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In this paper, we propose an approach for vibration signal-based fault detection and diagnosis 
system applying for induction motors. The approach consists of two consecutive processes: fault detection 
process and fault diagnosis process. In the fault detection process, significant features from vibration 
signals are extracted through the scale invariant feature transform (SIFT) algorithm to generate the faulty 
symptoms. Consequently, the pattern classification technique using the faulty symptoms is applied to 
the fault diagnosis process. Hence, instead of analyzing the vibration signal to determine the induction 
motor faults, the vibration signal can be classified to the corresponding faulty category, which presents 
the induction motor fault. We also provide a framework for the pattern classification technique that is 
applicable to SIFT patterns. Moreover, a comparison with two other approaches in our previous work is 
also carried out. The testing results show that our proposed approach provides significantly high fault 
classification accuracy and a better performance than previous approaches. 
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0 INTRODUCTION

Systems for detection and diagnosis of 
malfunctioning machines play an important 
role in industrial fields. They are critical in the 
manufacturing industry, since a bad manufacturing 
machine may produce many defective products 
dangerous to consumers. An investigation for the 
earliest possible detection for a machine before it 
becomes faulty is therefore compulsory. 

The approaches for fault detection and 
diagnosis consist of two processes: fault detection 
process and fault diagnosis process as shown 
in Fig. 1. The fault detection process analyzes 
the measured signals such as vibration, noise, 
acoustic sound, pressure or bases on the analytical 
parameters to generate the faulty symptoms, 
which can be analytical symptoms or heuristic 
symptoms [1] to [2]. The faulty symptoms are the 
input of the fault diagnosis process that determines 
the size, type and location of the system fault [3].

Depending on a specific application, 
simple or complex techniques for fault detection 
process and fault diagnosis process can be applied. 
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fault
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process model
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Fig. 1.  General structure of model-based fault 
detection and diagnosis

For example, limit checking techniques are 
widely used for simple fault detection systems. 
However, they have two disadvantages: it is 
impossible to predict the fault in advance since the 
fault has already occurred when detected and the 
methods do not provide the type, size and location 
of faults, which can be provided by applying 
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model-based fault detection technique such as 
approaches in [4] to [6].

The Induction motor is a three phase AC 
motor and is the most widely used machine. Its 
characteristic features are: simple and rugged 
construction, low cost and minimum maintenance, 
high reliability and sufficiently high efficiency, 
it needs no extra starting motor and need not be 
synchronized. During the operation; however, 
there are several types of faults frequently 
happening such as: bearing faults, gear faults, rotor 
bar eccentricity and stator winding failures and 
misalignment. The fault detection and diagnosis 
methods for induction motors are wide such as 
current spectrum analysis, vibration analysis and 
acoustic analysis for different types of motor fault 
identification [7] to [10]. Since previous research 
showed that more than 40 percent of faults in 
induction motors are related to bearing faults [11], 
a number of research works have been done with 
bearing fault detection using wavelet technique 
for vibration data [12] to [13]. Gear faults are 
also common in the induction motor. In [14], the 
authors used an adaptive method for vibration to 
detect the gear tooth faults. Neural networks and 
classification techniques also widely used in fault 
diagnosis [15] to [17].

In this paper, a new approach for fault 
detection and diagnosis system for induction 
motors in which the fault detection process is 
based on vibration signals and the fault diagnosis 
process is based on the pattern classification 
technique [18], is proposed. Since the vibration 
of the induction motor is the root cause of motor 
faults [19], the vibration signal can be analyzed to 
indicate the state of the motor. The characteristics 
of vibration signals from the motor in a normal 
condition are different from those of in a faulty 
condition. The most common fault detection 
techniques based on vibration signal focus on 
the vibration signal’s frequencies and magnitude, 
which are dealing with one dimension domain  
[7] to [16], [20] to [21]. In this paper, however, 
other features of the vibration signals that are local 
features by translating the vibration signal into an 
image (two dimensions), are explored. The local 
features from the image are extracted using the 
SIFT algorithm. The SIFT features, then, are used 
for the pattern classification process.

The rest of the paper is organized as 
follows: In Section 1, a short explanation of SIFT 
algorithm is briefly introduced. Section 2 covers 
the vibration signal to image translation, feature 
extraction, framework for pattern classification, 
and discussion of SIFT feature advantages. The 
experimental setup and vibration signal database 
for the fault detection and diagnosis systems are 
discussed in Section 3. Results and discussions are 
provided in Section 4, and conclusions in Section 
5.

1  SCALE INVARIANT FEATURE 
TRANSFORM (SIFT)

The SIFT algorithm consists of four main 
filtering stages, which are: scale-space extreme 
detection, keypoint localization, orientation 
assignment and keypoint descriptor. In this 
section, the algorithm containing these four steps 
is briefly introduced. The details of the SIFT 
algorithm can be found in [22].

1.1 Scale-Space Extrema Detection

The scale space called L(x, y, σ) is defined 
by the following function:

 L(x, y, σ) = G(x, y, σ) * I(x, y) ,  (1)

where, ‘*’ notation is the convolution operator, 
G(x, y, σ) is a variable-scale Gaussian kernel 
and I(x, y) is the intensity of the pixel, which its 
coordinates are x and y. The SIFT is one such 
technique which locates scale-space extrema 
from Gaussian image differences called D(x, y, σ)  
given by:

 D(x, y, σ) = L(x, y, kσ) ‒ L(x, y, σ) ,  (2)

where k = 1, 2, 3, ... is used to present the different 
scale space. To detect the local maxima or minima 
of D(x, y, σ), each point is compared with its 
eight neighbors on the same scale, and its nine 
neighbors on the up and down scale. If this value 
is larger than all 26 neighbors it is a maxima, if it 
is smaller then it is minima.

1.2 Keypoint Localization

The location of extrema, z, is given by:
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If the function value at z is below a 
threshold value then this point is discarded. This 
removes extrema that has a low contrast. Edge 
extrema that have large principle curvatures but 
small curvatures in the perpendicular direction are 
eliminated. Using 2×2 Hessian matrix H computed 
at the location and scale of the keypoint, principle 
curvatures which are proportional to eigenvalue of 
H can be computed.
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The elimination criteria can be constructed 
as follows:
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where σ is Eigenvalue with larger magnitude, and 
β is Eigenvalue with smaller magnitude. If this 
inequality is true, the keypoint is rejected.

1.3 Orientation Assignment

This stage aims to assign a consistent 
orientation to the keypoints based on local image 
properties. The keypoint descriptor is represented 
relative to this orientation because it is invariant 
to rotational movements of the keypoints. The 
approach taken to find an orientation has five 
steps described below: 

Step 1: Use the keypoint scale to select the 
Gaussian smoothed image L. Compute gradient 
magnitude, m(x,y) and orientation, θ(x,y) by two 
following Eqs.:

 m x y
L x y L x y

L x y L x y
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Step 2: Form an orientation histogram from 
gradient orientations of sample points.

Step 3:  Locate the highest peak in the 
histogram.

Step 4: Use this peak and any other local 
peak within 80% of the height of this peak to 

create a keypoint with that orientation. Some 
points will be assigned multiple orientations. 

Step 5: Fit a parabola to the three histogram 
values closest to each peak to interpolate the peaks 
position.

1.4 Keypoint Descriptor

The local gradient data, used above, is 
also used to create keypoint descriptors. The 
gradient information is rotated to line up with the 
orientation of the keypoint and then weighted by a 
Gaussian kernel with a variance of keypoint scale 
multiplied by 1.5. This data is then used to create 
a set of histograms over a window centered on the 
keypoint. Keypoint descriptors typically use a set 
of 16 histograms, which are aligned in a 4×4 grid, 
each with eight orientation bins, one for each of 
the main compass directions and one for each of 
the mid-points of these directions. These results in 
a feature vector contain 128 elements.

2 METHODOLOGY

2.1 Vibration Signal to Image Translation 

The proposed approach deals with 
extracting the features of a vibration signal in two-
dimension domain. By translating the vibration 
signal into an image, the local features are 
extracted using the SIFT algorithm. To translate 
the vibration signal into an image, the amplitude 
of each sample of vibration signal is first 
normalized ranging from 0 to 255, which is the 
significant pixel intensity range for a gray image. 
The intuitive explanation for the translation is 
indicated in Fig. 2.  In this figure, the vibration 
signal has M multiplying by N samples where 
the M×N term is the size of the image (M and 
N values are the row and column of the image, 
respectively). The M and N values are dependent 
on the length of the vibration signal. However, 
the computational complexity of the proposed 
approach will be directly proportional to those 
values. Therefore, if the complexity is the matter, 
M and N values should be chosen as small as 
possible but they should be large enough in order 
to retain the most significant features from the 
origin. A recommendation for M and N values is: 
M = 128; 256 or 512 and N = 128; 256 or 512. 
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The normalized amplitude of each sample point of 
the vibration signal becomes the intensity of the 
corresponding pixel in the image. The mapping 
from normalized amplitude to an equivalent pixel 
is clearly presented in Fig. 2. The coordinate of 
the corresponding pixel for the ith sample in the 
vibration signal is pixel ( j, k) where j = floor (i/N) 
and k = modulo (i/N). 

An example of a vibration signal from a 
normal motor translated to a gray image is given 
in Fig. 3. In this example, the vibration signal has 
16384 samples (equivalent to 2.048 s) with the 
sampling rate of 8000 Hz. The translated image 
size is 128×128 (i.e. 16384 pixels).

2.2. Local Feature Extraction and Texton 
Dictionary

The SIFT algorithm is used to extract a 
number of local features from a gray image. Each 
local feature is a 128-dimension vector, which 
contain information of location of vector, weight 

and orientation of each dimension.  The details of 
the SIFT algorithm to extract local feature can be 
found in [22].

In the proposed fault detection and 
diagnosis for induction, it has been assumed 
that all kinds of faulty vibration signals of the 
induction are known and available in the database 
(faulty categories). To determine the status of the 
motor, the testing vibration signal of the motor 
should be classified into the equivalent faulty 
category. For classifying, a texton dictionary 
for each faulty category is used. Each texton 
dictionary contains the most significant features 
for that faulty category that are distinctive among 
the faulty categories. The features from the testing 
signal will be compared with features in texton 
dictionaries for classifying based on a pattern 
classification framework, which will be detailed 
in Section 2.3.

In the fault detection process, there are 
two important steps that are feature extraction 
and texton dictionary creation based on the 

Fig. 2. Vibration signal to image translation scheme

Fig. 3. An example of a vibration signal translated into the 128×128 gray image (M = 128 and N = 128) 
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images translated from the vibration signals. As 
mentioned above, for the feature extraction, the 
SIFT algorithm is applied for images to generate 
the 128-dimension feature vectors. The feature 
vectors are considered as the features of interest. 
For the texton dictionary creation, a number 
of images translated from vibration signals for 
each faulty category are used to create the texton 
dictionary for that category. The adaptive shift 
clustering algorithm, which is presented in [23] 
to [25] is utilized to generate C centroid feature 
vectors (referred to textons); therefore, the C 
centroid feature vectors are representative of the 
category. This collection of C centroid feature 
vectors is; therefore, called “texton dictionary” 
for the faulty category. The value C for each 
category is proportionate to the number of vector 
feature generated (e.g. each subset of 100 random 
feature vectors in one category is clustered into 
10 textons). Hence, value C for each category is 
different. The texton dictionary creation procedure 
is illustrated in Fig. 4 (assuming that there are P 
faulty categories considered).

2.3 Pattern Classification Framework in Fault 
Diagnosis

In the fault diagnosis process, the feature 
vectors extracted from the SIFT algorithm as 
the faulty symptoms are used. Using a pattern 
classification technique, the current vibration 
signal should be classified to the corresponding 
faulty category through a pattern classification 
framework. The pattern classification framework 

utilizing the feature vectors and the texton 
dictionary is proposed as follows:

Step 1: Translate the vibration signal to the 
image.

Step 2: Apply the SIFT algorithm for this 
image to generate the 128-dimension feature 
vectors.

Step 3: Calculate the Euclidean distance 
between each feature vector and each centroid 
feature vector in the texton dictionary for each 
faulty category. With two 128-dimension vectors 
V1 and V2 with the coordinates { , ,..., }V V V1

1
1
2

1
128   

and { , ,..., }V V V2
1

2
2

2
128 , respectively, the Euclidean 

distance can be calculated as follows:
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i
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2

1

128

= −
=
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Step 4: Find the category containing the 
centroid feature vector that makes the distance 
minimal. The centroid feature vector is called the 
“match” vector.

Step 5: Apply for entire feature vectors 
of the vibration signal; therefore, the histogram 
for the “match” vector is created for each faulty 
category.

Step 6: Classify the vibration signal to the 
equivalent faulty category based on the created 
histogram. The vibration signal belongs to the 
category with the highest number of “match” 
vector.

The simulation of the detail algorithm is 
clearly presented in Fig. 5. 

Fig. 4.  The model for creating the faulty database
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2.4  Advantages of SIFT Features

As mentioned in [22], the SIFT features 
have some strong characteristics comparing to 
other local features such as: invariant to image 
scaling and rotation, partially invariant to change 
in illumination and 3D camera viewpoint, and 
highly distinctive.

Machine operating in industrial plants 
work in noisy environments, and as a result, the 
useless noise added in the recorded signals is 
unpreventable. As such, it may be an obstacle for 
analyzing the vibration signals. However, when 
the vibration signals are translated into images, 
the added noise is considered as the illumination 
of the light to the image. Hence, the effect of 
noise to the signal is removed when using SIFT 
features. When using pattern classification 
technique to classify signals, the highly distinctive 
characteristic of SIFT feature provides an 
efficient classification with high accuracy. Those 
advantages of the SIFT algorithm motivated us 
exploiting its output features for induction motor 
fault detection using the classification technique.

3 EXPERIMENT SETUP AND TRAINING AND 
TESTING DATABASE 

3.1 Experiment Setup

The experiment was setup under a self-
designed test rig. The experiment consists of 
motor, pulleys, belt, shaft and fan with changeable 
blade pitch angle as shown in Fig. 6 (Yang et 
al, 2006). In the experiment, six 0.5 kW, 60 Hz, 
4-pole induction motors are used to create the 

data needed under full load conditions. One of 
the motors operates under normal as a benchmark 
for comparison with faulty motors. The others 
are faulty motors: bowed rotor, broken rotor 
bar, bearing outer race fault, rotor unbalance, 
adjustable eccentricity motor (misalignment), and 
phase unbalance as shown in Fig. 7. Therefore, 
there are eight kinds of vibration signal categories 
called “faulty categories”; they are: angular 
misalignment, bowed rotor shaft, broken rotor bar, 
faulty bearing (out race), rotor unbalance, normal 
motor, parallel misalignment and phase unbalance.

Fig. 6. Experiment setup

The conditions of faulty induction faulty 
motors are described in Table 1. The motor’s load 
can be changed by adjusting the blade pitch angle 
or the number of blades. An accelerometer was 
used to measure the vibration signals of vertical 

Fig. 5. Framework for classification by model
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direction. In this paper, the vibration signals are 
used to evaluate the proposed fault detection and 
diagnosis algorithm. The sampling frequency of 
the experiment is 8 Khz; therefore, the maximum 
frequency obtained is 4 Khz. The vibration signal 
contains low frequency components; hence, 
vibration signal with 8000 Hz sampling rate is 
fully reasonable to consider. Each vibration signal 
consists of 16384 data points.

3.2 Training and Testing Database

For an evaluation of the proposed fault 
detection and diagnosis, two vibration signal 
databases are required: training and testing 
databases. The training database is used for 
creating the texton dictionary, while the testing 
database is for testing the efficiency of the 
proposed approach based on the accuracy of the 
classification. In this experiment, eight vibration 
signals were collected from each faulty category 

from which two random signals for training 
database and six the other for testing database. 
So the testing database consists of 48 vibration 
signals with six signals for each category, while 
the training database has 16 signals with 2 signals 
for each category. An example of waveforms of 
eight vibration signals from eight faulty categories 
and their translated images is illustrated in Fig. 8.

As mentioned above, the training database 
to construct the texton dictionary is used to 
represent the main characteristics of each category 
by a collection of centroid feature vectors after 
using the clustering algorithm. A trained vibration 
signal from the testing database is analyzed to 
classify in the corresponding faulty category using 
our proposed pattern classification framework. 
Each faulty category name is denoted as follows. 
Am: Angular misalignment, Br: bowed rotor shaft, 
Brb: broken rotor bar, Fb: faulty bearing, Mu: 
rotor unbalance, No: normal motor, Pm: parallel 
misalignment and Pu: phase unbalance.

Fig. 7. Faults on induction motor

Table 1. Description of faulty induction motor

Fault condition Fault description Others
Broken rotor bar Number of broken bar: 12 Total number of 34 bar
Bowed rotor Maximum bowed shaft deflection: 0.075 mm Air-gap: 0.25 mm
Faulty bearing A spalling on outer raceway #6203
Rotor unbalance Unbalance mass on the rotor (8.4 g)
Eccentricity Parallel and angular misalignments Adjusting the bearing pedestal
Phase unbalance Add resistance on one phase 8.4%
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4   RESULTS AND DISCUSSIONS

In the experiment, a classification for faulty 
vibration signals from machines is implemented. 
In our test, 10 trials were carried out.  For each 
trial, two randomly selected signals are for training 
database and six others for testing, therefore, the 
testing database consisting of 48 vibration signals 
of eight faulty signal categories (Am, Br, Brb, 
Fb, Mu, No, Pm, and Pu) with six signals for 
each, are used for training. Each vibration signal 
in the testing database is used to extract the SIFT 
features. The classification framework proposed 
in section 2.3 is applied with the features and 
texton dictionary in order to classify the vibration 
signal to the corresponding faulty category.

Fig. 9 depicts an example of a classification 
for a vibration signal in the testing database, 
which is supposed to classify in the broken rotor 
bar category. In this example, 610 feature vectors 
are created after using the SIFT algorithm. The 
figure indicates that in the 610 feature vectors, 
there are 30 “match” vectors for Am, 4 for Br, 207 
for Brb, 20 for Fb, 68 for Mu, 123 for No, 33 for 
Pm, and 125 for Pu categories discovered in the 
texton dictionaries, respectively. The histogram 
indicates that the trained signal is classified in the 
broken rotor bar category because of the highest 
“match” vectors number. 

Table 2 provides a local feature distribution 
of each signal for each faulty vibration signal 
classification when a representative of each 
category is trained. The percentage of local 

Fig. 8. Waveforms of eight vibration signal samples from eight faulty categories and their equivalent 
translating images
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feature distribution represents the probability 
of the number of features of training vibration 
signal falling into one faulty category. The highest 
percentage number indicates the corresponding 
faulty categories that the vibration signal belongs 
to (the highest number in a row in Table 2). In 
Table 2, eight arbitrary vibration signals from 
eight faulty categories from testing database are 
selected for training and they are all correctly 
recognized. 

Table 3 shows the final classification results 
for 10 trials. The average of total classification 
accuracy after 10 trials reaches 97.9%, which 
is considerably high. There are four among ten 
trials even giving 100% of accuracy. In the worse 
trial (trial #7), the classification accuracy of 

93.7% is even sufficient enough to be accepted in 
fault detection and diagnosis with classification 
technique. 

To compare with other approaches in 
our previous reseach, we used two approaches 
introduced in [26], which are one-dimension 
domain and are wavelet-variance based and 
wavelet-crosscorelation based approaches.  For 
experimental data in this paper, the result is shown 
in Table 4. The higher classification accuracy 
of  the proposed approach clearly shows a big 
advantange of exploying two-dimension domain 
features  over that of one-dimension domain.   

Another comparison of these three 
approaches was also caried out. The experimental 
data were taken from [26]. The data are in 

Fig. 9. Histogram for feature vectors of a vibration signal from the testing database; on the X axis, 1: Am, 
2: Br, 3: Brb, 4: Fb, 5: Mu, 6: No, 7: Pm and 8: Pu faulty categories

Table 2. Percentage of local feature distribution

Signal (Belonged 
category)

Faulty categories
Am Br Brb Fb Mu Nor Pm Pu

1 (Am) 44.66 2.16 6.47 4.75 8.20 5.39 16.40 11.97
2 (Br) 0.78 91.47 0.00 6.98 0.00 0.00 0.77 0.00
3 (Brb) 4.34 0.16 37.21 2.79 13.80 14.11 5.89 21.70
4 (Fb) 0.81 4.40 2.77 75.37 8.32 3.26 2.60 2.45
5 (Mu) 2.37 0.00 10.53 4.01 42.73 14.54 3.41 22.40
6 (Nor) 4.67 0.81 13.69 7.24 18.04 34.46 4.51 16.59
7 (Pm) 27.12 1.84 3.80 6.75 4.05 3.19 50.80 2.45
8 (Pu) 3.83 0.12 15.21 1.97 20.79 11.61 1.74 44.71
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microphone format (sound data taken by 
microphone). In these data, five sound data types 
from five different faulty categories of induction 
motors are: fault bearing, loose bearing, unbalance 
bearing, misalignment bearing and normal 
bearing. The details of experiment setup and 
data can be found in [26]. Three approaches are 
applied with this data. Again, 10 trials of testing 
were applied.  Then, final classification accuracy 
is shown in Table 5. The avarage classification 
accuracy from 10 trials for proposed approach 
gains 98.1% compared to 95.6 and 78.7% for 
two other ones, respectively. Once again, with 
this different experiment, the proposed approach 
provides a better performance. 

5 CONCLUSIONS

The results of high classification 
accuracies achieved by the proposed approach 
clearly demonstrates the potential of exploiting 
the features from two-dimension domain data 
of vibration signal by considering the SIFT 
algorithm for fault detection and diagnosis system. 
Different from the previous approaches for a fault 
detection and diagnosis using features of vibration 
signal in one-dimension domain, we propose a 
vibration signal to image translation technique 
and a classification framework that are applied 
in a novel fault detection and diagnosis system 
for induction motors. For a real application, 

Table 3. Classification accuracy of proposed approach

Trials #

Faulty category name (number of testing signals) Total 
classification 
accuracy [%]

Am(6) Br(6) Brb(6) Fb(6) Mu(6) Nor(6) Pm(6) Pu(6)

Number of sucessful testing signals classified to corresponding categories

1 6 6 6 6 6 5 6 6 97.9
2 6 6 6 6 6 6 6 6 100
3 6 6 6 6 6 4 6 6 95.8
4 6 6 6 6 6 6 6 6 100
5 6 6 6 6 6 5 6 6 97.9
6 6 6 6 6 6 6 6 6 100
7 6 6 5 6 6 4 6 6 93.7
8 5 6 6 6 6 5 6 6 95.8
9 6 6 6 6 6 6 6 6 100
10 6 6 6 6 6 5 6 6 97.9

Total average of classification accuracy for 10 trials 97.9

Table 4. Comparison of proposed approach and two approaches proposed in [26] in term of classification 
accuracy

Approaches

Proposed approach Wavelet-Variance  
based approach

Wavelet-Crosscorrelation  
based approach

Average classification 
accuracy for 10 trials [%] 97.9 89.3 78.6

Table 5. Comparison of proposed approach and two approaches proposed in [26] in term of classification 
accuracy using experiment data in [26] 

Approaches

Proposed approach Wavelet-Variance based 
approach

Wavelet-Crosscorrelation 
based approach

Average classification 
accuracy for 10 trials [%] 98.1 95.6 78.7
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knowledge about the induction motor faults should 
be fulfilled; therefore, the most common faults 
needs to be examined and can be represented in 
the texton dictionary. The results indicate that 
some features of the testing signal belong to 
other faulty categories; however, most of features 
are classified to the corresponding ones so the 
testing signal is still successfully classified into 
the correct faulty category. The high classification 
accuracy in the final results indicates that our 
proposed fault detection and diagnosis using 
signal model-based exploiting vibration signal in 
two-dimension domain is guaranteed.
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