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0  INTRODUCTION

Transient flows associated with the water hammer 
phenomenon are commonly encountered in both 
natural and engineering systems, such as hydraulic 
systems, oil transportation systems, and human arterial 
network. Sudden changes in pressurized pipe flow 
conditions caused by valve closure, pump operation, 
etc. are routine events. The excitations arising from 
these transient events can cause significant pressures 
leading to devastating forces [1]. 

The flow of non-Newtonian fluids and slurries in 
pipes occurs in a wide range of practical applications 
in the processing industries and many natural systems. 
If the fluid has a significant yield stress, or if its 
effective viscosity is high, industrially relevant flow 
rates may occur in the laminar flow regime. 

The fluids under consideration in this study are 
shear-thinning non-Newtonian, whose rheology is 
described by a generalized Newtonian fluid (GNF) 
model, i.e. the dependency of isotropic viscosity on 
flow properties [2] and [3]. In the specific fluids of 
the present work, the viscosity can be described using 
either the power law or Cross models. The capability 
of these models has been investigated by several 
researchers, including such as Pinho and Whitelaw 
[4], Toms [5] and Bird et al. [2] in experimental and 
numerical studies.  

To conduct computations on non-Newtonian 
fluids, the strain rate has to be evaluated. It requires 
a two-dimensional analysis to provide the velocity 
profile of a flow cross section. The two-dimensional 
analysis and computations of unsteady pressure 
and velocity profiles during water hammer have 
been developed by several researchers [6] to [10]. 
Pezzinga proposed a quasi-two-dimensional model 
for the unsteady turbulent flow of a pipe network 
and obtained better results than 1D models [11] and 
[12]. Vardy and Brown [13] have had significant 
contributions on non-Newtonian unsteady pipe flows 
especially for modelling fluids with time-dependent 
viscosities. More recently, Wahba [14] compared 
shear-thinning and shear-ticking fluids in response to 
a water hammer event using the power law model. 

Herein, unsteady pipe flow of a non-Newtonian 
fluid is studied. This work may be seen as a new 
extension to the classic water hammer model in 
which transients of a Newtonian fluid contained 
in a straight elastic pipe supported at the valve 
and along the pipeline with sufficient longitudinal 
anchors to suppress fluid-structure interaction effects 
is investigated. Having done this fluid hammer 
simulation for the power law and Cross models, 
several alternate works (in terms of studying the other 
effects [15]) on the transients of these fluids can be 
offered for future research. They include viscosity 
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of the pipe wall, fluid-structure interaction, column 
separation, each of which or any of their combinations, 
e.g. Ahmadi and Keramat [16]; [15], Soares et al. [17], 
Hadj-Taïeb and Hadj-Taïeb [18] in conjunction with 
the present non-Newtonian behaviour can reveal 
new aspects of transient flow in possible systems of 
corresponding significance.

Pezzinga et al. analysed transients in pressurized 
polymeric pipes using a two-dimensional (2D) Kelvin-
Voigt viscoelastic model [19]. Differences between 
the transients in viscoelastic and elastic pipes are 
pointed out by considering a 2D model. They showed 
that viscoelastic models precisely represent a faster 
decay of pressure oscillations and velocity profiles 
because of a time-lag between pressure oscillations 
and retarded circumferential strain.  Brunone et al. 
[20] and Kim [21] considered pressure and energy 
dissipation and unsteady friction in laminar transient 
flows. They compare their numerical result with those 
of experiments. Meniconi et al. also studied rapidly 
decelerating turbulent pipe flow. They proposed a new 
approach to estimate energy dissipation and pressure 
decay [22] and [23].

In the present study, laminar transient non-
Newtonian pipe flow is simulated using the power 
and Cross models. To this aim, the quasi-2D equations 
of water hammer for non-Newtonian fluids are 
derived and then they are solved with appropriate 
numerical solutions based on the finite difference 
method. Computational results are provided in terms 
of velocity, shear stress, and viscosity distribution at 
the flow cross section in the middle of the pipeline. 
The results reveal that the non-Newtonian fluid 
effects significantly contribute to cross-sectional flow 
characteristics.

1  MATHEMATICAL MODELLING

1.1  Governing Equations

The continuity equation for transient pipe flow in a 
cylindrical coordinate system is as follows [24]:

 

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂







 +

+
∂( )
∂

+
∂
∂

+
∂
∂

ρ ρ ρ
θ

ρ

ρ
θ

θ

θ

t
v

r
v
r

v
z

r
rv
r r

v v

r z

r z1 1

zz








 = 0,  (1)

where νr , νθ , νz  are radial, angular and axial velocity 
components, ρ is density and t is time. The momentum 
equation in a cylindrical coordinate in an axial 
direction is:
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where τij (i, j = r, θ, z) are stress components in the liquid 
in the corresponding surface and directions. To derive 
unsteady flow equations for a non-Newtonian fluid 
some assumptions and simplifications to be stated 
in the following are made. The flow is quasi-two-
dimensional. The term ‘quasi’ indicates that νθ , νr = 0 
meaning that vz is the only velocity component 
that varies along radial and axial directions. The 
convective terms are neglected [25] and [26]. The non-
Newtonian fluid behaviour is based on power law and 
Cross models. The equation of state: ∂ρc2 = ρg∂H [25] 
is valid, where H and c are pressure head and wave 
speed, respectively.

With the application of the assumptions above as 
well as some algebraic simplifications, the continuity 
Eq. (1) is reduced to:
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Integration over the flow cross section and 
neglecting convective terms leads Eq. (3) to:
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in which V  is the average velocity over the flow cross 
section. Likewise, Eq. (2) with considering the 
assumptions above yields:
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The convective terms in the above equation may 
be neglected so that it reduces to:
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The shear stress term on the right-hand side of 
Eq. (6) represents the fluid dynamic forces and is 
be calculated by the constitutive rheological fluid 
property.

So far, no particular assumption is made for the 
type of fluid in governing equations; consequently, the 
above equations are valid for all fluid types. 

1.2  Non-Newtonian Fluid Equations 

Non-Newtonian fluids may be classified into three 
general classes: time independent, time dependent and 
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viscoelastic fluids [3]. Among them, the first branch 
is investigated in transient flows of the present study. 

Time independent fluids, which are placed 
in the inelastic fluids category, are also known as 
generalized Newtonian fluids (GNF). This category 
is similar to Newtonian fluids, but the shear stress 
and rate of deformation tensor are no longer a 
linear relation anymore. In fact, shear stresses are a 
nonlinear function of the rate of deformation. This 
nonlinear function is originated from natural features. 
On this basis, this category is divided into that with a 
yield stress and without yield stress. In the no yield 
stress group, there are two types: pseudo-plastics and 
dilatant fluids. The simulation of the former is the 
focus of this article.

The viscous fluid flow is defined in terms of the 
velocity gradient that includes the rate of deformation 
and spin tensor. The constitutive relation between the 
shear stress τ in Eq. (6) and the shear rate of the fluid 
is:

 τ ηγ= yx ,  (7)

where η and γ xy  are apparent viscosity and shear rate 
respectively. Power law, Carreau, Cross, Ellis, etc. are 
different models that exist in the literature for the 
mathematical modelling of pseudo plastics, each of 
which has strengths and weaknesses [3]. In this study, 
the power law and the Cross model are applied. 

The power law is the simplest with the fewest 
possible parameters. It is described by the following 
equation:

 η γ= ( ) −
m yx

n


1
,  (8)

where m and n are two empirical curve fitting 
parameters and are known as the fluid consistency 
coefficient and the flow behaviour index respectively. 
In this equation, if n equals one and m is set to η0 , 
the Newtonian fluid is achieved. In this study, m is 
fixed to η0 while several quantities for n are selected. 
This allows for the investigation of n in the power law 
model during transient flows.

The other model is the Cross model, which has 
the following description:
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where n and k are two fitting parameters whereas η0  and η∞ are the limiting values of the apparent viscosity 
at low and high shear rates, respectively. In addition, 
for using shear rate and its independence from the 
coordinate system, Eq. (10) is applied [2].
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where Dij is the rate of deformation tensor, and IID 
is the second invariant of Dij. This representation of 
the shear rate in the r, θ, z coordinate system with 
assuming the one-direction flow pattern reduces to [2] 
and [24]: 
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1.3  Initial Condition

The fluid filled pipe is assumed to convey steady state 
flow before the transient event starts. So, the initial 
condition corresponds to the steady state flow. The 
momentum and continuity equations of the steady 
state flow can be written as:
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1.4  Boundary Condition 

The transient flow in a reservoir-pipe-valve system 
is simulated. The quasi 2D analysis consists of three 
sets of boundaries including reservoir, valve, and 
internal pipe walls in contact with the flow. At the 
valve boundary, the velocity distribution is set to 
zero after the valve closure. A constant pressure head 
is associated with the reservoir boundary condition. 
The flow boundaries in contact with the pipe wall 
have zero velocity. These boundary equations can be 
written as follows:

      v v H constz r R z valve rezervoir( ) ( ), , .= = = =0 0  (15)

2  NUMERICAL METHOD 

The proposed unsteady flow equations in the 
previous section are solved using the finite difference 
method. A fourth order Runge-Kutta scheme is used 
to integrate the system of equations in time. Spatial 
derivatives are discretized using second order central 
differencing scheme. Second order dissipative terms 
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are added to eliminate numerical oscillations. These 
terms perform only in the high gradient region, and 
they are effectively switched off in smooth regions [7]. 

To start with the numerical implementation, the 
two Eqs. (4) and (6), are combined to one matrix-form 
equation with the unknown vector W = {H  V*}:

 ∂
∂

+
∂
∂

=
W B W C
t x

,  (16)

where B and C are matrices of equation coefficients. 
The elements of vector W is sequentially evaluated 
from the discretized form of Eqs. (4) and (6) based on 
the Runge-Kutta scheme. The axial velocity profile is 
firstly evaluated from Eq. (6) so V* = Vz. Then its 
average is applied in the continuity Eq. (4) to calculate 
pressure head H, thus herein V V* = . The dissipative 
terms represented by A(W) are added to Eq. (16) to 
suppress the artificial numerical fluctuations:
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The employed dissipative scheme is based on the 
Jamson method [27] which is directly added to the 
basic equations. It is evaluated as follows:
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in which α is a numerical variable that behaves like 
a switch, to be on or off on high and low gradients 
of the unknowns, respectively. In this article, a total 
variation diminishing (TVD) scheme is adapted to 
distinguish high values of gradients according to:
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If ω is equal to zero, the above equation will be 
reduced to:
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For calculating the average velocity of flow, 
the following equation is used, which is numerically 
computed by the Simpson integration scheme:
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3  MODEL VERIFICATION

In order to validate the mathematical model 
and corresponding numerical solution and its 
implementation, the computations are compared 
with experimental results. To this end, an experiment 
done by Holmboe and Rouleau [28] on a reservoir–
pipe–valve system with the following characteristics 
is considered. The pipe made of copper has an inner 
diameter of 0.025 m and a length of 36.09 m. Pressure 
signals directly upstream of the valve and at the pipe 
midpoint are recorded. The operating fluid in the 
laminar flow condition (Reynolds number = 82) is 
high-viscosity oil (µ = 0.03484 N·s/m²), and the wave 
speed is measured to be 1324 m/s. 

The test is initiated by sudden valve closure 
that causes excision of fluid flow in the valve place 
and creates oscillations in pressure and velocity 
propagating along the pipe. 

Experiment results illustrate pressure values 
at various times after valve closure at two points 
along the pipe (valve and midpoint). In Figs. 1 and 
2, non-dimensional experimental results taken from 
experiment [28] are compared with those of numerical 
results for the fluid pressure in the valve (Fig. 1) and 
midpoint (Fig. 2). 

Fig. 1.  Pressure time-history at the valve

According to these comparisons, there is good 
agreement between the numerical and experimental 
results, thus validating the proposed mathematical 
model and numerical implementation.
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The average velocity of fluid flow (computed 
using Eq. (25)) at the reservoir and midpoint cross 
sections are provided in Fig. 3 and, as can be seen, the 
computational results have a similar pattern to those 
of the conventional one-dimensional solutions. 

Another comparison is made for the non-
dimensional axial velocity profile at the midpoint at 

several time sections, being factors of the pipe length 
over the pressure wave speed (L/c). The velocity 
profiles and their gradients can be compared with the 
corresponding computations provided by [7] (Fig. 4). 

a)             b) 
Fig. 4.  Velocity profiles at the pipe midpoint for the laminar water hammer, a) present study, and b) Wahba [7])

a)             b) 
Fig. 5.  Pressure time history at the pipe midpoint for the laminar water hammer,  

a) the calculations of the present study, and b) Brunone et al. study [20]

Fig. 2.  Pressure time-history at midpoint of pipe

Fig. 3.  Computational average velocity history at midpoint and 
reservoir
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Again, the consistency between the two set of results 
verifies the implemented computer code.

As more evidence for the correctness of the 
numerical model and its implementation, the results 
of Brunone et al. [20] were used. It explains that an 
experiment consists of a reservoir-copper pipe-valve 
system with 141.07 m length and 0.020 m inner 
diameter. The other specifications of the system are: 
Reynolds number is 815, pressure wave speed 1120 
m/s, valve closure 0.11 s, and water temperature 17 ºC. 
The modelling results of this study using the current 
simulation are compared with those of Brunone et al. 
[20] in Fig. 5. Fig 5b corresponds to the pressure heads 
obtained using a 1D model with unsteady friction [29] 
to [31] while Fig 5a is computed using the current 2D 
model.

4  INVESTIGATION OF NON-NEWTONIAN FLUID EFFECTS 

To recognise the significance of the non-Newtonian 
fluid behaviour that is manifested in viscosity 
variations during a transient flow, a couple of 
numerical examples are presented and discussed in 
detail via several figures. 

A pseudo plastic liquid that behaves as a shear 
thinning fluid is studied because it is the most common 
non-Newtonian fluid in applications. 

The coefficients of the power law model are 
chosen to be (η = η0) and n = 0.8 and 0.6. In the cross 
model the initial viscosity (η0) is chosen to be equal 
to that of Newtonian fluid (defined in the previous 
section for the verifying case), and the ultimate 
viscosity (η∞) equates to 20 % or 50 % of the initial 
viscosity. The two remaining parameters of this model 
are assumed to be n = 2/3 and k = 2. Note that this way 
of allocation of the initial viscosity in the two models 
enables the computational results to be favourably 
compared with the corresponding simulations for the 
Newtonian fluids so as to discriminate the deviations 
introduced to the flow characteristics as a result of the 
nonlinear fluid property. The set above of coefficients 
for the power and Cross models leads the viscosity 
values to those presented in Figs. 6 and 7 for the 
various shear rates. As can be seen, the power law 
model (Fig. 7) considerably suffers from a lack of 
accuracy in the regions of low shear rate while the 
Cross model (Fig. 6) is in accordance with the reality 
that is herein assumed to be the Newtonian constant 
viscosity.

Several fluid properties defined via the power 
and Cross models are taken into account as the input 
fluid data for the transient flow analysis. The aim is 
to investigate transient pressures due to instantaneous 

downstream valve closure (see the previous section). 
Considering Joukowsky’s pressure increase formula 
(ΔH = cV0 / g), the value of the transient pressure just 
after the excitation is directly related to the pressure 
wave speed and initial velocity (steady state).

Fig. 6.  Cross model viscosity variations vs. strain rate

Fig. 7.  Power law model viscosity variations vs. strain rate

These two quantities are kept unchanged so as 
to only scrutinize the non-Newtonian fluid properties 
during a transient flow. The defined various fluids, 
in turn, develop various pressure gradients and head 
loss during the steady state flow. The calculated head 
losses in the mentioned three power law cases are 
2.693 cm, 1.343 cm and 0.6658 cm per metre and in 
the Cross model are 2.693 cm, 1.410 cm and 0.6404 
cm per metre. According to the above conditions, the 
proposed numerical method produces the following 
pressures at the endpoint (valve) and the midpoint 
of pipe depicted in Figs. 8 and 9. Note that in all 
simulations, the flow pattern is laminar.
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The selected non-Newtonian fluids represent 
viscosities, though changing over the flow area but 
always smaller than that of the constant viscosity of 
Newtonian flow, (see Fig. 8 and Fig. 9). It means that 
smaller shear stresses develop on the pipe wall that 
correspond to less unsteady friction and causes to 
less pressure drop in the subsequent transient periods 
with respect to that of linear fluids. At the same time, 
during the first half period, the mentioned viscosity 
reduction of the shear thinning fluids enhances the 
fluid flow in the original direction and leads to less 
flow barrier and pressure gradient causing a smaller 
transient pressure rise in that time interval. In other 
words, a reduced packing effect is expected due to 
the reduced fluid viscosity, and this is in agreement 
with the computational figures that are provided for 
the pressure history at the valve and midpoint in Figs 
8 and 9, respectively. The Figs 8a and 9a correspond 
to Cross and Figs 8b and 9b correspond to the power 
law model. 

Another manifestation of non-Newtonian fluids is 
observed in velocity profiles at various time and space 
sections. This is shown for the aforementioned shear 
thinning fluids in Figs. 10 and 11. In these figures, the 

velocity profile in the middle section of the pipeline 
for the Newtonian and two non-Newtonian fluids are 
compared.

According to Figs. 10 and 11, the velocity 
distribution significantly changes as a result of the 
non-Newtonian fluid behaviour, and this change 
occurs throughout the unsteady fluid flow. The 
difference is such that with a reduction of fluid 
viscosity fluctuations, the variations of the velocity 
profile increase. In other words, the amplitude of 
the velocity gradient is increased in the flow cross-
section. The growth in the velocity gradient in the 
vicinity of the pipe wall causes a drop in the viscosity 
value (shear thinning); in turn, this affects the values 
of fluid velocity and shear stress beside the pipe walls. 
Furthermore, the viscosity drop causes the maximum 
relative velocity to occur closer to the pipe walls. 
The velocity profiles also reveal that the central core 
area of flow has almost a rigid movement, and it is 
gradually affected by wall shear stress and viscosity 
variations of fluid near the pipe wall. In other words, 
the high values of wall shear stresses tend to penetrate 
in the core region and this pattern seems to be more 
progressive with the increase in viscosity variation 

a)           b) 
Fig. 8.  Pressure time-history at the valve; a) Cross models, and b) power law

a)           b) 
Fig. 9.  Pressure time-history at the midpoint; a) Cross models, and b) right power law
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(with respect to the Newtonian fluid viscosity) in the 
present shear thinning fluids. This issue is explained in 
more detail by shear stress and viscosity distributions 
to be provided in the coming figures.

According to the depicted shear stress and 
viscosity profiles (Figs. 12 to 16), their values in the 
core area of the pipe cross section remain almost 
unchanged. In fact, the flow in this region demonstrates 
a rigid movement (no relative displacement). 

According to the shear stress profiles at the pipe 
midpoint, the greater the shear thinning behaviour 
of the fluid, the less the expansion of the wall shear 
stresses to the core region of flow. Indeed, the area of 
rigid flow in the pipe cross section is extended, and 
the wall effects are more limited to the radial flow 
boundaries. In the meantime, the behaviours of the 
different non-Newtonian fluids in the core area of 
flow are remarkably similar to each other. 

The fluctuations of viscosity in Figs. 15 and 
16 during the fluid hammer can be interpreted in 
terms of velocity profiles in Figs 10 and 11 and the 
viscosity variations versus the strain rate in Figs. 

6 and 7. According to Figs. 6 and 7, the maximum 
value of the shear rate corresponds to the least value 
of viscosity, and this occurs at the pipe wall annulus. 
This can be found from the first derivative of velocity 
profiles with respect to the pipe radius. In contrast, the 
minimum value of the shear rate leads to the largest 
values of viscosity, which in the power law model 

a)           b) 
Fig. 10.  Velocity profiles at the midpoint for the power law fluid model (thick line) vs. Newtonian model (thin line); a) n = 0.6, and b) n = 0.8

a)           b) 
Fig. 11.  Velocity profiles at the midpoint for the Cross fluid model (thick line) vs. Newtonian model (thin line);  

a) η∞ = 50 % η0 , and b) η∞ = 20 % η0

Fig. 12.  Shear stress distribution for Newtonian model
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a)            b) 
Fig. 13.  Shear stress distribution for power law model; a) n = 0.8, b) n = 0.6

a)            b) 
Fig. 14.  Shear stress distribution for Cross model; a) η∞ = 50 % η0 , and b) η∞ = 20 % η0

a)            b) 
Fig. 15.  Viscosity distribution in the pipe section for power law model; a) n = 0.8, b) n = 0.6

a)            b) 
Fig. 16.  Viscosity distribution in the pipe section for Cross model; a) η∞ = 50 % η0 , and b) η∞ = 20 % η0
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tends to infinity and in the Cross model is a constant 
quantity called initial viscosity. According to the 
velocity profiles, around the central axis of the flow, 
the shear rate is zero, and it smoothly increases. This 
trend can be observed in the viscosity distribution, 
where it shows its largest value. There are more local 
maxima of viscosity in these figures that correspond 
to peaks in the velocity distribution. As an example, 
one can observe in Fig. 16b at t = 4L/c, which its 
maxima corresponds to the points indicated by arrows 
in Fig. 11b. 

The aforementioned figures of viscosity and 
shear stress can be used to interpret the pressure time 
history results of non-Newtonian fluids. In fact, the 
increase in the shear thinning property of a liquid 
corresponds to viscosity and shear stress variations in 
the annulus of the pipe cross-section that are closer to 
the pipe walls. This trend, which is clearly manifested 
in Figs. 12 to 16, can also result from the velocity 
profiles in Figs. 10 and 11. This behaviour of the 
shear-thinning fluids indicates that the region of more 
energy dissipation is limited to a smaller area, which 
in turn leads to less energy loss and pressure drops 
during the transient event. This issue is demonstrated 
by Figs. 8 and 9, which show that the pressure history 
of the liquid with the greater shear-thinning property 
shows smaller pressure drop over time. 

5  CONCLUSION 

In this article, the non-Newtonian fluid effects in 
unsteady flows have been studied. Based on derived 
governing equations of transient non-Newtonian 
flows, a fourth-order Runge-Kutta numerical method 
has been used for the approximation of time phrases 
and second-order central difference scheme has 
been used for discretization in space. Furthermore, 
second-order dissipation phrases have been used 
for elimination of numerical fluctuations. In order 
to validate the proposed mathematical model and 
numerical solution, computational results have been 
compared with those of available experimental ones 
from the literature. 

The differentiating pattern between Newtonian 
and non-Newtonian flows which mainly stems 
from the nonlinear dependency of fluid viscosity on 
velocity gradient is observed in pressure variation, 
velocity profile and wall shear stress. Non-Newtonian 
power law and Cross models verified previously were 
then investigated through case studies to see the axial 
velocity profile at various times. Some of the most 
important results follow. 

The increase in the shear-thinning property of a 
liquid corresponds to the viscosity and shear stress 
variations in the annulus of the pipe cross-section that 
is closer to the pipe walls. This behaviour of the shear-
thinning fluids indicates that the region of greater 
energy dissipation is limited to a smaller area, which 
in turn leads to reduced energy loss and pressure drops 
during the transient event. The pressure history of the 
liquid with the greater shear-thinning property shows 
a reduced pressure drop over time.

Increasing the shear-thinning property of the non-
Newtonian pseudoplastic fluid and, thus, the relative 
drop in the apparent viscosity decreased the amount 
of head loss in the pipe; comparatively, the pressure 
at the valve grows. Furthermore, due to the reduction 
of the apparent viscosity at the wall, a reduced line-
packing effect is observed compared to Newtonian 
models. 

The shear-thinning behaviour of non-Newtonian 
fluids causes the region of high gradient velocities to 
move towards the pipe walls and the maximum relative 
velocities occur closer to the radial boundaries, thus 
leading to severe fluctuations in the cross-sectional 
velocity profile. 

The provided 2D computational results at a 
cross section reveal the significance of the non-slip 
boundary of the inner pipe wall during flow transients 
in terms of lags between the mean flow direction and 
velocities at several radii. The non-Newtonian fluid 
effect tends to vary the velocity profiles at each time. 

In the midpoint of the pipe, a semi-rigid 
movement with negligible relative velocity variations 
was observed which is illustrated in terms of viscosity 
variations. 

According to the velocity profiles, around the 
central axis of the flow, the shear rate is zero, and it 
smoothly increases. This trend can be observed in 
the viscosity distribution where it shows its largest 
value. There are more local maxima of viscosity in 
these figures that correspond to peaks in the velocity 
distribution.
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