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The principle of virtual work is applied to thin-walled beams with a cross-section with the middle 
line of an arbitrary curvilinear shape and with a continuously varying thickness. Six equilibrium equations 
and a seventh one related to the constrained torsion are derived taking into account general sectorial 
coordinates. The obtained relations are applied to structural elements with one longitudinal plane of 
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one structural element with a modified cross-section shape. It has been shown that it is not recommendable 
to neglect the influence of  secondary effects. 
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0 INTRODUCTION

Many modern metal structures (motor and 
railroad vehicles, naval structures, turbine blades) 
are manufactured using thin-walled elements 
(shells, plates, thin-walled beams). Thin-walled 
structures are applied when it is necessary to 
achieve high efficiency in strength and cost 
by minimizing the mass of the material used. 
Thin-walled beams are made from flat strips, 
manufactured by welding of thin plates or even 
machined, which permits a wide variety of cross-
sectional shapes. 

Investigations of the behaviour of thin-
walled members with open cross-sections have 
been carried out extensively since the early works 
of Timoshenko [1], Wagner [2] and Vlasov [3]. 
In addition to the mentioned authors, the theory 
of thin-walled structures was later developed by 
Kollbruner and Hajdin [4] and [5], Murray [6] and 
others all of whom showed that the cross-sections 
of thin-walled beams exhibit significant out-of-
plane warping as a response to torsion.

It is well-known that both geometric 
nonlinearity and material inelasticity [7] are 
important for the investigation of the ultimate 
strength of thin-walled beams. The nonlinear 
analysis of beams and frames composed of thin-
walled members has been generally carried out in 
the area of geometrical nonlinear elastic analysis. 
Early work on the large deflection and elastic 

analysis was presented by Powell [8] among 
others. 

Nonlinear analysis can be defined as any 
analysis where linear extrapolation of stress, load 
and deflection is invalid [9] to [11]. Since the 
coupling between the nonlinear displacements 
and the rotational transformation relationships 
are complicated, certain approximations were 
usually done in order to simplify the derivations 
of the nonlinear strains. When approximations 
are made in the early stages of derivation, some 
significant terms of nonlinear strains can be lost. 
Open profiles are commonly analyzed by using 
Vlassov’s assumption of vanishing of the warping 
shear strains in the middle surface of the thin-
walled structure, and the warping of the profile is 
obtained as a function of the angle of rotation.

The linear theory of thin-walled members 
with open cross-sections, as presented in [4], 
differs from the conventional form by including 
the change of longitudinal normal stresses along 
the wall thickness. However, the basic differential 
equations (equilibrium conditions) are derived 
in the unique way. The linear “classical” theory 
of thin-walled open section beams was extended 
in [4] by including the secondary sectorial 
coordinates. That procedure is still linear and later 
in [12] the second order theory was extended to 
thin-walled members with an open cross-section 
with an arbitrary polygonal middle line. 



Strojniški vestnik - Journal of Mechanical Engineering 57(2011)1, 69-77

70 Andjelić, N.

A similar approach is applied in this paper 
to the sections with a middle line of an arbitrary 
curvilinear shape and with constantly varying 
thickness. The main purpose of this paper is to 
present an approach of a nonlinear analysis of 
beam-type structures with a thin-walled open 
cross-section. The authors tried to investigate the 
influence of the introduction of second order terms 
on the results.

1 BASIC ASSUMPTIONS

According to the classical linear theory of 
thin-walled open section beams [1], [3] and [4], 
normal stresses in cross-sections are assumed 
to be constant across the wall thickness and 
proportional to the sectorial coordinates. In [4] 
the secondary sectorial coordinate is introduced 
and the normal stresses are assumed to have the 
distribution that is not constant but linear across 
the wall thickness.

Basic assumptions of the theory of thin-
walled beams are assumed to be valid:
(a) the cross-sections do not change their shape 

and their projections on the initial planes 
behave as rigid plates,

(b) the shear deformation in the middle surface is 
neglected,

(c) the line elements that are initially 
perpendicular to the middle surface remain 
straight and perpendicular during the whole 
deformation.

Open cross-sections are commonly 
analyzed by using Vlasov’s assumptions: the 
warping shear strains are assumed to vanish in the 
middle surface of the thin-walled structure and 
the warping of the cross-section is obtained as a 
function of the angle of rotation.

2 DISPLACEMENTS AND DEFORMATIONS

Applying the principle of virtual work 
[12] and [13] to the deformed configuration of the 
considered thin-walled beam, apart from the six 
common scalar equations, an additional seventh 
equation is obtained and it includes the relations 
between the bimoment B, Saint Venant’s torque 
M3 , warping torque Mω  and internal forces.

2.1 Position Vector of an Arbitrary Point

Let us consider a thin-walled beam with an 
open cross-section (Fig. 1) and let us assume that:
Xi (i = 1, 2, 3)  are two centroidal principal 

axes of the cross-section and the centroidal 
longitudinal axis of the considered beam 
respectively, 

ii


 (i = 1, 2, 3) are the unit vectors of Xi ,
s  is the coordinate measured along the middle 

line of the cross-section,
e  is the distance from the middle line.

Fig. 1. Thin-walled open cross-section

Using the summation convention, the 
position of an arbitrary point in the cross-section 
(not in the middle surface) before the deformation 
is defined by:

 * *
i ir x i= ⋅




, (1)

where *r  is position vector before the 
deformation, xi* (i = 1, 2, 3) are material 
coordinates of an arbitrary point which is not 
initially in the middle surface.

2.2 Displacements during the Deformation

The position of an arbitrary point after the 
deformation can be defined by [12]:

 * * *R r u= +


  , (2)

and by:

 iii iuxR




)( *** += , (3)

where 
*

R  is the position vector after the 
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deformation, *u
  is the displacement vector, *

iu   
(i = 1, 2, 3) are its components.

If P is an arbitrary pole in the plane of the 
cross-section [4], starting from the assumptions 
about the deformations of the considered member, 
the components of the displacement vector can be 
obtained in the form:
 u x x i j j ii iP j jP P

* *( ) , , ; )= − = ≠ξ φ  (    1 2 , (4)

 u x x wP P P P3 1 1 2 2 0
* ' * ' * ' *= − − − +ξ ξ φ ω , (5)

where xiP (i = 1, 2) are the displacement 
components of the pole P in the directions of the 
axes Xi (i = 1, 2),  jP  is the angle of rotation of the 
cross-section around the longitudinal axis through 
the pole P, xiP (i = 1, 2)  are material coordinates 
of the pole P, ωP* is the generalized sectorial 
coordinate, equal to the sum of the “classical’’ 
and the previously mentioned secondary sectorial 
coordinate, w0 is the displacement in the direction 
of the longitudinal axis X3; (...)’=d(...)/dx3 .

2.3 Virtual Displacements

If the virtual displacement
 



u u ii i
* *=  (6)

is imposed to the points of the deformed beam, the 
position vector (3) will become 
 



R x u u ii i i i
* * * *( )= + +  (7)

and its projections on the directions of the axes Xi 
(i = 1, 2) are:
 u x xi iP i iP P

* *( )= −ξ φ

, (8)

where ui
*   (i = 1, 2, 3) are the components of the 

virtual displacement vector 
u * .

2.4 Virtual Deformations

The assumption (b) about the shear 
deformation es3 in the middle surface gives as its 
consequence

 
ε s s

i s i i i i i s

R R
u x u u x u

3 3

3 3 0
= =

= +( ) + +( ) =

 

, ,
, , , , ,     

 (9)

or, if developed,
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 (10)

where 


R x u ui i i= + +( ) , xi (i = 1, 2, 3) 
are coordinates of the middle surface, ui  
(i = 1, 2, 3) are the components of the displacement 
vector of the middle surface, ui  (i = 1, 2, 3) are 
the components of the virtual displacement vector 
of the middle surface,
 (...), (...) / ( , )i ix i= =∂ ∂  ,     1 2 ,

 (...), (...) / ; (...), (...) /.e se s= =∂ ∂ ∂ ∂     .

Also, the consequence of the assumption 
(b) about the shear deformation ee3 in the 
longitudinal plane perpendicular to the middle 
surface is:

 εe e

i e i i i i i s

R R

u x u u x u
3 3

3 3 0

= ⋅ =

= +( ) + +( ) =

 

* *
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, ,

, , , ,      ,,
 (11)

or
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3 EQUILIBRIUM CONDITIONS

The equations of equilibrium are obtained 
using the expressions for the work of external and 
internal forces. 

If A is the cross-sectional area, if σ3i   
(i = 1, 2, 3) are the stress components in the cross-
section and if p is the load acting over the middle 
surface of the considered beam, the virtual work 
W  of external forces and U  of internal forces 
[11] are: 
 W u u dA pu ds

A s

= + +∫ ∫( ),
*

,
*σ σ3 3 3 3 , (13)

 U dAs s
A

= − +∫ ( )* *σ ε σ ε33 33 3 3 . (14)

Introducing real and virtual displacements 
and deformations into (14) and using the condition 
[12]
 W U+ = 0  (15)

an equation of the following form is obtained:

 
H w H H H
H H H

P P P

P P P

1 0 2 1 3 2 4

5 1 6 2 7 0

+ + + +

+ + + =

ξ ξ φ

ξ ξ φ' ' ' .
 (16)

The functions Hi (i = 1, 2, ...,7) are defined 
by long expressions that are simplified if some of 
their parts are neglected:
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where:
 g x x x xP P P P P P= − − + + −σ ξ φ σ ξ φ31 1 2 2 23 2 1 1[ ( )] [ ( )]' * ' '  (24)

In order to satisfy the Eq. (16), the Eq. (17) 
to (23) must equal zero. After the integration over 
the cross-sectional area [12] the following Eqs. 
are obtained:

 F F F M pP P P3 1 1 2 2 3 3 0' ' ' ' '( )− + + + =ξ ξ φ  (25)

 F F x M F pP P P P P1 3 1 2 2 2 1 0' ' ' ' '[ ( ) ]+ + − − + =ξ φ φ φ  (26)

 F F x M F pP P P P P2 3 2 1 1 1 2 0' ' ' ' '[ ( ) ]+ + + + + =ξ φ φ φ  (27)
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Seven Eqs. of equlibrium are obtained and 
the seventh one (31) is the Eq. connected with the 
constrained torsion.

In the Eqs. (25) to (31) the following 
notations are introduced:
	 Fi (i = 1, 2, 3) are two transversal forces and 

the axial force respectively, 
	 Mi and mi (i = 1, 2) are concentrated and 

continuously distributed bending moments, 
	 M3 and m3  are concentrated and continuously 

distributed torques about the longitudinal axis 
(Saint Venant’s torques):

 M x x x x dAP P
A

3 23 1 1 31 2 2= − − −∫[ ( ) ( )]* *σ σ , (32)

	 Mω and mω are concentrated and continuously 
distributed warping moments, 

	 B and bω are concentrated and continuously 
distributed bimoments defined through the 
general sectorial coordinates, 

	 Gi (i = 1, 2, 3), bi (i = 1, 2), bω and iP are:

 G g x dA
A

1 1= ∫ ' * , (33)

 G g x dA
A

2 2= ∫ ' * , (34)

 G g dA
A

Pω ω= ∫ ' * , (35)

 β1
2

1 1
2

2
2

1
1 2= + −∫J x x x dA x

A
P

* * *( ) , (36)

 β2
2

2 1
2

2
2

2
1 2= + −∫J x x x dA x

A
P

* * *( ) , (37)

 β2
2

2 1
2

2
2

2
1 2= + −∫J x x x dA x

A
P

* * *( ) , (38)

 i x x
A
J JP P P

2
1
2

2
2

1 2
1

= + + +( ) , (39)

	 Ji are the principal centroidal moments of 
inertia of the cross-section

 J x dA i j i ji j
A

= = ≠∫ * , ( , , ; )2 1 2          , (40)

• Jω is the generalized sectorial moment of 
inertia of the cross-section

  J dAP
A

ω ω= ∫ *2 . (41)

The quantities (33) to (41) are calculated 
taking into account the secondary effects.

If the expressions are linearized, the Eqs. 
(17) to (23) are reduced to the Eqs. of the linear 
theory of thin-walled beams shown in [1], [3] and 
[4].

4 NUMERICAL EXAMPLE

The real steam turbine blades usually have 
the cross-sections of the shapes shown in Fig. 2 
[14] and they have to be treated as thin-walled 
sections of non-constant thickness.

The real cross-sections (Fig. 2) were 
approximated for the calculations by the cross-
section with one axis of symmetry (Fig. 3).

Fig. 2. Real cross-sections

In order to apply the derived equations and 
expressions to the elements with cross-sections 
similar to the cross-sections of the real turbine 
blades, one element of the modified shape of the 
cross-section with one axis of symmetry (Fig. 
3) was chosen for the calculations. Its symmetry 
obviously induced some simplifications in the used 
expressions, and the whole element was considered 
as clamped at one end and loaded in a complex 
way by continuously distributed lateral load and 
torque along its length. 
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Fig. 3. Approximated cross-section; R is the 
radius of curvature of the middle line; eP is the 
distance between the center of curvature O and 

the pole P (shear center); hC is the distance 
between the center of curvature O and the 

centroid of the cross-section C; yP = eP - hC 

A certain problem presented the choice of 
the function by which the variation of the thickness 
along the section could be described. The chosen 
cross-section having non-constant thickness t(j ) 
(Fig. 3) was defined by the following Eq. [15].
 t t t t( ) ( ) /φ φ α= − −0 0 1

 (42)

where t t0 0= =( )φ , t t1 = =( )φ α .

4.1 Geometrical Characteristics

The expressions defining the geometrical 
characteristics needed for the calculation were 
derived applying the function (42):
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	 After the integration the quantities b1, b2 and bω defined by (36) to (38) become:
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    (48)

where h = hC / R, ρ0 = R / t0 .
It must be underlined that according 

to the author’s knowledge the Eq. (45) for the 
generalized sectorial moment of inertia and Eqs.
(46) to (48) are for the first time derived in this 
paper.

4.2 Stress Distribution 

Stress components that appear in the 
considered case are normal and shear stresses 
caused by bending and torsion. Attention is 
particularly paid to the constrained torsion effects 
as well as to the stress components, which are 
their consequences as in that case the secondary 
effects become evident.

Normal stresses are proportional to the 
sectorial coordinate and it is necessary to point 
out that the secondary sectorial coordinate will 
be taken into consideration together with the 
generalized sectorial moment of inertia calculated 
using (41). 

Normal stresses σ caused by the bimoment 
and shear stresses t caused by the torsion [4] and 
[15] are calculated from the Eqs. (49) and (50):

 σ ω
ω

=
B
J

, (49)

 τ =
M
I
t

t

3 , (50)

where t - is the thickness of the cross-section at 
the considered place.

As the shear stresses and particularly 
stresses induced by the Saint Venant’s torques 
should not be neglected, it was necessary to 
calculate the equivalent stresses σe, which was 
done using the maximum shear stress failure 
(Tresca) criterion (51)

 σ σ τe = +2 24 . (51)

The calculations were done for the straight 
beam (Fig. 4) with the chosen cross-section 
(Fig. 3), and for the dimensions: L = 900 mm,  
R = 300 mm, α = 300, t0 = 26 mm, t1 = 13 mm.

Fig. 4. Approximated shape of the steam turbine 
blade

As the aim of the paper is to investigate 
whether it is necessary or not to take into account 
the additional effects, secondary effects and 
sectorial coordinates, the stresses were calculated 
for the unit loads.

Fig. 5.  Distribution of normal stresses

The distribution of maximal stresses along 
the beam is presented in Fig. 5 for normal stresses, 
in Fig. 6 for shear stresses, and in Fig. 7 for 
equivalent stresses. Numerical calculations were 
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performed separately for the “classical” case when 
the secondary sectorial coordinate was not taken 
into account.

The stress values connected with secondary 
effects are denoted by asterisk. 

Fig. 6.  Distribution of shear stresses

5 CONCLUSIONS

All geometrical characteristics for the 
chosen cross-section and, after that, all stress 
components for the considered structural element 
having the shape of the turbine blade were 
calculated in the way explained in [4], [13] and 
[15]. As it has been mentioned the Eqs. (45) to 
(48) are for the first time derived in this paper. The 
geometrical quantities obtained with and without 
the secondary sectorial coordinates were mutually 
compared as well as the stress components in 
the case of complex loads. Their distributions 
over the cross-section and along the element 
for the applied unit loads were determined. The 
dependence of the secondary effects on the cross-
sectional dimensions was shown.

Fig. 7.  Distribution of equivalent stresses

From the obtained results it can be 
concluded that if secondary effects are taken 
into account, the differences between the stresses 
with and without the mentioned effects are quite 
remarkable at the clamped ends and that they 
decrease towards the middle of the beam. It 
should be pointed out that the clamped ends are 
at the same time the places where the blades 
are connected with the rotor body and that they 
already represent the critical points.

If the additional terms are taken into 
account, they have non negligible effects on the 
level of stress components, particularly in some 
cases of the crotional shapes similar to those 
considered in the numerical example.
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