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Mesh (pre)processing remains an important issue for obtaining useful meshes used in mechanical 
engineering, especially for finite element calculations. An efficient and robust combination of constrained 
mesh smoothing together with global optimization based algorithm is presented. In contrast to other 
“popular” mesh smoothing algorithms that use only local diffusion approaches to smoothing we propose 
Lagrange-Newton Sequential Quadratic Optimization (LNO) with constraints that can satisfy local and 
global cost functions, respecting posed constraints. Local cost function is modeled with local average edge 
length, while global cost function includes barycenter and global average edge length.

Experiments with triangular, quadrilateral, and mixed meshes show flexibility of the proposed 
method to achieve near ideal elements for given input meshes. Convergence is presented for several 2D 
and 3D meshes. Various additional goals can be mixed over the area of interest with applied weights. In 
contrast to other methods, unconstrained meshes still preserve their global shape while improving local 
quality. 
©2011 Journal of Mechanical Engineering. All rights reserved. 
Keywords: smoothing, sequential quadratic optimization, SQO, mesh structure, geometry, vertex, 
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0 INTRODUCTION

Mesh optimization methods are used in 
mechanical engineering applications areas such 
as solid and fluid dynamics, heat transfer, material 
science etc. The numerical investigation of these 
physical problems may require fine grained 
meshes over a single area of a physical model 
to resolve large solution variation. Even some 
commercial software still has problems with 
fine mesh generation, thus assuring effective and 
robust adaptive grid methods for such problems is 
still necessary. Currently, the majority of virtual 
reality applications use triangular meshes as their 
fundamental modeling and rendering is primitive. 
Such meshes can be the result of the modeling 
software, or may be an output of a scanning 
device. Their properties are often not considered 
as meshes with high quality. They have a non-
ideal mesh elements and bad vertex connectivity. 
With mesh optimization one can systematically 
achieve improved mesh quality that will provide 
a reliable analysis. The purpose of this paper is to 
show effective mesh optimization technique that 
ensures better mesh structure and is applicable 
to general meshes. Improvements in mesh are 
obtained by just repositioning of vertices without 
changing connectivity. I.e., the position of the 

mesh vertices is modified, but the mesh topology 
remains unchanged. While internal mesh vertices 
are freely movable, external vertices must often 
remain fixed on boundaries. Moving (or shifting) 
vertices can have a drastic effect on the quality of 
a mesh and it is more efficient than refinement and 
collapsing vertices especially when the translation 
amplitudes are small. Such mesh relaxation can 
be regarded as mesh smoothing as it results in a 
visually pleasing mesh that follows some local or 
global rules.

Our approach is based on the general 
theory of the Lagrange-Newton Optimization 
[1] (LNO) applied to the finite element meshing 
problems. The LNO method is one of the iterative 
quadratic methods. In these methods, each 
iteration step includes a solution of a quadratic 
optimization problem. LNO is a non-linear 
optimization and originates from Sequential 
Quadratic Optimization (SQO). Comparable 
smoothing methods are Laplacian [2], Lennard-
Jones [3], and Plaint [4]. Our smoothing technique 
differs from the above mentioned in several 
notable ways: (a) it is not restricted to triangular 
meshes, (b) includes global and local optimization 
cost functions, (c) preserves boundaries and can 
assure various geometrical constraints, (d) can 
be applied to 2D and 3D meshes as well as non-
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manifold ones, (e) cost function can be weighted 
and extended with additional functionals, (f) pre-
calculates average edge lengths at every iteration 
step. This ensures very fast convergence and 
flexible vertex movement.

In practical implementation of general 
purpose LNO theory the input mesh structure is 
processed using .OBJ or .STL file format. The 
source code is written in the C++ programming 
language. For the mesh handling, we used an 
open-source library (Open Mesh).

The motivation of the work presented is 
to propose and analyze reasonable cost functions 
and to compare how they perform in “benign” 
situations and to identify the most promising ones 
for application on difficult problems. This paper 
considers only meshes in which the vertices are 
moved with a fixed connectivity with applied 
movement constraints on the boundary vertices.

The paper is organized as follows. 
Section 1 describes the basics of a constrained 
optimization, Sequential Quadratic Optimization, 
Lagrange Newton Optimization, and connections 
between these two methods for general meshes. 
Section 2 discusses cost functions followed by 
differences between global and local constraint 
optimizations. In Section 3 several complex 
meshing examples are presented to demonstrate 
the effectiveness and the effect of the proposed 
mesh optimization method. After discussion of the 
results, conclusions are given in Section 4.

1 BACKGROUND

In a general optimization, the aim is to 
obtain the best result under given circumstances. 
The ultimate goal of an engineer‘s decisions is to 
minimize the effort required or to maximize the 
desired benefit. An optimization can be defined as 
a process of finding the conditions that give the 
maximum or the minimum value of a function 
[10]. From Fig. 1 it can be seen that if the point x*  
corresponds to the minimum value of the function 
f(x), the same point also corresponds to the 
maximum value of the negative of the function.

Constrained optimization techniques 
can be classified into two main categories: the 
direct and the indirect methods. The constraints 
in the direct methods are handled in an explicit 
manner, whereas in most of the indirect methods, 

the constraint problem is solved in a sequence of 
unconstrained minimization problems. Our mesh 
optimization problem is an indirect optimization 
technique using the method of sequential quadratic 
programming.

Fig. 1.  The minimum of f(x) and the maximum of 
- f(x) are the same values of x*

1.1 Sequential Quadratic Optimization

The SQO is considered as one of the best 
iterative optimization techniques. The method 
can be divided into two theoretical bases: (i) a 
set of nonlinear equations is solved by using the 
Newton’s method, and (ii) a Lagrangian function 
formed with Kuhn-Tucker conditions. Find the 
solution of:
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At the stationary point xs is L'(xs, λs) = 0, 
which satisfies the constraints and Kuhn-Tucker 
conditions.
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Thus, a non-linear system of equations is 
obtained:

Find (x*, λ* ) to satisfied L’(xs, λs) = 0.
To solve this problem, the Newton-

Raphson’s method can be used. In each 
iteration step, the next iterate solution is found 
as (x+h, λ+η). Each step is determined by  
L''(x,λ) [h η]T = ‒L′(x,λ), with:
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When one Newton-Raphson step is solved 
by x=x+h, λ=λ+η, ,and elimination of η:
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Eq. (3) gives the solution h and the 
corresponding Lagrange multiplier vector λ to the 
following problem:

Find h argmin q he= { }∈ ( ) .

In the next step, a constant 
q h h Wh f x hT T( ) = ⋅ + ( )1 2/ '  is defined and con-
straints lin n

ch |J h c x= ∈ + ( ) ={ } 0 .

1.2 Lagrange Newton Optimization

LNO is a kind of Sequential Quadratic 
Optimization [1]. The name Lagrange-Newton 
comes from the two steps: in the first one, a 
Lagrangian function is optimized followed by 
the second, the Newton step when a new solution 
achieved. The first efficient implementations were 
developed by Han (1976) and Powell (1977) [1]. 
Currently, it is considered as the most efficient 
method.

The LNO method includes a soft line 
search with a special type of the penalty function. 
The description with an update method for the 
Hessian matrix can be concluded. This makes 
the method a Quasi-Newton [1] with a good final 
convergence without having to implement second 
derivates.

First, a quadratic model q  of a cost func-
tion in neighborhood of x is considered,
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Corresponding to a linear model, the 
constraints: c x d c x J xc+( ) ≈ ( ) = ( ) + ( )δ δ δ .

First the step parameter α and matrix W(x) 
need to be calculated.

Next, the step length alpha must be 
calculated. If h turns out to be too large, the 
quadratic model may be a poor approximation of 
the true variation of the cost function. Therefore, a 
soft line search is made (a so-called exact penalty 
function) described in Fradsen [1]. For μi ≥ |λi| is:
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The choice of the penalty factor is divided 
into two parts: (i) the first iteration step μ ≥ |λ|, and 
(ii) the later iteration steps:

 µ λ µ λi i i i= +( ){ }max , / .1 2  (5)

The linear approximation for ci(y)=ci(x+αh) 
is:
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We accept the value of α that the point 
(α,π(α)) is below the dashed line indicated in Fig. 
2. The slope of the coordinate between (0,ψ(0))  
and (q,ψ(1)) is 10%. 
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Fig. 2.  Approximation ψ(α) of the line search 
function π(α)

To approximate π(t) on the interval 
[0, α] the second order polynomial 
P(t) = π(0) + Δt + (π(α) ‒ π(0) ‒ Δα) t2 ⁄ α2 is used. 
If the coefficient t2 > 0, then polynomial has a 
minimizer:
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The iteration procedure calculation of 
α = min{0.9α, max{β, 0.1α}} is repeated until 
π(α) ≥ π(0) + 0.1Δα.

For the next iteration step, it is required to 
update W(x), which for the first iteration equals I. 
In the next iteration steps:

 W x L xxx( ) = '' ( , ).λ  (9)

The change in the gradient of Lagrange’s 
function is:
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where xnew = x + αh. 
In each iteration, the curvature condition, 

yT (xnew‒x) > 0 must be checked If the condition 
does not satisfy Wnew = W, then for u = Wh:
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The whole procedure of the Lagrange 
Newton method is repeated until the stop criterion 
is satisfied. For x = xprev + αh.  the stop criterion is:
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where   is a set of active inequality and equality 
constraints, and   is a set of inactive inequality 
constraints.

2 COST FUNCTIONS DEFINITION

First, a definition of two optimization cost 
functions with the constraints: (i) local and (ii) 
global is given. The cost functions will be formed 
from mesh vertices. In our case, the functions 
will ensure similarity of mesh elements (equal 
triangles, quads, etc. in one 2D mesh structure) 
on the (i) local and (ii) global level. The most 
important constraint is that the vertices are moved 
with a fixed connectivity. That means the vertices 
must be connected with the same edges even after 
optimization. 

2.1 Local Cost Function

In the first step the equation of the local 
average length is defined:
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Let us begin with the vertex of the mesh 
structure vi,j. Operator || || is the Euclidian norm 
operator. Indices i and j define vertex position 
in the mesh structure. Index i represents 
the number in the mesh structure vertices  
(i = 1 to n) and index j represents any mesh 
element of the mesh structure ( j = 1 to m). xi,k 
(triangle, quad, etc.) are the edge lengths. The 
mesh elements in Fig. 3 are represented by indices 
i and k. Index k represents the kth edge of the local 
mesh element (k = 1 to p). There are three constant 
values for the input mesh structure: (i) number of 
all vertices n), (ii) number of all mesh elements 
m), and (iii) number of edges in one mesh element 
p).
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Fig. 3.  Triangular mesh elements presentation

In the second step the local cost function 
is defined:
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Eq. (13) presents the average local length 
of an input mesh element (triangle, quad, etc.). 
For variables introduced in Eq. (13) see Fig. 3.

2.2 Global Cost Function

In this cost function pre-calculated 
average edge lengths are used. The edge lengths 
are constant during iterations and can thus be 
considered as global. The lobal cost function is 
defined as:
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with the global average length (see Fig. 4):
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The set of nonlinear equations is solved 
using the Lagrange-Newton optimization method. 
The LNO method searches the design vector 
solution X = { }x x xn

T
1 1, ,,... , which minimizes 

f(x).
The design vector  x1 for i = 1 to n  is a set 

of optimized vertex coordinates. 

Fig. 4. Quadrilateral mesh elements presentation

2.3 Smoothing Methods

The most common smoothing method is 
Laplacian [2], where each vertex is moved to the 
centroid of its neighbors. Laplacian smoothing 
defines the number of adjacent vertices to vertex 
i with ℵ ={ }i j j i| shares an edge with  averaged 
over number of vertices αi i= ℵ1/ ,  and the force 
between vertices f(d) = 1. Vertices thus always 
attract each other regardless of the distance.

The Lennard-Jones potential [3] from 
chemistry describes attraction/repulsion behavior. 
Its smoothing function is f(d) = d‒13 ‒ d‒4. This 
model suffers from numerical instabilities.

The Pliant method with re-triangulation 
[4] uses f(d) = (1‒d4) ·exp(‒d4). The goal of the 
method is to create meshes with normalized edge 
length of 1. Reasoning behind this smoothing 
function is that if two vertices are too close to 
each other (d < 1), they repel, and if they are too 
distant (d > 1), they attract each other.

In our mesh smoothing optimization local 
(LCF) and global (GCF) cost function (Sec. 2.1 
and 2.2) optimization is proposed. The main 
advantage of our optimization method is global 
mesh structure optimization. That means that all 
the vertices in mesh structure are repositioned in 
one iterations step. Other methods use just one 
vertex (diffusion) repositioning per iteration step.

With the local cost function vertices of 
mesh structure are moved to ensure equal edge 
lengths of faces. In contrast to other smoothing 
methods our LCF method calculates average edge 
lengths in every iteration step for all faces. This 
ensures flexible vertices in the mesh structure.

For GCF we propose mesh smoothing 
with constant average edges lengths which 
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are calculated before smoothing begins. Our 
optimization algorithm can ensure approximately 
equal external form as the initial mesh structure 
even after optimization without boundary 
constraints. 

3 RESULTS

At the beginning the results of this 
optimization method with two different cost 
functions applied to many different data sets, 
ranging from small sets sampled from simple 
mesh structures to complex models with many 
vertices, are showed. For the small samples, the 
final vertices positions are known.

  

a)                        b)                        c)
Fig. 5. A simple triangular mesh structure; a) 

initial, b) local optimized after 5 iterations, and  
c) global optimized after 4 iterations meshes

 

a)                                    b)
Fig. 6.  Convergence of a) local after 5 and b) 

global cost functions after 4 iterations

We began with a simple triangular mesh 
with fixed boundary mesh elements. Then, the 
center vertex was moved into some extreme 
position (see Fig. 5). 

In the next step the LNO algorithm was 
applied. The expected result after LNO is to have a 
vertex in middle position of boundary area. In Fig. 
3 results for two different cost functions and LNO 
results for local (see Fig. 5b) and global (see Fig. 
5c) oriented cost functions are presented. In this 
case the results are equal. Using global iteration is 
favorable due to faster convergence.

The second “trivial” example for testing 
the LNO algorithm is quadrilateral mesh structure 
shown in Fig. 7.  

  

a)                        b)                        c)
Fig. 7.  Simple quadrilateral mesh structure; a) 

initial, b) local optimized after 4 iterations, and c) 
global optimized after 3 iterations meshes

 

a)                                    b)
Fig. 8.  Convergence of a) local after 4 and b) 

global cost functions after 3 iterations

The result of the LNO method are four 
equal square elements in the input mesh structure 
for the local and global cost functions. A similar 
result for the vertex positions after application of 
the LNO algorithm is expected. The difference 
between the local (Fig. 6b) and the global (Fig. 6c) 
optimization result is usually within few iteration 
steps.

Fig. 9.  Initial quadrilateral mesh structure with 
equidistant boundary mesh vertices

In Fig. 9 the “un”-optimized input mesh 
structure is presented. The mesh has 25 internal 
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vertices and 24 external (boundary) vertices that 
are fixed and equidistant. The LNO method for 
two different cost functions and the same con-
straints (local and global cost functions) is done 
first. The results for the local cost function are 
presented in Fig. 10a. For the global cost function, 
see Fig. 10b.  After optimization there are equal 
mesh elements (squares) in both optimization re-
sults. Despite different cost functions, the same 
vertices positions are obtained after 30 iteration 
steps for the local and global cost function.

 

a)                                    b)
Fig. 10.  a) Local; and b) global optimized mesh 

structure after 30 iteration steps

For all simple examples tested the optimal 
vertices positions are known. In the first case, four 
equilateral triangles and for the second and the 
third example equilateral squares were expected. 
Initial examples show the accuracy of the LNO 
algorithm that is implemented in C++ language. 

 

a)                                    b)
Fig. 11.  Convergence of a) local; and b) global 

cost functions after 30 iterations

3.1 Triangle Meshes

Let us begin with a more complex 
triangular mesh structure [5] optimization. In 
Fig. 12 a triangular mesh with several vertices is 
shown. The triangular mesh structure with two 
different cost functions and two different types 

of constraints was optimized. For LNO local 
and global cost functions were used. Different 
constraints were also used: (i) variable and (ii) 
fixed boundary mesh vertices. 

Fig. 12. Initial triangular mesh structure

For the mesh optimization, shown in Fig. 
12, different combinations of constraints and cost 
functions were attempted. In the first combination 
the local cost function and a constraint with 
variable boundary mesh vertices were used. The 
first combination result is presented in Fig. 13a 
after 50 LNO iterations. The resulting mesh is 
not very useful because the boundary vertices are 
moved and the triangle mesh elements are not 
equal.

In Fig. 13b an optimized mesh structure for 
the combination of the global cost function and a 
constraint with variable boundary mesh elements 
is presented. The mesh result is shown after 50 
LNO iteration steps. The second optimization 
result is better than the first one. In the second 
optimized mesh, there are equal triangle mesh 
elements but the boundary mesh vertices moved 
from the initial positions compared to the first 
optimized mesh case. These two meshes are 
theoretically and practically useless due to large 
deviations between the optimized and initial 
mesh structures. Nevertheless, they show the 
impact of local and global cost functions with 
unconstrained cases where most algorithms fail 
to preserve shape or volume. It can be concluded 
that local optimization is likely to fail if there are 
no boundaries or “features” to follow. The failure 
rate can be estimated with some “smoothness” 
measure that shows the difference between the 
initial and final mesh structure. 
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a)                                    b)
Fig. 13.  a) Local, and b) global optimizations 
after 50 iteration steps with variable boundary 

mesh vertices

 

a)                                    b)
Fig. 14.  Convergence of a) local, and b) global 

cost functions after 50 iterations

 

a)                                    b)
Fig. 15.  a) Local, and b) global optimizations 

after 30 iteration steps with fixed boundary mesh 
vertices

Large boundary vertices deviations in the 
previous optimizations are prevented with fixed 
boundary vertices in the following examples. Let 
us make combinations of the local and global 
cost functions inside fixed boundary vertices. 
With fixed boundaries, it is ensured that the 
initial boundary vertices remain fixed during 
optimization. In Fig. 15a the optimized mesh 

structure with the local cost function is shown. 
The mesh structure was reached after 30 iteration 
steps. The optimized mesh structure is composed 
of almost the same triangles but still with some 
exceptions which cannot be fixed with this 
optimization algorithm. In Fig. 15b the optimized 
mesh structure with the global cost function is 
presented. The global cost function ensures that 
the initial average edge length during optimization 
is preserved. The mesh structure converged after 
50 iterations. 

Both mesh results are similar (see Fig. 
15). The local cost function is faster because the 
variable edge length in a local optimization is 
more flexible.

 

a)                                    b)
Fig. 16.  Convergence of a) local, and b) global 

cost functions after 30 iterations

The final conclusion for triangle mesh 
structures is that the constraints in such optimi-
zations must be applied to prevent changes of 
the initial boundaries. Comparing the initial (see 
Fig. 12) and the optimized mesh structures (see 
Fig. 15a), it can be concluded that the mesh after 
optimization has a better distribution of the mesh 
triangle elements and almost equal mesh elements 
over the whole mesh structure.

3.2 Quad Meshes

In this section the LNO method is applied 
on a more complex quadrilateral mesh structure. 
Let us optimize the initial quadrilateral mesh 
structure shown in Fig. 12. The initial mesh 
structure was optimized with the local and global 
cost functions and two different constraints. 

For mesh optimization, two different types 
of cost functions and constraints were used. The 
first type was a combination of the local cost 
function and variable boundary mesh vertices. 
In the unconstrained optimization there was no 
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control over the mesh structure result. This means 
it was not known whether the initial mesh would 
roughly keep the initial boundary shape. As there 
were no constraints, the convergence of the LNO 
algorithm could not be expected.

Fig. 17.  Initial quadrilateral mesh structure

 

a)                                    b)
Fig. 18.  a) Local, and b) global optimizations 
after 70 iteration steps with variable boundary 

mesh vertices

 

a)                                    b)
Fig. 19.  Convergence of a) local, and b) global 

cost functions after 70 iterations

The result of the unconstrained mesh 
optimization after 70 iteration steps is shown in 
Fig. 18. In both meshes the boundary vertices 
were moved. The edge lengths are equal all over 
the mesh structure in both cases. However, in the 
global optimization case the mesh elements are 
almost square.

Let us look at the mesh optimization 
results with constraints as shown in Fig. 20. The 
constraints were fixed boundary vertices. With 

this constraint, the possibility that the optimization 
algorithm changed the initial boundary position 
is disabled. It can be concluded that the vertices 
positions in the mesh after the optimization 
algorithm in both cases are almost equal (all mesh 
elements are almost squares). The final result is 
reached faster (60 iteration steps) in the case of 
the local cost function optimization. With regard 
to the speed, the local optimization in this mesh 
structure performs better.

 

a)                                    b)
Fig. 20.  a) Local after 60 iterations, and b) 

global after 250 iterations optimizations with 
fixed boundary mesh vertices

 

a)                                    b)
Fig. 21.  Convergence of a) local after 60, and b) 

global cost functions after 250 iterations

First of all it can said that the LNO 
algorithm is convergent for constrained and 
unconstrained quadrilateral meshes. Like in the 
case of the triangle mesh optimization, constrained 
optimization gives better results (more squares in 
the mesh structure) compared to the unconstrained 
optimization. Finally, it can be concluded that a 
quadrilateral mesh optimization with local and 
global cost functions can be used in practice 
(FEM, CFD, etc.).

3.3 Numerical Examples

The following example presents an 
optimization of quadrilateral 2D mesh. The effect 
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of optimization algorithm is shown in Figs. 22 to 
26. The initial grid (see Fig. 22) consists of two 
blocks generated subgrids corresponding to a 
trapezoidal subdomain and its continuation to the 
annular region. Boundary vertices on the exterior 
boundary are fixed and other vertices are allowed 
to “slide” like in the Branets-Carey [6] numerical 
example.

 

a)                                    b)
Fig. 22.  Quadrilateral mesh structure; a) initial 
and, b) combination of barycenter and local cost 

functions

Fig. 23.  Convergence of mesh structure 
for combination of barycenter and local cost 

functions after 150 iterations

Fig. 22 presents the initial quadrilateral 
mesh, which is the same as in Branets-Carey 
[6]. For optimization external vertices in 
mesh structure are used. The cost function is a 
combination of local and barycenter cost functions 
with weights. Barycenter is cost function which 
tends to equal diagonal of quadrilateral element. 

The weight for the local cost function is wl = 0.3 
and the weight for barycenter is wb = 0.3. In Fig. 
22 optimized initial quadrilateral mesh structure 
with a combination of local and barycenter cost 
functions after 150 iterations is also demonstrated.

Minimization of quadrilateral mesh (see 
Fig. 22) cost function as the function of the 
number of iterations is presented in Fig. 23. 

 

a)                                    b)
Fig. 24.  Combination of a) barycenter with 

global, and b) local with barycenter cost 
functions of quadrilateral mesh structure

 

a)                                    b)
Fig. 25.  Convergence of mesh structure for:  

a) barycenter with global cost functions after 350, 
and b) local with barycenter cost functions after 

200 iterations

The above examples (Fig. 24) demonstrate 
two optimized mesh structures. The left 
example is the optimized mesh structure 
with a combination of the global with weight  
wg = 0.3 and barycenter with weight wb = 0.7 cost 
functions after 200 iterations. The right example 
presents the optimized mesh after 350 iterations 
with a combination of local cost function using 
weight wl = 0.3 and barycenter with wb = 0.3.
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In Fig. 25 convergence of global and local 
cost functions in combination with barycenter is 
shown. The convergence in graph (see Fig. 25a) 
is similar like the one in the graph depicted in Fig. 
23. The main differences are cost function values. 
It can be noticed that the curve in Fig. 25b shows 
faster convergence in comparison with the other 
two graphs.

 

a)                                    b)
Fig. 26.  Combination of a) global with 

barycenter and; b) local with barycenter and 
global cost functions of quadrilateral mesh 

structure

The last 2D mesh examples demonstrate 
mesh optimization combination of the global cost 
function with weight wg = 0.7 and barycenter with 
weight wb = 0.3 after 200 iterations. The final 
example presents the optimized mesh structure 
in combination of: global (wg = 0.3), local  
(wl = 0.3) and barycenter (wb = 0.3) cost functions 
after 70 iterations.

Fig. 27 presents convergences of cost 
functions for quadrilateral mesh structure 
optimization.

The goal is also to improve the quality 
of the 3D mixed mesh structure (see Fig. 28) 
optimized with global and local cost functions in 
combination with the barycenter cost function. 
There is the initial 3D mesh structure with main 
quad elements and some triangle elements on 
boundaries.

 

a)                                    b)
Fig. 27.  Convergence of a) global with 

barycenter cost functions after 200 and, b) local 
with barycenter and global cost functions after 70 

iterations

Fig. 28.  Initial mixed 3D mesh example

Fig. 29. Optimization of mixed mesh structure 
with local and barycenter cost functions

Fig. 30. Optimization of mixed mesh structure 
with global and barycenter cost functions
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Fig. 29 demonstrates the smooth 
behavior of mixed 3D mesh using local  
(wl = 0.6) and barycenter (wb = 0.4) cost functions. 
After the applied optimization quadrilateral mesh 
elements with equal diagonals and equal length of 
triangle element sides are obtained.

The mesh structure shown in Fig. 30 
is optimized with global (wg = 0.6) and local 
(wb = 0.4) cost functions. The main difference 
of previous mesh structure is in values of cost 
functions during iterations (see Fig. 31). 

Fig. 31 presents the convergence of local 
and global cost functions in combination with 
barycenter after 30 iterations.

 

Fig. 31. Convergence of mixed mesh structure 
for: a) local with barycenter, and b) global with 

barycenter cost functions after 30 iterations

3.4 Discussion

The examples show optimizations 
of triangular, quadrilateral and mixed mesh 
structures. For every mesh type our optimization 
algorithm shows improved mesh structure. This is 
important for triangular mesh structures which are 
currently used for majority applications.

For the optimization local and global cost 
functions are proposed. For the optimization of 
unconstrained mesh structure it is better to use 
global cost function, while the local cost function 
performs better on constrained mesh structures. 
The global based algorithm ensures mesh 
smoothing with respect to all mesh vertices in one 
iteration step. 

For a comparison of optimization quality 
of quadrilateral mesh structure Branets-Carey 
[6] mesh example was taken. The last example 
is 3D mixed mesh structure. There is the 3D 
mesh example with the main quadrilateral mesh 
elements and triangle mesh elements in external 
edges. In both cases optimizations repaired the 
mesh structure and have had cost functions 
convergence. Within optimization quads with 

equal diagonals and triangles with almost equal 
sides can be mixed.

Other popular mesh smoothing algorithms 
(Laplacian [2], Lennard-Jones [3], and Pliant 
[4]) are only local diffusion approaches.  At the 
same time the optimization algorithm in question 
possesses fast convergence. In other algorithms 
mixed mesh optimization examples were not 
observed.

4 CONCLUSIONS

This paper has focused on the applicative 
use of the constraints in mesh optimization and 
defined cost functions to ensure mesh quality.  
For testing the Lagrange Newton Optimization 
algorithm, several examples were used. For these 
examples, the optimal vertices positions were 
known.  The cost functions were stated in terms 
of vertices based geometric entities. The cost 
functions were implemented in a post-processing 
procedure and shown to be effective in achieving 
good element quality in several problems. 
The same cost functions that were effective 
on quadrilateral meshes were also effective on 
triangular ones. The speed and efficiency issues 
were not considered although it has been observed 
in practice that no significant time penalty 
applies to optimization with one cost function as 
compared to another.

To summarize briefly what was looked into 
regarding LNO. Firstly, the regularity of the LNO 
algorithm was demonstrated in examples with 
known results (see Figs. 5, 7 and 9). Triangular 
and quadrilateral meshes were tested. The tests 
have proven the regularity of the optimization 
algorithm. Secondly, the results of constrained 
and unconstrained mesh optimizations were 
compared. Examples are shown in Section 3.2 and 
3.3. Unconstrained optimizations are useless in 
the fields of FEM, CFD, etc. External (boundary) 
vertices and initial shape after unconstrained 
optimization are broken. Another problem is that 
the LNO method for some unconstrained cases 
is not convergent. It is also possible that the 
unconstrained optimization algorithms have no 
logical solution.  Lastly, it can be concluded that 
the LNO algorithm is useful for triangular and 
quadrilateral mesh structures. 



Strojniški vestnik - Journal of Mechanical Engineering 57(2011)7-8, 555-567

567Mesh Smoothing with Global Optimization under Constraints

The results for triangular meshes 
are achieved in a few iteration steps. In the 
quadrilateral mesh optimization, the priority of 
LNO is to ensure more equal mesh elements 
(almost all elements in the mesh structure were 
squares).
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