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0 INTRODUCTION

Structural dynamics problems may be categorized 
as direct or inverse problems. The direct problem 
consists of finding the response for a specified input 
or excitation. In the inverse problem the response is 
known then to develop a mathematical model of the 
system. The modelling problem may also be divided 
into two categories. In the first category the nature of 
the process is completely unknown. But in the second 
category, a considerable knowledge of the nature of 
the system may be available, whereas the particular 
values of the system parameters are unknown. In this 
paper the second category has been studied, where 
system equations are known or deducible from the 
physics of the system, with coefficients remaining to 
be estimated and modified as per the known initial 
dynamic characteristics.

In this context various workers [1] to [3] have 
reviewed the state of the art of system identification 
in structural dynamics. Developments and various 
methods for studying this important field are available 
in literature [4]. More recent methods and practical 
guidelines for linear systems may be found in the 
work of Schoukens and Pintelon [5]. Few researchers 
have studied the above issues but, continuous efforts 
are being made to refine and develop new models for 
identification problems. Some representative works 
on the subject are available in [6] to [9]. Accordingly 
related works done are discussed in the subsequent 
paragraphs.

Loh and Ton [10] have studied a system 
identification approach to detect changes in structural 
dynamic characteristics on the basis of measurements. 
They used the recursive instrumental variable 
method and extended Kalman filter algorithm for 
the identification procedure. Potential of using 
neural network to identify the internal forces of 
typical systems has been investigated by Chassiakos 

and Masri [11]. A localized identification of many 
degrees of freedom structures is investigated by Zhao 
et al. [12] and a memory-matrix based identification 
methodology for structural and mechanical systems is 
studied by Udwadia and Proskurowski [13]. Notable 
studies in this field have also been done by other 
workers [14] to [18]. Recently various authors [19] 
to [22] studied different procedures for the parameter 
identification problems of different structures and 
buildings. Budipriyanto [19] addresses the application 
of blind source separation technique for identifying 
dynamic parameters of a seismic-excited multi-
story building from its measured response. A new 
technique based on second order blind identification, 
called the modified cross-correlation method for 
the identification of the structures has been studied 
by Hazra et al. [20]. Rahmani and Todorovska 
[21] presented two new algorithms for 1D system 
identification of buildings during earthquakes by 
seismic interferometry using waveform inversion 
of impulse responses. Wave travel time analysis and 
layered shear beam models are used by Todorovska 
and Rahmani [22] for the system identification of 
buildings. Also an interesting and important review 
paper related to vibration based damage identification 
methods has been written by Fan and Qiao [23]. 

The objective of the structural dynamic analysis 
related to identification is to develop an analytical 
model of a structure which can be verified and adjusted 
by actual test results. However, this adjustment is 
not easy and can be done by computer with good 
convergence algorithm in terms of iterative cycles.

As discussed above usual method of identification 
uses the values of the parameters initially given 
to the structure by an engineer. It then modifies the 
original parameter values as per the observed values 
from test by an iteration process. The parameters 
involved in the said problems are traditionally 
considered as crisp or defined exactly. But, rather than 
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particular value, we may have only the uncertain or 
incomplete information about the parameters being 
a result of errors in measurements, observations, 
applying different operating conditions or it may 
be maintenance induced error, etc. So, for various 
scientific and engineering problems, it is an important 
issue how to deal with variables and parameters of 
uncertain value. Recently some effort has been made 
by various researchers throughout the globe to handle 
these uncertainties in terms of probabilistic, interval 
or fuzzy approach. Unfortunately, probabilistic 
methods may not deliver reliable results with required 
precision without sufficient data. Hence interval and 
fuzzy theory are becoming powerful tools for handling 
these uncertainties in recent decades.

Recently, few authors [24] to [27] have studied 
the solution methods for fuzzy and interval system 
of linear equations. They have considered the system 
of linear equations with fuzzy and interval numbers. 
Also vibration analysis of structures with imprecise 
material properties is also done by few authors. As 
such papers that are related to interval and fuzzy 
eigenvalue problems are discussed here. An excellent 
paper by Chen et al. [28] who has presented a new 
method for calculating the upper and lower eigenvalue 
bound of structures with interval parameter. Uncertain 
bunds of eigenvalue are also studied by Friswell et 
al. [29]. Dimarogonas [30] discussed the vibration 
problem using interval analysis. Cechlarova [31] 
investigated the eigenvectors of the interval matrix 
using max-plus algebra. Recently, modal analysis of 
structures by using interval analysis is studied by Sim 
et al. [32]. Qui et al. [33] presented a paper which 
gives detailed analysis for exact bounds for the static 
response of structures with uncertain-but-bounded 
parameters. Xia and Yu [34] studied modified 
interval and subinterval perturbation methods for the 
static response analysis of structures with interval 
parameters. Dynamic Analysis of structures with 
interval uncertainty has been explained by Modares 
and Mullen [35].

Fuzzy material and geometric properties have 
also been considered by various authors for finite 
element analysis. Both static and dynamic analyses 
of structures are excellently explained by Akpan et al. 
[36] using fuzzy finite element analysis. An important 
paper is that of Hanss et al. [37] who proposed the 
application of fuzzy arithmetic in the finite element 
analysis. Behera and Chakraverty [38, 39] investiagted 
various solution procedures for the static analysis 
of structures with fuzzy parameters. Very recently 
Sahoo and Chakraverty [40] presented fuzzified data 
based neural network modeling for health assessment 

of multistorey shear buildings. Also soft computing 
methods for model updating of multistory shear 
buildings for simultaneous identification of mass, 
stiffness and damping matrices have been investigated 
by Khanmirza et al. [41]. 

In view of the above, the present study proposes 
a systematic mathematical model for the identification 
of uncertain structural parameters using the vibration 
characteristics consistent with the uncertain 
experimental data. The method first uses the values of 
the uncertain structural parameters (viz. as triangular 
fuzzy numbers) initially given to the structure by 
an engineer. It then modifies the original parameter 
values as per the observed values from test by an 
iteration process using Taylor series expansion. It 
gives uncertain fuzzy bound of modified values of the 
parameters to have a better estimation of structural 
safety. In the following sections, first preliminaries are 
described, followed by the mathematical modelling 
and identification process. Then numerical examples 
for two storey frame structures are described. Finally 
discussion and conclusions are drawn.

1  PRELIMINARIES

In the following paragraph some definitions related to 
the present work are given.

Definition 1.1 Fuzzy number [42] and [43]
A fuzzy number U is convex normalised fuzzy set 

U of the real line R such that:

 { ( ) : [ , ], },µU x R x R→ ∀ ∈0 1  

where, μU is called the membership function of the 
fuzzy set and it is piecewise continuous.

Definition 1.2 Triangular fuzzy number (TFN)
A fuzzy number U is said to be triangular if:

i. There exists exactly one x R0 ∈  with  μU (x0) = 1 
(x0 is called the mean value of U), where μU is 
called the membership function of the fuzzy set.

ii. μU (x) is piecewise continuous.
The membership function μU of an arbitrary 

triangular fuzzy number U = (a, b, c) may be defined as 
follows:
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Any arbitrary triangular fuzzy number U = (a, b, c)   
can be represented with an ordered pair of functions 
through α–cut approach as:

 [ ( ), ( )] [( ) , ( ) ],u u b a a c b cα α α α= − + − − +

where α ∈[ , ].0 1
This satisfies the following requirements:

i. u( )α  is a bounded left continuous non-decreasing 
function over [0, 1].

ii. u ( )α  is a bounded right continuous non-increasing 
function over [0, 1].

iii. u u( ) ( ), .α α α≤ ≤ ≤0 1

Definition 1.3 Fuzzy arithmetic [24] and [25]
As discussed above, fuzzy numbers may be 
transformed into an interval through α–cut approach. 
So, for any arbitrary fuzzy number x x x= [ ( ), ( )],α α  
y y y= [ ( ), ( )]α α  and scalar k, we have, x = y if and 

only if x y( ) ( )α α=  and x y( ) ( )α α= .

Addition: x y x y x y+ = + +[ ( ) ( ), ( ) ( )].α α α α

Subtraction: x y x y x y− = − −[ ( ) ( ), ( ) ( )].α α α α

Multiplication:   
x y a a a a a a a a× =  min max( , , , ), ( , , , )1 2 3 4 1 2 3 4 ,

where,
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2 MATHEMATICAL MODELLING  
AND METHOD OF IDENTIFICATION

To investigate the present method, a two-storeyed 
frame structure, as shown in Fig. 1 is considered. 
However the general multistorey frame structure 
modeling may easily be extended from this example 
of two storey frame. This is investigated for the sake 
of demonstration of the procedure. The uncertain floor 
mass, m  is assumed to be the same and the uncertain 
column stiffnesses    k k k k1 2 3 4, , and   (as labelled in 
Fig. 1) are the structural parameters which are to be 
identified. Corresponding uncertain dynamic equation 
of motion in matrix form for two degrees of freedom 
system may be written as:

 [ ]{ } [ ]{ } ,� ��� � �M x K x+ = { }0  (1)

where [ ]
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0

 is a 2×2 fuzzy mass matrix,
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is a 2×2 fuzzy stiffness matrix and { }X = ×2 1  is a 
fuzzy vector of displacements.

Considering the simple harmonic motion, Eq. (1) 
can be written as a fuzzy eigenvalue problem:

 [ ]{ } [ ]{ }.    K X M X= λ  (2)

By using the parametric form of fuzzy numbers, 
Eq. (2) will be:

 

[ ( ), ( )]{ ( ), ( )}

[ ( ), ( )][ ( ), ( )]{ ( ), ( )}.

K K X X

M M X X

α α α α

λ α λ α α α α α

=

=

Fig. 1.  Two storey frame structure

Now our aim is to solve the above fuzzy 
eigenvalue problem to get the lower and upper bounds 
of the fuzzy eigenvalues. 

With the above in mind, let us proceed now 
with the identification procedure which can handle 
the uncertain data. Let us assume that the uncertain 
structural parameters to be identified are denoted 
by Pi ,  for i = 1, 2, 3, 4. The uncertain value of the 
structural parameters of the prior original structure 
given initially are denoted by ,~̂

iP  for i = 1, 2, 3, 4 and 
the corresponding fuzzy eigenvalues are symbolized 
as, )~̂(~̂ Piλ .

Next the well-known Taylor’s series expansion of 
the fuzzy modal parameters about the initial estimates 
of the parameters give;
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~̂,~̂,~̂,~̂~̂  and 

[ ]S  is the fuzzy eigenvalue partial derivative matrix, 
[ ( ) / ( )]∂ ∂ λ P .

Let us now denote, experimentally measured 
uncertain eigenvalues by { }.λE  It is interesting to note 
here that if the values of the initial and experimental 
parameters are equal, then no modification is done. 
But if the values are different then we denote this 
difference by:

 { } { }






−= λλλδ

~̂~~
E . (4)

Next, let us denote the modified parameters as:

 { } [ , , , ] ,    P P P P P T= 1 2 3 4  (5)

and, in general, for n–degrees of freedom system the 
expression for the uncertain modified parameters  from 
Eq. (3) can be written as:

 { } [ ]{ }λδ~~~̂~ QPP +






= , (6)

where
    Q S S ST T  =    ( )  

−1 .

In order to have the uncertain bounds of the 
identified parameters with acceptable accuracy, here 
an iterative procedure is proposed. After finding 
the modified parameters from Eq. (6), these are 
substituted in Eq. (2) to get revised uncertain vibration 
characteristics viz. { }λ .

The new fuzzy eigenvalue partial derivative 
matrix { }S  is then obtained using the current values of 
{ }P  and { }λ . From Eq. (6), the modified parameters 
{ }Pt  are again found by utilizing the above values and 
then the new (revised) estimates of fuzzy eigenvalues 
are obtained as { }λ t .

If the vector norm of  { }λ  and { }λ t  is less than 
some specified accuracy then the procedure is stopped 
and the revised parameter viz. { }Pt  is identified, 
otherwise the next iteration is to be followed.

3  NUMERICAL RESULTS

As mentioned earlier, the procedure is demonstrated 
for a two storeyed frame structure. Implementing the 
above procedure with the proposed iterative cycle 
for the revised uncertain frequencies and parameters, 
computer programs have been written and tested for 
the above problem. 

In the above example problem, floor masses,

 m = ( , , )3550 3600 3650  kg ,

and the column stiffnesses:

 

 

 

k k

k k
1 2

3 4

5350 5400 5450

3550 3600 3650

= =

= =

( , , )

( , , ) ,

 N/m,

 N/m

have been taken as triangular fuzzy number. Through 
α–cut these may represented as:

 

m

k k

= + − +

= = + − +

[ , ]

[ , ]

50 3550 50 3650

50 5350 50 54501 2

α α

α α

kg,

N/m, 

annd  k k3 4 50 3550 50 3650= = + − +[ , ]α α N/m.

From the prior mass and stiffness parameters, the 
uncertain vibration characteristics may be computed 
from Eq. (2) as:

  λ λ1 20 9314 1 1 0703 5 8906 6 6 1128= =( . , , . ) ( . , , . ).and

Using the above sets of initial data of the fuzzy 
parameters with different uncertain experimental 
(hypothetical) test data for the frequencies, viz.  
λ1 0 65 0 7 0 75E = ( . , . , . )  and λ2 5 3 5 5 5 7E = ( . , . , . )  (i.e. 

first and second experimental eigenvalues of the 
system) the bounds of the stiffness parameters of the 
structure have been identified and these are reported 
in Table 1. Corresponding plot for identified stiffness 
parameters are depicted in Figs. 2 and 3.

Similarly, another set of experimental 
(hypothetical) fuzzy data of the natural frequencies 
are considered as:

  λ λ1 20 88 0 9 0 92 5 3 5 5 5 7E E= =( . , . , . ) ( . , . , . ).and

The identified bounds of the stiffness parameters 
are tabulated in Table 2 and the revised frequencies 
are also shown in Table 3. Corresponding plot for 
identified stiffness parameters are given in Figs. 4 and 
5.
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Table 1.  Identified lower and upper bounds of stiffness parameters 

Bounds of stiffness parameters [N/m] α = 0 α = 0.5 α = 1

k k1 2= 5232 5274 5316

k k1 2= 5400.5 5358 5316

k k3 4= 3614.5 3629.8 3645

k k3 4= 3674.7 3659.9 3645

Fig. 2. Identified lower and upper bounds of stiffness parameter k1  [N/m]

Fig. 3.  Identified lower and upper bounds of stiffness parameter k3  [N/m]

4  DISCUSSIONS AND CONCLUSION

The present procedure systematically modifies and 
finally identifies the uncertain structural parameters, 
viz. the column stiffness for a frame structure. It uses 

the prior (known) estimates of uncertain parameters 
and corresponding uncertain vibration characteristics.  
Then the algorithm estimates the bounds of present 
parameters utilizing the known uncertain dynamic 
data from some experiments. Proposed numerical 
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Table 2. Identified lower and upper bounds of stiffness parameters 

Bounds of stiffness parameters [N/m] α = 0 α = 0.5 α = 1

k k1 2= 5286 5324 5362

k k1 2= 5440 5401 5362

k k3 4= 3590.6 3607.7 3624.5

k k3 4= 3657.6 3641 3624.5

Fig. 4.  Identified lower and upper bounds of stiffness parameter k1  [N/m]

Fig. 5.  Identified lower and upper bounds of stiffness parameter k3  [N/m]

Table 3.  Experimental and revised lower and upper bounds of frequencies

α λ1E λ1E λ2E λ2E λ1R λ1R λ2R λ2R

0 0.88 0.92 5.3 5.7 0.9430 1.0552 5.8884 6.1306
0.5 0.89 0.91 5.4 5.6 0.9706 1.0267 5.9476 6.0688
1 0.9 0.9 5.5 5.5 0.9985 0.9985 6.0078 6.0078
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procedure is tested by incorporating two sets of 
data. The uncertainties present in the parameters are 
considered as triangular convex normalized fuzzy 
sets. It is worth mentioning that if the input data set 
viz. the design frequency is near to the experimental 
frequency data then the modified stiffness data 
bound has less width. This is expected as the design 
and experimental frequency are close means that the 
structure has not deteriorated much. On the other hand 
when the experimental data is taken a bit far from the 
deigned one then the estimated stiffness parameters 
give larger bound. These effects may be clearly seen 
from Tables 1 and 2.  It may be noted that the accuracy 
of the results depends upon many factors viz. on the 
uncertain bound of the experimental data, initial design 
values of the parameters, the fuzzy computation, norm 
as defined etc. The present investigation may be a 
first of its kind to handle the identification procedure 
for uncertain data. Although the method has been 
demonstrated for a simple problem of two storey, 
but the method may very well be extended to higher 
storey frames and other structures in a similar fashion.
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