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0  INTRODUCTION

A gearbox is a core component in rotating machinery 
and has been widely employed in various industrial 
equipment. The meshing of gear teeth is a dynamic 
process that generates dynamic excitation forces, i.e. 
elastic variable forces and collision forces, but also 
forces due to the sliding and rolling of tooth flanks [1]. 
The gear of a gearbox in operation bears alternating 
friction and impact loads, which easily lead to variable 
defects and faults. Detecting gearbox faults as early as 
possible is essential in order to avoid fatal breakdowns 
of machines and loss of production and casualties.

Vibration signal analysis is the main technique 
for monitoring the condition and detecting faults in a 
gearbox. By employing appropriate signal processing 
methods, changes in vibration signals caused by faults 
can be detected to aid in evaluating the gearbox’s 
health status. The development process from the 
normal state to a fault in the gearbox is a slow one. 
With the limitation of the mechanical structure and its 
working environment, it is difficult to directly measure 
the changes of state for a gearbox, e.g. gear wear and 
cracking. Generally, the changes of state are estimated 
by observing the changes of features extracted from 
vibration signals. Although a great variety of features 
provides information about different aspects of the 

working condition, it remains difficult to identify 
the condition only with a visual estimation. To solve 
this problem, pattern recognition is employed on the 
basis of feature extraction. With pattern recognition, 
the working condition of a gearbox can be classified, 
and faults can be detected automatically. Therefore, 
gearbox fault detection consists of feature extraction 
and pattern recognition [2].

New types of signal-processing techniques 
for feature extraction have emerged with different 
theoretical bases. Due to different working 
environments, not all the signal processing techniques 
work well for a specific system. Because the nonlinear 
factors (loads, friction, impact, etc.) have influence 
on gearbox vibration signals, choosing suitable signal 
processing techniques to acquire features for accurate 
and reliable fault detection should be considered. 
The main feature extraction methods include: time-
domain methods, frequency-domain method and time-
frequency methods. Time-domain and frequency-
domain methods are the basic methods of signal 
processing. Features extracted with time-domain 
methods include peak amplitude, root-mean-square 
amplitude, kurtosis, crest factor, etc. [3]. Frequency-
domain methods, including power spectrum, cepstrum 
analysis, and an envelope spectra technique, have 
been successfully applied to gear fault diagnosis [4] 
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to [5]. As the gearbox vibration signals possess non-
stationary and non-linear characteristics, it is difficult 
to diagnose the fault only by using traditional time-
domain or frequency-domain methods. To solve 
this problem, time-frequency methods have been 
proposed, e.g. short-time Fourier transform (STFT), 
Wigner-Ville distribution (WVD) and wavelet 
transform, and have been widely used [6] to [8]. In the 
abovementioned methods, the wavelet transform that 
has the capability to offer good frequency resolution 
for low-frequency components and good time 
resolution for high-frequency components provides 
an efficient method for non-stationary signals [9]. 
Furthermore, discrete wavelet transform (DWT) 
based on a Mallat algorithm has received widespread 
attention in recent years. The DWT can be represented 
as a filtering process in which the signal is separated 
into a series of sub-bands and wavelet coefficients that 
are distributed on different frequency bands to reflect 
the signal feature at each of sub-band [10]. The DWT 
has been acknowledged to be a successful tool for 
fault detection [11].

In recent years, many studies on artificial neural 
networks have been carried out with the aim of 
determining intelligent fault diagnosis to investigate 
the potential applications in pattern recognition. 
It is common to train a neural network by using 
samples so that it can recognize the required input-
output characteristics and classify the unknown input 
patterns [12]. This type of neural network is based 
on supervised learning, including back-propagation 
(BP) neural networks, fuzzy networks, probability 
neural network, etc.; they are commonly used in fault 
diagnosis [13] to [15]. However, only the patterns 
that occur in the training samples can be classified. 
If a new pattern is classified by the neural network, 
an incorrect result will be given. Both new patterns 
with original training samples as well as renewal 
training are needed in order to enable the neural 
network to recognize new patterns. Therefore, a 
neural network based on supervised learning cannot 
function without training samples. To overcome 
this issue, some unsupervised neural networks 
have been developed, including self-organizing 
competitive neural networks, self-organizing feature 
map neural networks, and adaptive resonance theory 
networks. They are all used for implementing pattern 
recognition without training samples [16] to [18]. 
Regarding this matter, an adaptive resonance theory 
(ART) neural network can not only recognize objects 
in a way similar to a brain learning autonomously, 
but also can solve the plasticity-stability dilemma 
[18]. Its algorithm can accept new input patterns 

adaptively without modifying the trained neural 
network and/or increasing memory capacity with the 
species of samples. The process of learning, memory 
and training of an ART neural network proceed 
synchronously. ART was presented by Carpenter in 
1976, and an ART neural network was presented in 
1987 [19]. The type of ART neural network presented 
then was an ART-1 [19]. However, while an ART-1 
neural network is appropriate for binary input, it is 
not appropriate in practical application. For adapting 
any types of input, an ART-2 neural network was 
presented [20], and it has been widely used in pattern 
recognition and fault detection. Lee et al. transferred 
the estimated parameters by using the ART-2 neural 
network with uneven vigilance parameters for fault 
isolation, which showed the effectiveness of the 
ART-2 neural network-based fault diagnosis method 
[21]. Lee et al. combined DWT and an ART-2 neural 
network for fault diagnosis of a dynamic system [22]. 
Obikawa and Shinozuka developed a monitoring 
system for classifying the levels of the tool flank wear 
of coated tools into some categories using an ART-2 
neural network [23].

In this study, a new method for crack fault 
detection is proposed. Considering the non-stationary 
and non-linear characteristics of the signals, DWT is 
applied for feature extraction. The current situation 
of gearbox fault detection is time-consuming, and it 
is costly (or even impossible) to collect all kinds of 
known fault samples. Furthermore, an operating 
gearbox is influenced by its working environment. 
The samples obtained from a specific gearbox may 
not be suitable for other gearboxes with different 
working environments. There is a lack of known 
samplesfor the training of supervised neural networks. 
Therefore, an ART-2 neural network is proposed for 
state recognition and classification. Through the 
unsupervised classification of the samples via an 
ART-2 neural network, the changing trend from the 
normal state to a crack fault before a broken tooth 
fault occurs can be determined. Meanwhile, to verify 
the effectiveness of the ART-2 neural network, it is 
compared with a self-organizing competitive neural 
network and a self-organizing feature map neural 
network.

This paper is organized as follows: in Section 1, 
the relative wavelet energy is proposed as a feature 
and an ART-2 neural network is presented for pattern 
recognition. In Section 2, the gearbox experiment is 
introduced. The relative wavelet energy of the signal 
samples are extracted and compared with the analysis 
in time and frequency domain, after which the ART-2 
neural network is used for recognizing the changing 
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trend of the crack fault before a broken tooth fault 
happens. The conclusion is given in Section 3.

1  THEORETICAL BACKGROUND OF DWT AND  
ART-2 NEURAL NETWORK

1.1  Fundamental of Wavelet Transform

1.1.1 Discrete Wavelet Transform (DWT)

The basic analysis wavelet ψ ( )t  is a square integrable 
function, and it meets the following relationship:

 C d
R

ψ

ψ ω
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∧

∫
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where ψ ω( )  is the Fourier transform of ψ ( )t . 
Through translation and dilation, a member of the 
function can be derived from the ψ ( )t . The equation 
can be described as follows:
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where ψ a b t, ( )  is a member of the wavelet basis, a 
and b represent the scale parameter and translation 
parameter, respectively. The continuous wavelet 
transform of a finite-energy signal x(t) is defined as 
follows: 
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where * denotes complex conjugation and W a bψ ( , )  
is wavelet coefficients. As seen in Eqs. (2) and (3),  
ψ a b t, ( )  can be regarded as a window function. a and 
b are used to adjust the frequency and time location 
of the wavelet. A small a offers high-frequency 
resolution and is useful in extracting high-frequency 
components of signals. a increases in response to 
the decrease in frequency resolution but the increase 
in time resolution and low-frequency components is 
easily extracted. 

The DWT is derived from the CWT through the 
discretization of the parameters a and b. Generally, a 
is replaced by 2j and b is replaced by k2j ( j k Z, ∈ ).  
W a bψ ( , )  can be shown as:

 W j k x t t dtj kψ ψ( , ) ( ) ( ) ,,
*= ∫  (4)

where ψ ψj k

j
jt t k, ( ) ( )= −

− −2 22 .

The Mallat algorithm is a breakthrough of the 
DWT, providing a fast algorithm and achieves multi-
resolution analysis of signals. Wavelet filters are used 
for decomposition and re-construction. It is shown in 
Eqs. (5) to (7).

 A x t x t0[ ( )] ( ),=  (5)

 A x t H t k A x tj j
k

[ ( )] ( ) [ ( )],= − −∑ 2 1  (6)

 D x t G t k A x tj j
k

[ ( )] ( ) [ ( )],= − −∑ 2 1  (7)

where x(t) is the original signal, j is the decomposition 
level (j = 1, 2, …, J). H and G are wavelet 
decomposition filters for low-pass filtering and high-
pass filtering, respectively. Aj and Dj are the low 
frequency wavelet coefficients (Approximations) 
and the high frequency wavelet coefficients (Details) 
of signal x(t) at the jth level, respectively. The 
decomposition procedure of a J-level DWT is shown 
in Fig.1. It can be seen that Dj and Aj are obtained 
through high-pass filtering and low-pass filtering with 
down-sampling at each level. After the signal x(t) is 
decomposed by the J-level DWT, Dj at each level and 
AJ at the Jth level are obtained. Therefore, the DWT 
based on Mallat algorithm can be represented as a 
filtering process that the signal is decomposed into a 
series of sub-bands. 

Fig. 1.  Decomposition procedure of J-level DWT

Dj and DJ can be used to reconstruct the signal 
branch separately, which represents the signal 
component in each sub-band through up-sampling 
and reconstruction filter h and g. The reconstruction 
process is shown in Fig. 2. D tj ( )  and A tJ ( )  are 
represented as the signal branch reconstruction of 
Dj and AJ, respectively. The original signal x(t) can 
be regarded as the sum of each component. It can be 
described as:

 x t A t D tJ j
j

J

( ) ( ) ( ).= +
=
∑ 

1
 (8)
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Fig. 2.  Reconstruction for the component of the signal in each 
sub-band

1.1.2  Relative Wavelet Energy

The signal components derived through decomposition 
and reconstruction of DWT are distributed into 
independent sub-bands, and the component energy in 
each sub-band contains information available for fault 
detection. When a gear fault occurs, non-stationary 
and non-linear vibration energy is generated, which 
leads to a change of signal energy in some sub-bands. 
As the DWT has the characteristic of multi-resolution 
analysis, which makes it suitable for the analysis of 
non-stationary and non-linear signals, the DWT is 
used for feature extraction and the relative wavelet 
energy is proposed and calculated as the feature. The 
procedure is as follows:
(1) Decomposition by J-level DWT for the N-point 

signal x(t) to obtained Dj (j = 1, 2, …, J) and AJ.
(2) Reconstruction for Dj and AJ to obtain the signal 

components D tj ( )  and A tJ ( )  in each sub-band. 
The length of D tj ( )  and A tJ ( )  are the same as 
that of x(t).

(3) Let  A t D tJ J( ) ( )= +1  and the wavelet sub-band 
energy in each sub-band is calculated as:

 E D t d kj j j
k

N

= =
=
∑ ( ) ( ) ,

2 2

1
 (9)

 where N is the number of the data samples 
of D tj ( ) , k represents the time-series of data 
samples, and dj(k) is the data sample of D tj ( )   
(i.e. d k D tj j( ) ( )∈  , j = 1, 2, …, J+1).

(4) The relative wavelet energy σj in each sub-band is 
shown as:
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According to the above analysis, it can be seen that 
the DWT has a multi-resolution analytical property 
and that the relative wavelet energy can reflect the 
energy distribution of signals in different sub-bands. 
Thus, the relative wavelet energy is chosen as the 

feature of signals and used for future work in pattern 
recognition.

1.2  Fundamental of ART-2 Neural Network

1.2.1 Structure of ART-2 Neural Network

The structure of an ART-2 neural network is 
shown in Fig. 3. It consists of two subsystems: the 
attentional subsystem and the orienting subsystem. 
The attentional subsystem consists of two layers: the 
comparison layer (F1) and the recognition layer (F2). 
The orienting subsystem is the reset system, which 
is represented as the trigonal part R. The F1 layer 
that contains n groups of neurons is used to accept 
an n-dimension input pattern (x1, x2, ..., xn). The F2 
layer has m neurons, each of which represents a type 
of pattern or category. The neurons in the two layers 
form the short-term memory of the neural network. 
The F1 layer and F2 layer are connected by weights 
that form the long-term memory. With the processing 
of the F1 layer and weights, the input pattern is 
transferred to the F2 layer, and the output of the F2 
layer (y1, y2, ..., ym) is obtained. The maximum value 
of output is chosen, and the corresponding neuron 
is activated as the winning neuron. If the degree of 
match between the feedback of the F2 layer and the 
output of the F1 layer is less than the threshold value, 
the orienting subsystem will reset the F2 layer, and 
the activated neuron will be restrained. Next, the 
winning neuron is again chosen from the F2 layer 
until the degree of match meets the requirements, 
and the weights connected to the activated neuron are 
modified at the same time. 

Fig. 3.  Structure of ART-2 neural network

1.2.2  Algorithm of ART-2 Neural Network

A topological structure is shown in Fig. 4 that 
describes the connection between the ith group of 
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neurons in the F1 layer and the jth neuron in the F2 
layer. It can be seen that the F1 layer includes three 
levels. Two types of neurons exist in each level. The 
neurons represented by hollow circles are used to 
calculate the module of the input vector and transfer 
the inhibitive incentive; the neurons represented by 
filled circles are used to transfer excited incentives. 

Fig. 4.  Topological of ART-2 neural network

The algorithm process of an ART-2 neural 
network is shown as follows: 

(1) Calculation in the F1 layer
 The lower level of F1 layer receives the input xi , 

and the upper level receives the feedback of the 
F2 layer. These two levels are combined with the 
middle level separately, and positive feedback 
loops are formed. The algorithms in each level 
are shown in Eqs. (11) to (16).

 z x aui i i= + ,  (11)

 q z e Zi i= +/ ( ),  (12)

 v f q bf si i i= +( ) ( ),  (13)

 u v e Vi i= +/ ( ),  (14)

 s p e Pi i= +/ ( ),  (15)

 p u g y ti i j ji
j

m

= +
=
∑ ( ) ,
1

 (16)

 where a and b are the coefficients of positive 
feedback (a > 1, b > 1), e is far less than 1. tji refers 
to the connected weight from the jth neuron in 

F2 layer to the neuron pi in F1 layer and g(yj) is 
the feedback of the jth neuron in F2 layer. f(x) is 
a non-linear transformation function, which is 
shown in Eq. (17).

 f x
x x x

x x
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+ ≤ ≤
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 where θ is the anti-noise coefficient ( 1 nθ = ).

(2) Calculation in the F2 layer
 The jth neuron in F2 level receives the output of 

neuron pi which can be described as: 

 T p w j mj i ij
i

n

= =
=
∑
1

1 2, ,..., ,  (18)

 where wij is the connected weight from the 
neuron pi in F1 layer to the jth neuron in F2 layer. 
The activated neuron is determined by Eq. (19):

 T T j m
j j* max{ } , ,...,= =1 2  (19)

 where j* refers to the serial number of activated 
neuron. The feedback of each neuron in F2 layer 
is calculated as:
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 where d is the learning rate (0 < d < 1). According 
to Eq. (20), Eq. (16) can be described as:
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u dt j j
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(3) Calculation of the orienting subsystem
 According to Eqs. (11) to (16), it can be seen 

that the vector U = (u1, u2, ..., ui, ..., un) contains 
the features of input vector X, and the feedback 
features of F2 layer are included in the vector 
P = (p1, p2, ..., pi, ..., pn). Through comparing the 
degree of match between the vectors U and P, the 
orienting subsystem can determine whether the 
F2 layer should be reset. The degree of match ||R|| 
can be calculated as:

 R u cp
e U cP

i i=
+

+ +
,  (22)

 where c is the weighting coefficient (c ≤ 1 / d – 1). 
The greater ||R|| is, the more similar the vectors 
U and P are. Define parameter ρ as the threshold 
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value (0 < ρ < 1). When ||R|| > ρ, the F2 layer need 
not be reset, and the weights are modified directly. 
Otherwise, the orienting subsystem will reset the 
F2 layer. The activated neuron is restrained and 
chosen again from the F2 layer. Furthermore, the 
degree of match is repeatedly calculated until it 
meets the requirements, i.e. ||R|| > ρ.

(4) Modification of the weights
 After the winning neuron j* is determined, the 

weights connected to the activated neuron are 
modified according to Eqs. (23) and (24).

 w k w k d d u k
d

w k
ij ij

i
ij* * *( ) ( ) ( )[ ( ) ( )],+ = + −

−
−1 1

1
 (23)

 t k t k d d u k
d

t k
j i j i

i
j i* * *( ) ( ) ( )[ ( ) ( )].+ = + −

−
−1 1

1
 (24)

2  FEATURE EXTRACTION AND PATTERN RECOGNITION  
OF GEARBOX VIBRATION SIGNAL

2.1  Method for Crack Fault Detection 

A schematic representation of the proposed method 
is shown in Fig. 5. First, the sample series of the 
gearbox is acquired, and the relative wavelet energy 
features are extracted by DWT. Next, an ART-2 neural 
network is used for the recognition and classification 
of the sample series. Through the unsupervised 
classification, the samples of the same state are 
classified into the same category, and those of different 
states are classified into separate categories. Finally, 
the recognition result is output, and the changing 
trend from the normal state to the crack fault can be 
recognized from the classification of the samples.

Fig. 5.  Scheme of the proposed method

2.2  Experiment Specification

Fig. 6 shows a diagram of the experimental system 
used for analysing the changing trend of the crack 
fault. The gearbox is single-stage with helical 
cylindrical gears. Table 1 lists the parameters of the 
experimental system.

Fig. 6.  Structure of experiment gearbox

Table 1.  Parameters of the experimental system

Motor Rated speed 1120 rpm

Gearbox
Number of teeth of driving gear 75
Number of teeth of driven gear 17
Mesh frequency 1400 Hz

The vibration signal of the gearbox was collected 
with a piezoelectric accelerometer, and the sampling 
frequency was 8000 Hz. The process of the driven 
gear from the normal state to a broken tooth fault 
was recorded with a monitoring system. The entire 
measuring time was 8 minutes, during which it took 
approximately 90 seconds for the motor to reach its 
rated speed. The rated speed was maintained for 290 
seconds with constant load, after which a broken 
tooth fault occurred on the driven gear. The collected 
vibration signal contained the information of the 
change of state for the driven gear changes: normal 
state, crack formation, crack expansion and broken 
tooth fault. 

2.3  Analysis of Time and Frequency Domain

The time vibration signal is shown in Fig. 7a. In the 
first 90 seconds, the vibration amplitude increases with 
the rotational speed. The amplitude changes to steady 
in the following 290 seconds in which rotational speed 
of the motor reaches the rated speed, and the system 
enters a normal working state. At 380 s, the amplitude 
increases noticeably, and a broken tooth fault occurs. 
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Fig. 7.  Gearbox vibration signal and the time-domain features

During the normal working state (90 to 380 
s), the vibration amplitude remains steady, and no 
abnormal condition that suggests a symptom of a 
broken tooth fault can be observed. The vibration 
signal is analysed using time-domain analysis. Four 
types of time-domain features are employed: peak, 
standard deviation, kurtosis, and peak index. The 
changing process of the features is shown in Fig. 7b 
to d. The features change noticeably only in the stage 
of increasing speed (0 to 90 s) and that of a broken 
tooth fault (380 to 480 s). However, the features do 
not change significantly during the normal working 
state (90 to 380 s). Neither the symptom of a broken 
tooth fault nor the information of crack formation and 
expansion can be acquired. Early fault detection via 
time-domain analysis only is difficult to obtain.

Four signal sections are extracted from the 
vibration signal at 90, 200, 310 and 390 s; the length 
of each signal section is 0.25 s. They are represented 
as the four states of the operating gearbox including 
initial, middle, later and faulted. These signal sections 
are analysed using a logarithmic power spectrum, 
and the logarithmic power spectrum density (PSD) 
are shown in Fig. 8. The faulted state can be clearly 
identified, but the rest overlap each other. The initial 
period, the middle period and later period cannot be 
distinguished clearly. The integral for the logarithmic 

power spectrum density of the four signal sections is 
calculated, and the results are shown in Fig. 9. The 
value of the integral for the faulted logarithmic power 
spectrum density is higher than the others; there is no 
obvious changing trend from initial to later period. 
Therefore, the crack changing process before the 
broken tooth fault occurs cannot be identified by using 
frequency-domain analysis.
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2.4  Analysis Based on the Relative Wavelet Energy

According to the above analysis, the broken tooth 
fault can be diagnosed by using traditional methods 
of time and frequency domain analysis, but neither 
obvious symptoms nor changing trend of the fault 
can be obtained before the broken tooth fault occurs. 
When the crack occurred on the gear and expanded 
gradually, non-linear vibration energy was generated 
that led to a change of signal energy in the sub-bands. 
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Therefore, the vibration signal from 90 to 380 s (i.e. 
the normal working state before the broken tooth 
fault happens) is analysed here and divided into 130 
sections. In each section, 1 second of data with 8000 
points is extracted and analysed via the 4-level DWT. 
The relative wavelet energy of the five sub-bands is 
calculated according to Eqs. (9) and (10), as shown in 
Fig. 10. A slight decrease and increase of the relative 
wavelet energy are found in d1 and d2, respectively. 
However, in the sub-bands of d3, d4 and a5, the 
relative wavelet energy shows an obviously increasing 
trend. Thus, the relative wavelet energy in different 
sub-bands can be used as the features for reflecting the 
changing trend of operating state of the gear. 

It can be seen from the above analysis that the 
relative wavelet energy based on DWT can essentially 
reflect the changing trend of the crack. However, the 
development process of the gear crack fault cannot 
be recognized, which makes early fault diagnosis 
difficult. Therefore, it is essential to introduce a 
method of pattern recognition for crack fault detection.
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Fig. 10.  Relative wavelet energy of the vibration signal

2.5  Pattern Recognition for Crack Fault Detection Based 
on an ART-2 Neural Network

On the basis of extracting the relative wavelet energy 
as an input eigenvector, an ART-2 neural network is 
proposed in order to recognize the changing trend 

of crack faults for early fault diagnosis. The process 
is mainly divided into four parts: normal state, mild 
wear, micro-crack and crack expansion. The analysed 
signal and the extracted features mentioned in Section 
2.4 are used here for the pattern recognition of an 
ART-2 neural network. A sample matrix is acquired 
with 130 samples and 5 features.

The neural network is designed as follows: The 
number of neurons in the F1 layer is 5 (n = 5), which 
are used to receive the features of each sample. The 
number of neurons in the F2 layer is 130 (m = 130) 
which are the same as the number of samples. The 
connected weights are initialized according to Eq. 
(25).

 w
d n

tij ji=
−

=
1

1
0

( )
, ,  (25)

where i = 1, 2, ..., n and j = 1, 2, ..., m. To obtain better 
classification results, many experiments have been 
performed to set the parameters mentioned in Section 
1.2, which are shown as follows: a = 10, b = 10, c = 0.1, 
d = 0.9, e = 10-8. θ is 0.4472, according to Section 1.2. 

Next, the sample matrix is classified with the 
ART-2 neural network. The threshold value ρ affects 
the number of categories. The bigger the threshold 
value is, the more precise the classification result is; 
the number of categories increases with the threshold 
value. Fig. 11 shows the relationship between the 
number of categories and the threshold value.
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Fig. 11.  Changes in the number of categories with the threshold 
value

The classification results with the different 
number of categories are shown in Fig. 12. In Fig. 12a, 
130 samples are almost classified into the 1st category; 
only a few of samples belongs to the 2nd category, 
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which is because the threshold value is low, and the 
degree of match is not high. In this case, the changing 
trend of crack faults cannot be identified. When the 
threshold value is increased, three and four categories 
can be obtained, shown in Figs. 12b and c. The stage 
change can be reflected briefly from the classification 
categories, but identifying the changing trend of crack 
faults remains difficult. A high threshold value causes 
the number of categories to be excessive, as is seen 
in Fig. 12d. The stage change is so confusing that the 
changing trend cannot be analysed. Therefore, neither 
too high nor too low a threshold value is suitable for 
the pattern recognition of the crack fault. 
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Fig. 12.  The classification results with the different number of 
categories; a) ρ = 0.9, b) ρ = 0.96, c) ρ = 0.967, and d) ρ = 0.996

Through many experiments, the best pattern 
recognition can be acquired when the threshold 
value ρ is set 0.97 to 0.974, following which five 
categories are classified, according to Fig. 10. The 
classification result with five categories is shown in 
Fig. 13a. According to the distribution of samples, 
the entire operating process can be divided into four 
stages to represent the development process of a crack 
fault from the normal state to crack expansion. In the 
first stage (samples 1 to 21), the gearbox enters into 
a normal working state, and the gear is in a healthy 
state. Therefore, the classification result is steady. The 
first stage can be regarded as the normal state. In the 
second stage (samples 22 to 60), a new category (i.e. 
the 2nd category) occurs. The sample category switches 
between the 1st and the 2nd categories. This stage is 
different from the first stage but has the characteristics 

of the first category. It indicates that the mild wear has 
just been formed, and the vibration increases slightly 
but not significantly. In the third stage (samples 61 to 
100), the samples are classified into the 3rd category. 
The category in this stage is clearly distinct from the 
first two stages. It indicates that the micro-crack may 
occur on the gear that makes the vibration greater 
than that of the second stage. Under the influence of 
the alternating load, the micro-crack will gradually 
expand, while the vibration clearly and simultaneously 
increases. In the fourth stage (samples 101 to 130), 
new categories occur (i.e. the 4th category and the 
5th category). Most of the samples in this stage are 
classified into the 4th category and a few samples are 
classified into the 5th category. According to the above 
analysis, the crack expansion exists in the fourth stage 
until the broken tooth fault occurs. It can be inferred 
that the crack fault has been serious from the start of 
101st sample. Shutdown and maintenance are needed 
for the gearbox. Therefore, early fault detection is 
achieved.
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Fig. 13.  The classification result by using: a) ART-2 neural network 
proposed in this paper, b) self-organizing competitive neural 
network, and c) self-organizing feature map neural network
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The effectiveness of the ART-2 neural network is 
verified through comparisons with a self-organizing 
competitive neural network and a self-organizing 
feature map neural network. The same data are used 
for these networks, and the recognition results are 
shown in Figs. 13b and c. Through a comparison 
with the result shown in Fig. 13a, it can be seen that 
the recognition result is not obvious. The state of the 
sample series cannot be classified effectively by these 
two networks. Furthermore, the changing trend is also 
complex. Therefore, the crack fault cannot be detected 
effectively, which demonstrates the effectiveness of 
the DWT and the ART-2 neural networks in this paper.

3  CONCLUSIONS

(1) For the detection of crack faults in a gearbox, 
a new approach using the discrete wavelet 
transform, and an adaptive resonance theory 
neural network is proposed in this paper. 

(2) The signal can be decomposed into a series 
of sub-bands based on the discrete wavelet 
transform; the relative wavelet energy is proposed 
to reflect the energy distribution of signals in 
different sub-bands. An adaptive resonance 
theory neural network based on unsupervised 
learning is proposed and designed for recognizing 
the changing trend of crack faults without known 
samples. 

(3) An experiment with a crack fault in the gearbox 
is implemented and analysed, using the proposed 
method. The results show that the relative wavelet 
energy extracted by discrete wavelet transform 
can extract the fault feature effectively. Through 
comparison with different unsupervised neural 
networks, it is verified that an adaptive resonance 
theory neural network can clearly recognize the 
changing trend from the normal state to a crack 
fault via crack fault detection with an appropriate 
threshold value. It provides a new tool for 
condition monitoring and early fault diagnosis of 
gearboxes.
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