/10.1016/S1359-6454(98)00196-7
http://dx.doi.org/10.1016/S1359-6454(98)00196-7
http://dx.doi.org/10.1016/0025-5416(87)90463-0
http://dx.doi.org/10.1016/j.actamat.2004.04.012
http://dx.doi.org/10.1016/S1359-6454(00)00289-5
http://dx.doi.org/10.1016/S1359-6454(00)00289-5
http://dx.doi.org/10.1016/S0749-6419(02)00020-7
http://dx.doi.org/10.1016/S0749-6419(02)00020-7
http://dx.doi.org/10.1080/01418618608245293
http://dx.doi.org/10.1002/pssb.19650120218
http://dx.doi.org/10.1002/pssb.19650120219


Strojniški vestnik - Journal of Mechanical Engineering 60(2014)7-8, 462-474

474 Čebron, M. – Kosel, F.

[19] Van Houtte , P., Saiyi, L., Seefeld, M., Delannay, L. 
(2005). Deformation texture prediction: from the Taylor 
model to the advanced Lamel model. International 
Journal of Plasticity, vol. 21, no. 3, p. 589-624, 
DOI:10.1016/j.ijplas.2004.04.011.

[20] Molinari, A., Ahzi, S., Kouddane, R. (1997). On the 
self-consistent modeling of elastic-plastic behavior of 
polycrystals. Mechanics of Materials, vol. 26, no. 1, p. 
43-62, DOI:10.1016/S0167-6636(97)00017-3.

[21] Taylor, G.I., Quinney, H. (1933). The latent energy 
remaining in a metal after cold working. Proceedings 
of the Royal Society A, vol. 143, no. 849, p. 307-326, 
DOI:10.1098/rspa.1934.0004.

[22] Bever, M.B., Holt, D.L., Titchener, A.L. (1973). The 
stored energy of cold work. Progress in Materials 
Science, vol. 17, p. 5-177, DOI:10.1016/0079-
6425(73)90001-7.

[23] Kazeminezhad, M. (2008). Relation between the 
stored energy and indentation hardness of copper after 
compression test: models and measurements. Journal 
of Materials Science, vol. 43, no. 10, p. 3500-3504, 
DOI:10.1007/s10853-008-2454-z.

[24] Taheri, M., Weiland, H., Rollett, A. (2006). A method 
of measuring stored energy macroscopically using 
statistically stored dislocations in commercial purity 
aluminium. Metallurgical and Materials Transactions 
A, vol. 37, no.1, p. 19-25, DOI:10.1007/s11661-006-
0148-1.

[25] Bergström, Y., Hallén, H. (1982). An improved 
dislocation model for the stress-strain behaviour 
of polycrystalline α-Fe. Materials Science 
and Engineering, vol. 55, no. 1, p. 49-61, 
DOI:10.1016/0025-5416(82)90083-0.

[26] Sauzay, M., Kubin, L.P. (2011). Scaling laws for 
dislocation microstructures in monotonic and cyclic 
deformation of fcc metals. Progress in Materials 
Science, vol. 56, no. 6, p. 725-784, DOI:10.1016/j.
pmatsci.2011.01.006.

[27] Holt, D.L. (1970). Dislocation cell formation in metals. 
Journal of Applied Physics, vol. 41, no.8, p. 3197-3201, 
DOI:10.1063/1.1659399.

[28] Tóth, L.S., Molinari, A., Estrin, Y. (2002). Strain 
hardening at large strains as predicted by dislocation 
based polycrystal plasticity model. Journal of 
Engineering Materials and Technology, vol. 124, no. 1, 
p. 71-77, DOI: 10.1115/1.1421350.

[29] Lee, E. (1969). Elastic-plastic deformation at finite 
strains. Journal of Applied Mechanics, vol. 36, no. 1, p. 
1-6, DOI:10.1115/1.3564580.

[30] Asaro, R.J., Needleman, A. (1985). Texture 
development and strain hardening in rate dependent 
polycrystals. Acta Metallurgica, vol. 33, no. 6, p. 923-
953, DOI:10.1016/0001-6160(85)90188-9.

[31] Tome, C.N., Lebensohn, R.A. (2012). Manual for code, 
Visco-plastic self-consistent (VPSC), - updated April 
1, 2012. In PDF version from ftp://ftp.lanl.gov/public 
accessed on 23.04.2013.

[32] Hosseini, E., Kazaminezhad, M. (2011). 
Implementation of a constitutive model in finite 
element method for intense deformation. Materials 
and Design, vol. 32, no. 2, p. 487-494, DOI:10.1016/j.
matdes.2010.08.033.

[33] Bailey, J.E. (1963). The dislocation density, flow stress 
and stored energy in deformed polycrystalline copper. 
Philosophical Magazine, vol. 8, no. 86, p. 223-236, 
DOI:10.1080/14786436308211120.

[34] Pedersen, O.B., Brown, L.M., Stobbs, W.M. (1981). 
The bauschinger effect in copper. Acta Metallurgica, 
vol. 29, no. 11, p. 1843-1850, DOI:10.1016/0001-
6160(81)90110-3.

[35] Hirth, J.P., Lothe, J. (1982). Theory of Dislocations, 2nd 
ed. John Wiley & Sons, New York.

[36] Friedel, J. (1964). Dislocations. Pergamon Press, 
Oxford.

[37] Haessner, F., Schmidt, J. (1988). Recovery and 
recrystallization of different grades of high purity 
aluminium determined with a low temperature 
calorimeter. Scripta Metallurgica, vol. 22, no. 12, p. 
1917-1922, DOI:10.1016/S0036-9748(88)80238-2.

[38] Gottler, E. (1973). Versetzungsstruktur und 
verfestigung von [100]-kupfereinkristallen, I. 
Verstezungsanordnung und zellstruktur zugverformter 
kristalle. Philosophical Magazine, vol. 28, no. 5, p. 
1057-1076, DOI:10.1080/14786 437308220968.

[39] Müller, M., Zehetbauer, M., Borbély, A., Ungár, T. 
(1996). Stage IV work hardening in cell forming 
materials, part I: Features of the dislocation structure 
determined by X-ray line broadening. Scripta 
Materialia, vol. 35, no. 12, p. 1461-1466, DOI:10.1016/
S1359-6462(96)00319-3.

[40] Zehetbauer, M., Seumer, V. (1993). Cold work 
hardening in stages IV and V of fcc. metals – I. 
Experiments and interpretation. Acta Metallurgica 
et Materialia, vol. 41, no. 2, p. 577-588, 
DOI:10.1016/0956-7151(93)90088-A.

[41] Schafler, E., Steiner, G., Korznikova, E., Kerber, M., 
Zehetbauer, M.J. (2005). Lattice defect investigation 
of ECAP-Cu by means of X-ray line profile analysis, 
calorimetry and electrical resistometry. Materials 
Science and Engineering A, vol. 410-411, p. 169-173, 
DOI:10.1016/j.msea.2005.08.070.

[42] Silbermann, C.B., Shutov, A.V., Ihlemann, J. (2013). 
Modelling the evolution of dislocation populations 
under non-proportional loading. International Journal 
of Plasticity, vol. 55, p. 58-79, DOI:10.1016/j.ijplas. 
2013.09.007.

[43] Zehetbauer, M., Ungar, T., Kral, R., Borbely, A., 
Schafler, E., Ortner, B., Amenitsch, H., Bernstorff, 
S. (1999). Scanning X-ray diffraction peak profile 
analysis in deformed Cu-polycrystals by synchrotron 
radiation. Acta Materialia, vol. 47, no. 3, p. 1053-1061, 
DOI:10.1016/S1359-6454(98)00366-8.

http://dx.doi.org/10.1016/j.ijplas.2004.04.011
http://dx.doi.org/10.1016/S0167-6636(97)00017-3
http://dx.doi.org/10.1098/rspa.1934.0004
http://dx.doi.org/10.1016/0079-6425(73)90001-7
http://dx.doi.org/10.1016/0079-6425(73)90001-7
http://dx.doi.org/10.1007/s10853-008-2454-z
http://dx.doi.org/10.1007/s11661-006-0148-1
http://dx.doi.org/10.1007/s11661-006-0148-1
http://dx.doi.org/10.1016/0025-5416(82)90083-0
http://dx.doi.org/10.1016/j.pmatsci.2011.01.006
http://dx.doi.org/10.1016/j.pmatsci.2011.01.006
http://dx.doi.org/10.1063/1.1659399
http://dx.doi.org/10.1115/1.1421350
http://dx.doi.org/10.1115/1.3564580
http://dx.doi.org/10.1016/0001-6160(85)90188-9
http://dx.doi.org/10.1016/j.matdes.2010.08.033
http://dx.doi.org/10.1016/j.matdes.2010.08.033
http://dx.doi.org/10.1080/14786436308211120
http://dx.doi.org/10.1016/0001-6160(81)90110-3
http://dx.doi.org/10.1016/0001-6160(81)90110-3
http://dx.doi.org/10.1016/S0036-9748(88)80238-2
http://dx.doi.org/10.1016/S1359-6462(96)00319-3
http://dx.doi.org/10.1016/S1359-6462(96)00319-3
http://dx.doi.org/10.1016/0956-7151(93)90088-A
http://dx.doi.org/10.1016/j.msea.2005.08.070
http://dx.doi.org/10.1016/S1359-6454(98)00366-8

