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0  INTRODUCTION

In engineering, many mechanical structures and 
components are subjected to complex and random 
loads, which determine the fatigue reliability and life 
of the machinery [1] and [2]. Thus, it is indispensable 
to conduct fatigue analysis and life prediction of the 
structures and components based on a load spectrum 
[3] and [4]. Currently, a load spectrum is widely used 
in the fields of aerospace [5] and [6], vehicle [7] and 
[8], wind power [9] and [10], construction machinery 
[11] and [12], and so on [13] and [14]. In practice, a 
long-term load spectrum contains the complete load 
information, but it is difficult to be directly measured 
due to the restrictions of testing technology, as well 
as time and cost. Therefore, it is necessary to obtain 
a long-term load spectrum based on a short-term one.

The traditional load spectrum compiling method 
multiplies a short-term load spectrum with a constant 
proportionality coefficient [15] to [17]. Since only the 
data measured in a finite time is repeated, the extreme 
loads that cannot be measured and have a greater 
impact on damage are ignored. Load extrapolation 
methods can overcome the above limitation of 
the traditional method. With the development of 
statistics and computer software, new methods have 
been applied to load extrapolation. In load spectrum 

compiling, results may vary from each other with 
different extrapolation methods. Therefore, selecting 
an appropriate load extrapolation method is very 
important, but that is difficult in practice. For a better 
understanding of the methods and to provide selection 
guidance, several commonly used extrapolation 
methods are reviewed and summarized based on the 
literature and illustrations in this paper. 

The extrapolation methods are classified as the 
parametric extrapolation method (PE), nonparametric 
extrapolation method (NPE) and quantile extrapolation 
method (QE). In PE, sample data is supposed to obey a 
known distribution, and the parameters in the function 
are estimated according to the load sample. In NPE, 
an extrapolated result is obtained because the density 
distribution with an arbitrary shape can be received 
based on a nonparametric density estimation. When 
the sample data has different load characteristics due 
to different working conditions and different operating 
behaviors in the testing process, QE can break the data 
into a series of clusters and computes the damage of 
each rainflow matrix. The literature and illustrations 
are presented to evaluate the extrapolation methods 
and the characteristics of various extrapolation 
methods, such as the critical factors, the advantages 
and disadvantages, and the application ranges, are 
summarized. Some potential research prospects are 
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also discussed. The aim of this review is to be all 
encompassing, but this is an impossible task, so we 
apologize for any omissions.

1  EXTRAPOLATION METHODS

1.1  Parametric Extrapolation Method (PE)

Fitting sample data with a distribution function and 
estimating the parameters are included in PE. Due to 
the different types of sample data, PE is divided into 
the parameter-estimate extrapolation method (PEE) 
and the extreme-value extrapolation method (EVE).

1.1.1  Parameter-Estimate Extrapolation Method (PEE)

PEE is a traditional extrapolation method and 
extrapolates a short-term load spectrum counted from 
a measured load time history. PEE includes one-
dimension extrapolation, in which only amplitudes 
accompanied by the frequencies are extrapolated, 
and the two-dimensional extrapolation extrapolates 
both the means and amplitudes together with 
the frequencies [18] to [20]. In practice, the two-
dimensional extrapolation method is commonly used 
and the process is reviewed as follows:

1.  Preprocess the measured load
The preprocessing mainly includes discretizing 

the analog signal, filtering the digital signal, 
eliminating the trend item, checking and eliminating 
the abnormal peaks [21].

2.  Transform the load time history into a short- term 
load spectrum. 
The rainflow counting method (RCM) is 

frequently used in PEE [16] and [18]. RCM, which 
was proposed by Matsuiski and Endo more than 50 
years ago and developed in the following decades [22] 
and [23], is a procedure for determining the damaging 
load cycles in a load time history [24], and the cycles 
are usually summed into bins referenced by their 
mean values and amplitudes. For examples, in Wang 
et al. [25], the outfield load spectrum was divided into 
one main cycle and four sub cycles by RCM. 

3.  Fit the amplitudes and mean values with 
distribution functions. 
The relationship between the mean values and 

frequencies usually obeys a normal distribution [20]. 
Meanwhile, the relationship between the amplitudes 
and frequencies usually obeys a Weibull distribution 
[26].

When the assumed variables obey a two-
dimensional normal distribution, a probability density 
function is introduced by Holling and Mueller [27]:
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where μ1, μ2 are the mathematical expectations of x 
and y, respectively, σ1, σ2 are the standard deviations 
of x and y, respectively, and ρ is the correlation 
coefficient. In the equation, μ1, μ2, σ1, σ2, ρ are all 
constants, and σ1 > 0,  σ2 > 0,  –1 < ρ < 1.

When the assumed variables obey a three-
parameter Weibull distribution, the probability density 
function is [28] and [29]:
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where x is the amplitude of the measured load, α is the 
shape parameter, β is the scale parameter, which equals 
to the value of the characteristic load, ε is the location 
parameter (minimum of the load). The parameters of 
Weibull distribution can be verified by the correlation 
coefficient optimization method introduced by Fu and 
Gao [30], and the parameter estimation methods are 
mainly involved in Nagode and Fajdiga [26].

4.  Perform the correlation and ergodic examinations 
on the two functions in step 3 [20].
After these four steps, the joint probability 

density function is obtained. The probability 10–6 is 
usually chosen as the probability that the maximum 
load occurs [31]. The cumulative frequencies of all 
working conditions are calculated when the total 
cumulative frequency reaches 106. The calculation 
formula to expand the frequency is [32]:

 N kNi i
' ,=  (3)

where Ni
'  is the load cumulative frequency of the 

condition i after the extrapolation; Ni is the load 
cumulative frequency of the condition i before the 
extrapolation; k is the extending factor, k = 106 / N, N is 
the total load cumulative frequency before the 
extrapolation and can be calculated with Eq. (4) [18] 
and [32]:

 N N f x y dx dy
S

S

S

S

m

m

a

a= ∫∫' ( , ) ,
1

2

1

2

 (4)

where Sa1 and Sa2 are the lower and upper limits of 
a load amplitude integration, respectively; Sm1 and 



Strojniški vestnik - Journal of Mechanical Engineering 62(2016)1, 60-75

62 Wang, J.X. – Chen, H.B. – Li, Y. – Wu, Y.Q. – Zhang, Y.S.

Sm2 are the lower and upper limits of a load mean 
integration, respectively; N ′ is the load frequency 
of all conditions after extrapolation; f (x, y) is the 
joint probability density function of the mean and 
amplitudes; x is the amplitude of the load; and y is the 
mean of the load.

5.  Compile the long-term two-dimension load 
spectrum [20].
The process includes the amplitude classification, 

the mean classification, and the calculation of all 
cycle numbers. For convenience of the load spectrum 
application, it is necessary to transform the two-
dimensional load spectrum into a one-dimensional 
one, which only describes the relationship between 
the amplitudes and frequencies. Thus, to transform the 
fluctuation of the mean equivalent to the amplitude, 
the Goodman diagram [33] is applied.

Through the above main process of PEE, the 
practical long-term load spectrum can be obtained. 
Some literature takes similar extrapolation concepts 
into use. In Nagode and Fajdiga [34], the scatter of a 
loading spectrum is extrapolated and a new process is 
created. Punee and Lance [35], based on the limited 
field data, employed statistical load extrapolation 
methods by estimating necessary probability 
distributions to predict the design loads. Nagode et 
al. [36] introduced two appropriate parametric models 
and compared them with the nonparametric methods. 
Agarwal and Manuel [37] extensively researched the 
design load spectrum of an off-store wind driven 
generator. With limited sample data, the obvious 
wave heights on wind speed were fitted by a Weibull 
distribution and the mean wind speed were fitted by 
a Rayleigh distribution, then the relevant parameters 
were estimated and the possible wind regimes were 
extrapolated. 

The tail-fitting of the amplitude distribution 
in PEE draws little attention, which may lead to 
uncertainty in the fatigue analysis and life prediction 
based on the extrapolation results. Veers and 
Winterstein [10] discussed the mean, spread and 
tail behavior of the distribution of rainflow-range 
load amplitudes to approximate the distribution 
functions. The third moment is the skewness that 
provides detailed information on the tail behavior 
of the distribution. They improved the accuracy and 
reliability of the results by fitting the wind speed and 
turbulence intensity for various conditions, and the 
method provided useful information on the nature 
of the behavior. Moriarty et al. [38] also verified 
that the higher-order moment, such as the skewness 

of the extreme distribution, seriously influences the 
extrapolated long-term loads.

1.1.2. Extreme-Value Extrapolation Method (EVE)

EVE is based on the extreme value theory (EVT) 
[39]. In EVE, the load spectrum made up of extreme 
values is extrapolated. Johannesson and Thomas [17] 
and Johannesson [40] divided EVE into two branches: 
the extrapolation in the time domain (EVET, based 
on the extraction methods of block maxima method 
and peak over threshold [41]) and in the rainflow 
domain (EVER, based on extraction method of level 
upcrossings [10]). So the process of EVE is divided 
into two steps: extract extreme values from a load 
time history and fit the extracted data.

First of all, the data extraction methods are 
reviewed:

Block maxima method (BMM): It divides the 
continuous data X1, X2, ..., Xn , into groups according 
to the interval length l, and then extracts the high 
maxima Ml,1, Ml,2, ..., Ml,k of each group to constitute 
the extreme value sample. Fig. 1, which was structured 
according to this principle [42], shows that the key 
point of this method is to determine the block size 
reasonably [42]. This will result in a biased estimation 
if the block is too narrow; on the contrary, it will lead 
to an increase in the variance because of the lack of 
extreme values. Moreover, only extreme values are 
used in each block, which results in a low rate of data 
utilization, thus a large sample size is necessary. 

The research on block size determination is 
important and the block size is usually set as one year 
[43] to [45].

Peak over threshold (POT): The first step is 
selecting the threshold level u (including umax and 
umin) under certain conditions. Then the exceedances 
under umin and the exceedances over umax are extracted 
from the data, and the constitution of a new sample is 
made up of the exceedances. The samples of the loads   
X1, X2, ..., Xn are assumed to be independent and obey 
the same distribution. Fig. 2, which was structured 
according to this principle [38] and [46], shows that  
Xi will be described as the super-threshold, Yi = | Xi – u |  
is the exceedance, and nu as the numbers transcending 
the threshold, if Xi > umax or Xi < umin. By POT, the 
maxima above the threshold umax and the minima 
below the threshold umin are randomly regenerated, 
and only these extreme values will be extrapolated.

For the threshold, on one hand, the level must 
be high enough so that only true peaks, with Poisson 
arrival rates, are selected. Small values for the 
threshold will lead to a biased estimation [47]. On the 
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other hand, the level must be low enough to ensure 
that sufficient data will be selected to guarantee an 
accurate estimation of the distribution parameters, 
and the variance of the parameters will be decreased 
[47]. Johannesson [40] suggested a simple method that 
sets the threshold equal to the square root of the cycle 
number in the signal and works well in many cases 
[48]. 

Other threshold-selection methods have also been 
proposed, for example, Davison [49], Ledermann et al. 
[50] and Walshaw [51].

Level upcrossings (LU): According to 
Johannesson and Thomas [17], LU is proposed to 
obtain the maxima and minima of the load cycles, 
then determine the limiting shape of the rainflow 
matrix (RFM) and estimate the limiting RFM G [17]: 
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where the elements fij of Fz are the number of rainflow 
cycles in distance z, with a minimum in class i and 
a maximum in class j. Fz is the rainflow matrix in 
distance z.

This approach is based on an asymptotic theory 
for the crossings of extreme (high and low) levels. 
First, obtain a measured RFM F [17]:
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where fij is the number of the cycle with minimum i 
and maximum j. 

Then, calculate the LU from F and determine a 
suitable threshold. The level upcrossings spectrum is 
calculated as follows [17]:
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where nk is the accumulative cycle number from the 
load level i below k to the load level j above k: 
n fk ij

i k j
=

< <
∑ .

After reviewing the extraction methods, the 
fitting process will be described.

In the time domain, POT is more frequently 
used, and taking it as an example in this section: the 
load threshold is u and the load exceedances above 
or below u usually obey the Generalized Pareto 
distribution (GPD), introduced by Pickands [52], 
Cerrini et al. [53] and Lourenco [54]. The cumulative 
distribution function for GPD is [53]:
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where u is the predetermined threshold, x is the 
measured load, x – u is the exceedance, k is the shape 
parameter, and α is the scale parameter.

When k = 0, the GPD turns into an exponential 
distribution [53]:
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where m = | x – u | is the ‘mean exceedance’.
When the exceedances obey the exponential 

distribution, the estimated parameter is the mean of 
the exceedances [53]:
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where Zi is the exceedance, N is the number of 
exceedances.

The parameter estimations for the GPD have been 
discussed by Davison [49], Hosking and Wallis [55], 
as well as Smith [56].

In the rainflow domain, the shape of the level 
upcrossing intensity above the threshold is estimated. 
The level upcrossing obeys GPD and the estimates of 
the parameters in GPD are calculated using relative 
estimation techniques [17]. Then, an estimate of the 
cumulative RFM is calculated as [17]:

 n
n n
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Thus, the corresponding estimation of the RFM 
Frfc is [17]:

 F frfc
ij i j
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where fij is the cumulative frequency number 
from the load level i to the load level j,  
fij = ni+1,j–1 – ni,j–1 – ni+1,j + ni,j .

The main process of EVE has been sketched out 
and the practical operation is conducted based on the 
technical software package, for example, WAFO [57]. 
Johannesson [40] conducted the 100-fold extrapolation 
and compared the extrapolated load spectrum with 
the 100 repetitions of the measured load spectrum, 
then it was found that the extrapolation result was 
more reasonable because it agreed well with the 
observed load spectrum. Due to the uncertainty of 
wind conditions, the extreme load on a wind turbine 
is usually difficult to determine. In 2008, Collani et 
al. [58] put forward a reliable method named LEXPOL 
[59] to solve the problem. For the sake of different 
environments, Agarwal and Manuel [60] deduced 
the long-term loads with POT and a three-parameter 
Weibull distribution, then a good extrapolated result 
was obtained. A quadratic distortion of the Gumbel 
distribution was introduced by Natarajan et al. [61] 
and Natarajan and Holley [62] and it was used to fit the 
tail of the extreme loads on a wind turbine. Based on 
this method, the finite sample data was extrapolated to 
50 years. In addition, an extrapolation method based 
on the mean and standard deviation of extreme values 
was proposed by Moriarty [63], where subjectivity of 
the parametric extrapolation was avoided.

1.2 Nonparametric Extrapolation Method (NPE)

NPE, which was proposed by Dressler et al. in 1996 
[64], uses a nonparametric statistical approach to 
get the statistical probability distribution. In NPE, 
the nonparametric density estimation reduces the 
subjectivity of empirical hypothesis because it makes 
no assumptions on the distribution of the sample data. 
As a result, the extrapolated load spectrum is not 
influenced by the characteristics of the sample data.

The kernel estimation can be employed for 
nonparametric density estimation [65] and [66]. The 
estimation transforms a discrete histogram of sample 
data into a probability distribution.

Suppose X1, X2, ..., Xn are observed samples from 
a common distribution with density f (·). The kernel 
density estimation (KDE) of f (·) is [64]:
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where K is the kernel function and h is the bandwidth.
To assure the reasonability of the KDE function

f xh
 ( ) , kernel K satisfies [64]:
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The main process of NPE is as follows [66]:
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1. Transform the measured load time history into a 
rainflow counted histogram.

2. Select the appropriate kernel function and 
bandwidth, then use the nonparametric method 
in combination with the Monte Carlo method [67] 
to extrapolate the RFM that is obtained from the 
lifecycle one.

3. Reconstruct a new load spectrum from the RFM 
lifecycle.
For NPE, a lot of research was conducted on 

the selection of the kernel function and bandwidth. 
Wang et al. [68] proposed a selection method for the 
kernel function and the multi-criteria decision making 
technique was successfully used to solve the problem 
of the kernel function selection. For the bandwidth 
selection, Heidenreich et al. [69] reviewed the 
bandwidth selections for the kernel density estimation 
and some of the methods can be used in NPE. Sheather 
[70] proposed two kinds of bandwidth determination 
methods: Sheather-Jones plug-in bandwidth and least 
squares cross validation. The Sheather-Jones plug-in 
bandwidth was widely used because of its overall good 
performance, but this method was prone to be over-
smoothing in some situations. As a supplement, it was 
solved by the least squares cross validation. Besides, 
Bayesian methods [71] and [72] were used to estimate 
the adaptive bandwidth and adaptive bandwidth 
matrix in univariate and multivariate KDEs.

For the applications of NPE, Dressler et al. 
[64] transformed the discrete rainflow matrix into 
a smooth function that is more accessible with a 
kernel density estimator. In the literature, the RFM is 
seen as two-dimensional histograms of the opening 
and closing points of hystereses, and can only be 
described by a nonparametric method due to its 
arbitrary shapes. Socie [73] employed nonparametric 
kernel smoothing techniques to transform the discrete 
rainflow histogram of cycles into a probability density 
histogram and extrapolated the short-term measured 
load to an expectedly long-term one. The key role 
of the bandwidth in KDE is also indicated in the 
literature. Johannesson [17] considered that kernel 
smoothing is a feasible smoothing technique and 
well-established statistical method for nonparametric 
estimation. A kernel smoother method is also proposed 
to estimate the RFM for the cycles with small and 
moderate amplitudes. Mattetti et al. [74] extrapolated 
the RFM by NPE in carrying out of accelerated 
structural tests of tractors.

1.3  Quantile Extrapolation Method (QE)

Considering the influences of different working 
conditions and operating behaviours in engineering, 
load extrapolation is difficult. Under these 
circumstances, the quantile extrapolation method (QE) 
is capable of taking various conditions and behaviors 
into consideration and optimizing the extrapolation 
results.

The main process of QE is as follows [64]:
1.  Break the data set of the rainflow-counted 

histogram into a series of clusters B1, B2, ..., Bm 
with similar variables and damages.

2.  Compute the damage of each original RFM R by 
Miner’s rule. Damage vectors [64]:
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 are obtained for all original RFMs, where 

R1, R2, ..., Rn represent the influence of various 
conditions and behaviors.

3.  Estimate the expected damage for the x% quantile. 
The quantile damage vector (q1, q2, ..., qm), which 
describes the damage distribution between the 
individual clusters of the rainflow matrix, is used 
to construct the rainflow matrix. The original 
rainflow matrix is superposed such that [64]:

 R R RG n= + ⋅⋅⋅ +1 .  (15)

4.  Construct and extrapolate the corresponding RFM 
into a matrix, the extrapolation of the resulting 
matrix [64] is:

 R extrapol RE G= ( ),  (16)

 where RE represents the extrapolated result and is 
made up of the basic process and peak values.

Socie and Pompetzki [66] described a method for 
statistically extrapolating a single measured service 
load time history to an expected long-term load 
spectrum. Because of the difference between operating 
behaviors, the extrapolation method was extended to 
combine data from several users. The extrapolated 
load spectrum would represent more severe users 
in the population and the optimization effect was 
obvious. Mattetti et al. [74] introduced a method for 
an accelerated test on tractors and employed QE to 
calculate rainflow matrices for 20 tasks repeated in 
five different working forms. In the selected sample, 
the 95th percentile of the most damaging conditions 
are considered. 
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In load spectrum compiling, QE is usually 
combined with other extrapolation methods and it is 
also an important component in computer software.

1.4  Classification of the Extrapolation Methods

The extrapolation methods are integrated into one 
figure for clarity. As shown in Fig. 3, the classifications 
and pivotal elements of the methods are reflected.

2  CASE ANALYSIS

In this section, some illustrations and examples 
are displayed to evaluate and demonstrate the 
extrapolation methods. 

2.1  Case Analysis of PEE

In PEE, distributions of the sample data affect the 
extrapolation results [26]. In this section, the load on 
an axle shaft of a loader powertrain was taken as the 
research object. According to the obvious segment 
working characteristics of a loader, the operation 
process was divided into six sections. In this paper, 
the load on the axle shaft in the spading and the no 
load backward sections were illustrated to verify the 
characteristics of PEE. Amplitudes of the load with 
different characteristics and distributions were focused 
on. The Weibull distribution was employed, with the 
fitting results shown in Fig. 4 and Fig. 5. Compared 
with Fig. 4a, the fitting in middle of Fig. 5a diverges 
from the distribution function more remarkably. In 
Fig. 5b, the tail of the fitting seriously diverges from 
the skew line, as in Fig. 5c. Based on the comparison, 
the conclusion is that the fitting between the function 

and load in the spading section is better. So, when PEE 
is applied to extrapolating the load on an axle shaft 
with different characteristics, the repeatability of the 
result will be influenced. Therefore, the distributions 
of the sample data will influence the fitting error in 
PEE, and the fitting error will lead to an inaccuracy in 
the extrapolation results. 

2.2  Case Analysis of EVE

In EVE, both the data extracting and fitting function 
selection will affect the extrapolation results. During 
the data extracting process, selection of the threshold 
or block size is important [75] to [78], as this will 
influence the data utilization ratio and the distribution 
characteristics of the extreme values. Fitting 
precisions vary from each other due to different 
load characteristics, thus the extrapolation results of 
EVE are dependent on the fitting precisions. Several 
examples will illustrate the influences of different 
thresholds on the fitting precisions.

In this section, the load on an axle shaft of a 
loader powertrain in the spading section was used. 
The automatic threshold selection method, which was 
proposed in Thompson [79], was adopted to determine 
the original threshold. In data processing, based on 
the sample data, 2897.3 Nm was set as the automatic 
threshold and the number of extreme values was 
5734, thus 5734 exceedances were calculated. With 
GPD, the exceedances were fitted with the parameters 
estimated by the maximum likelihood method, and the 
results are shown in Fig. 6.

In order to reflect the effects of thresholds on 
fitting precisions, 2000 Nm and 3500 Nm were 
selected as the other thresholds to extract values, thus 

Fig. 3.  Classification of the extrapolation methods
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the values were fitted with the same distribution and 
parameter estimation method. The fitting results are 
shown in Fig. 7 and Fig. 8. Compared with Fig. 6, 
the deviations between the data points (the extreme 
values) and the fitting distribution in Fig. 7 and Fig. 8 
are obvious, especially in plot a and b of the figures. 
So, with different thresholds, the fitting precisions are 
different, which will influence the results from EVE. 
On the basis of the comparison, the significance of 
selecting the threshold or block size is verified. 

The influence of the distribution function on the 
extrapolation results also needs to be considered. In 
Johannesson [17], GPD was used to extrapolate the 
simulated Markov load with the maximum likelihood 
estimation and the result was shown in Fig. 9a [17]. 
Thus, the exponential distribution was adopted to 
extrapolate the same load, the result was shown in 
Fig. 9b [17]. Making a comparison between the two 
parts in Fig. 9, the exponential tail in Fig 9b yields a 
straight line in the log-scale that tends to overestimate 
the intensity for extreme crossings [17]. Therefore, 
the conclusion can be drawn that GPD gives a better 
extrapolation and thus verifies the importance of 
selecting a suitable distribution function.

There are two branches in EVE: EVET and 
EVER. Making a comparison of the two branches, it is 
easy to find some distinctions, such as the application 
domains, the fitting functions and the types of the 
extrapolation results. 

In Johannesson [40], EVET and EVER were 
both applied to extrapolate the load of a train and a 
car, respectively, and the results are show in Fig. 10.

Fig. 10 allows some comparisons between 
EVET and EVER to be noted [40]:
1.  EVET generates the extrapolated load cycle 

directly based on the measured load time history, 
so the outcome is more reliable;

2.  EVET is more robust because it is only on the 
basis of EVT, while the EVER uses an additional 
extreme value approximation for the shape of the 
rainflow matrix;

3.  The limitation in the extrapolation multiple of 
EVET is that the extrapolated result is an N-fold 
extrapolated load. In EVER, the extrapolated 
result is a limited rainflow matrix, which 
represents infinite repetitions.

4.  Results extrapolated by EVET are usually 
adopted into a fatigue test or as the input load 
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for life prediction. However, if the target is to 
extrapolate a load spectrum and acquire the 
relationship between the load and frequencies 
over the whole life, EVER will be an appropriate 
selection because it has high efficiency and it 
can estimate the shape of the load spectrum for 
an infinitely long measurement. Sometimes, the 
extrapolation results can be transformed. Load in 

the time domain can be transformed into rainflow 
domain by RCM. The Markov method [80] 
can also be used to transform the load from the 
rainflow domain to the time domain. However, 
the accuracy of the results will be influenced 
during the transforming process.
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2.3  Case Analysis of NPE

In NPE, kernel estimation provides a convenient 
way to estimate the probability density [65] and [81]. 
In kernel estimation, both kernel function [68] and 
bandwidth [66] are of great concern.

In Wang et al. [68], the selection of the kernel 
function was considered. Four kinds of kernel 
functions were illustrated; the extrapolation results are 
shown in Fig. 11 using these kernel functions. [68]. 
As shown in Fig. 11, the results based on different 
kernel functions vary from each other, especially the 
extrapolated extreme loads. 

When NPE was first proposed by Dressler et 
al. in 1996 [64], the importance of bandwidth was 
emphasized and this was also confirmed in the 
following research [64], [66] and [82]. Compared 
with the kernel function, extrapolation results are 
more sensitive to the bandwidth [64] and [66]. So 
far, only two kinds of bandwidths are commonly 
applied to data extrapolation. They are the fixed and 
the adaptive bandwidth [64] and [66]. In this section, 

in order to verify the influence of the bandwidths 
on the probability density, a fixed bandwidth with 
different values will be discussed. As shown in Fig. 
12, the solid line represents the probability density 
based on the automatic fixed bandwidth hs = 0.5187, 
where the other two lines represent the densities with 
the bandwidths hs = 0.2 and hs = 1 respectively. As 
shown in Fig. 12, when the bandwidth equals 0.2, 
the double-peak occurred at the peak of the density 
and the fluctuation in the second half was obvious. 
When the bandwidth increases to 1, the maximum 
density declined to a large extent. So, with different 
bandwidths, the probability density, which is directly 
related to the extrapolation result, makes a big 
difference.

2.4  Case Analysis of QE

Based on the former discussion on QE, the principle 
in Dressler et al. [64] is important and comprehensive. 
In Dressler et al. [64], based on four figures (Figs. 10 
to 13 in K. Dressler et al. [64]), the importance and 

                                                                           a)                                                                                             b)
Fig. 9.  Extrapolation of level upcrossing intensity; a) with GPD; b) with EXP [17]EXTRAPOLATION OF LOAD HISTORIES AND SPECTRA 207
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Fig. 8 Hundred-fold extrapolations comparing time and rainflow
domain methods.

Another advantage of the time domain method could be
that the generated sequence of cycles is more realistic since
it is directly based on a measured sequence.

If our goal is to extrapolate the load spectrum, the
method of rainflow extrapolation has the properties of
being more computationally efficient, and estimates the
shape of the load spectrum for an infinitely long measure-

ment. However, the time domain method is more robust,
since it only uses the extreme value theory for extrapo-
lating to extreme load levels, while the rainflow domain
method uses an additional extreme value approximation
for the shape of the rainflow matrix.
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Extrapolation of rainflow matrices. SAE Technical Paper 960569.

5 Grimshaw, S. D. (1993) Computing maximum likelihood
estimates of the generalized Pareto distribution. Technometrics
35, 185–191.

6 Grubisic, V. (1994) Determination of load spectra for design
and testing. Int. J. Veh. Des. 15, 8–26.

7 Hosking, J. R. M. and Wallis, J. R. (1989) Parameter and
quantile estimation of the generalized Pareto distribution.
Technometrics 29, 339–349.

8 Johannesson, P. and Thomas, J.-J. (2001) Extrapolation of
rainflow matrices. Extremes 4, 241–262.

9 Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983)
Extremes and Related Properties of Random Sequences and Series.
Springer Verlag, New York.

10 Rychlik, I. (1996) Simulation of load sequences from rainflow
matrices: Markov method. Int. J. Fatigue 18, 429–438.

11 Socie, D. (2001) Modelling expected service usage from
short-term loading measurements. Int. J. Mater. Prod. Technol.
16, 295–303.

12 Thomas, J.-J., Perroud, G., Biognonnet, A. and Monnet, D.
(1999) Fatigue design and reliability in the automotive industry.
In: Fatigue Design and Reliability, ESIS publication 23 (Edited
by G. Marquis and J. Solin). Elsevier, pp. 1–12.

c© 2006 The Author. Journal compilation c© 2006 Blackwell Publishing Ltd. Fatigue Fract Engng Mater Struct 29, 201–207

          

EXTRAPOLATION OF LOAD HISTORIES AND SPECTRA 207

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

5

10

15

20

25

30

35

Cumulative number of cycles

A
m

pl
itu

de
 / 

M
P

a

(a) Load spectrum – Train

Time extrapolation
Rainflow extrapolation
Measurement

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6

7

8

Cumulative number of cycles

A
m

pl
itu

de
 / 

kN

(b) Load spectrum – Car

Time extrapolation
Rainflow extrapolation
Measurement

Fig. 8 Hundred-fold extrapolations comparing time and rainflow
domain methods.

Another advantage of the time domain method could be
that the generated sequence of cycles is more realistic since
it is directly based on a measured sequence.

If our goal is to extrapolate the load spectrum, the
method of rainflow extrapolation has the properties of
being more computationally efficient, and estimates the
shape of the load spectrum for an infinitely long measure-

ment. However, the time domain method is more robust,
since it only uses the extreme value theory for extrapo-
lating to extreme load levels, while the rainflow domain
method uses an additional extreme value approximation
for the shape of the rainflow matrix.
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Peugeot Citroën for their support, and for permission to
use their load data in the examples. Further the author is
thankful to Professor Jacques de Maré and Dr Thomas
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necessity of QE were confirmed, and determinations 
of the clusters were shown.

The choice of the solution parameters in QE was 
also emphasized in Dressler et al. [64]. On one hand, 
the extrapolation results are highly dependent on the 
determination of the clusters B1, B2, ..., Bm , which can 

be adjusted according to different conditions or be 
defined invariant of the data analyzed. On the other 
hand, it is important to test the resultant vectors for 
Gaussian distribution and the determination of the x% 
matrix will be much easier with the vectors.

Fig. 11.  Comparison among extrapolated results based on different kernel functions;  
a) circular; b) mean-basedellipse; c) range-based ellipse; d) epanechekov

Fig. 12.  Probability density distribution with different bandwidths
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3  SUMMARIES OF THE EXTRAPOLATION METHODS

Characteristics of the extrapolation methods are 
summarized from three aspects (the critical factors, 
the advantages and disadvantages, and the application 
ranges of each extrapolation method) based on the 
previous sections.

3.1  Critical Factors

Critical factors in each extrapolation method are 
summarized in Table 1. These factors are mentioned 
and emphasized in the preceding part based on the 
literature and illustrations.

3.2  Advantages and Disadvantages

Based on the literature and illustrations, the 
advantages and disadvantages of each extrapolation 
method are summarized in Table 2.

3.3  Application Ranges

Different extrapolation methods have their own 
application ranges. In practice, the application ranges 
of a certain extrapolation method are not categorical. A 
method has to be selected on the basis of the practical 
situation. Application ranges of the methods in this 
paper are mainly based on the load characteristics 
and extrapolation purposes, which are summarized as 
follows.

PEE: For sample data, when the stationary test 
for a certain distribution is qualified, PEE will be an 
appropriate selection. However, when convenience 
and efficiency of data processing is required instead 
of the accuracy, PEE can be considered. For example, 
in Xiang [20], the distributions of the load amplitudes 
and mean values fit well with the fitting functions and 
they are independent, so PEE is adopted. 

EVE: EVE is a proper choice in circumstances 
where the sample data is composed of extreme load. 
For example, the data in the fields of wind speed 
and engineering machinery could be extrapolated 
by EVE. Furthermore, if the purpose is to produce 
a load time history for fatigue test and fatigue life 
evaluation, EVET is a better choice because it is 
capable of extrapolating the load time history directly. 
EVER is more applicable for accurate load spectrum 
extrapolation of large load cycles. EVER is also an 
appropriate choice in circumstances where the load 
spectrum can be modeled as a Gaussian or Markov 
model.

NPE: NPE is limited by the sample size of large 
load cycles. If the sample size is enough, NPE may be 
a better choice. For extrapolating medium and small 
load cycles, NPE can be used. When it is difficult to 

Table 2.  Advantages and disadvantages of each extrapolation method

Extrapolation 
method

Advantages Disadvantages

PEE
• Computes efficiently [20] and  [7];
• Considers the influences of both mean value and 

amplitude of the sample data [19] and [20].

• Relies on the distribution of the measured data;
• There is subjectivity in selecting a parameter-estimate 

method [26]. 

EVET

• Gets a load time history directly;
• Generated sequence of cycles is realistic;
• Robust;
• Considers the influence of extreme values.

• The block size and threshold selection has a great influence 
on the extrapolation accuracy. 

• Relies on distributions of the sample data ;

EVER

• Estimates the shape of the load spectrum for an infinitely 
long measurement;

• Available for large cycles.

• Produces a rainflow matrix and needs to be converted into a 
time signal; 

• Choice of the threshold is difficult. 
• Relies on distributions of the  sample data;

NPE
• Independent of the distributions of the sample data [64];
• Effective estimation of the load spectrum with arbitrary 

shapes [64].

• Large amount of sample data is needed [64] and [66];
• The kernel function and bandwidth selection is influential.

QE
• The extrapolated samples consider the influence of 

different conditions and operating behaviours. 
• Influential step is breaking the sample data into a series of 

clusters [64].

Table 1.  Critical factors in each extrapolation method

Extrapolation 
method

Critical factor

PEE
Distribution prediction of the sample data
Selection of the distribution function
Parameter estimation

EVE

Threshold or block size determination
Distribution prediction of the sample data
Selection of the distribution function
Parameter estimation

NPE
Selection of the kernel function 
Bandwidth determination

QE
Data characteristics judgment and breaking 
Resultant vectors test 
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define the model of the distribution accurately or there 
is little dependence on the distribution of the sample 
data, NPE may be a good choice. For example, in the 
field of vehicles, the load may be extrapolated by NPE 
[68].

QE: When different working conditions and 
operating behaviors are considered, QE will be useful 
in data processing. For example, due to the complex 
working conditions of engineering machinery, the 
load in the field may be extrapolated with QE [4].

4  DISCUSSIONS

Due to the limited paper length, there are some 
deficiencies in this review. For example, in PE, some 
other distribution functions should be reviewed, 
such as the logarithmic normal distribution in PEE 
and the Rayleigh distribution in EVE. In EVE, the 
importance of the threshold or block size is verified, 
but the selecting methods of the threshold or block 
size should be further discussed. In NPE, the influence 
of bandwidths on the density distribution is verified, 
but the difference between the adaptive and fixed 
bandwidth requires further comparison, and which one 
is better for a certain situation is not concluded. For 
QE, where different working conditions are concerned, 
the process and details of combining QE with other 
methods are not fully reviewed. Furthermore, one 
purpose of this review is to provide guidance on 
selecting an appropriate load extrapolation method for 
a certain case. In this review, only part of the guidance 
is involved, so further research on completing the 
guidance may be useful.

5  CONCLUSIONS

Load extrapolation provides a feasible and reliable 
approach to obtaining a long-term load spectrum for 
fatigue analysis and life prediction in engineering. 
Several commonly used extrapolation methods are 
reviewed in this paper. Some conclusions are as 
follows: 
1.  PEE and EVE are both included in PE. PEE is 

based on the distributions of the sample data. 
Specific distribution functions are employed to fit 
and the parameters in the functions are estimated 
according to the sample data. The PEE process is 
simple and efficient, but some errors may arise in 
the results;

2.  EVE is based on EVT. Extreme values obtained 
by  extraction methods such as BMM, POT, and 
LU are extrapolated by a process similar to PEE, 
but the distribution functions are usually different. 

EVE is valid for the load time history with large 
load cycles, but selecting a proper threshold or 
block size usually requires further consideration;

3.  For extrapolating small and moderate loads, NPE 
can be applied accompanied by kernel estimation. 
There is no need to predict the distributions of the 
sample data and estimate the parameters of the 
functions in NPE. The rationality of the results 
extrapolated by NPE is directly influenced by 
the kernel function and bandwidth, especially the 
latter;

4.  The extrapolation methods mentioned above 
could be combined with QE when the influences 
of different working conditions and operating 
behavior are considered. In QE, determining the 
solution parameters is an important step.

Some potential future research directions are also 
predicted: 

First, a difference between the extrapolated and 
measured load always exists, thus an evaluation 
criterion should be set to evaluate the difference, 
which may provide important guidance for selecting 
the appropriate method. Second, the references and 
applications are mainly about the field of engineering 
in this review. In fact, extrapolation is being used 
in many other fields, such as weather prognosis, 
hydrological forecasting, and financial analysis. 
Methods from other fields can be borrowed and 
adopted in another field. In addition, limited by 
the physical circumstances in engineering, many 
load spectra have maximum or minimum limits. 
Extrapolating the sample data appropriately within 
these limits is challenging. Therefore, research on the 
appropriate extrapolation may provide another way to 
optimize the results.  
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