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0 INTRODUCTION

Natural convection is often considered to be the main 
mechanism of heat transfer in cavities. It has a variety 
of applications in many engineering systems. The 
fluid inside the cavity can occasionally be regarded 
as Newtonian; however, in many natural or artificial 
systems, this fluid has a non-Newtonian behaviour. 
With their important applications in engineering, 
fluids such as nanofluids, molten polymers, paints, 
food stuff, inks, organic matter, and glues may all 
exhibit strong non-Newtonian behaviours. Examining 
natural convection in non-Newtonian fluids in cavities 
is, therefore, highly crucial to engineering and has 
many applications in it. Food processing, oil drilling, 
polymer engineering, geophysical systems, electronic 
cooling systems, and nuclear reactors are examples of 
natural convection in non-Newtonian fluids. Natural 
convection in Newtonian fluids has been extensively 
studied in cavities under various boundary conditions. 
Catton [1] examined natural convection in vertical, 
horizontal and tilted rectangular enclosures. Davis 
[2] studied natural convection inside an enclosure 
with isothermal sidewalls and adiabatic horizontal 
walls. A comprehensive study of natural convection 
literature was done by Ostrach [3]. The applications 
of natural convection were presented by Bejan [4] 

and Emery and Lee [5]. Aydin [6] assessed natural 
convection inside a rectangular enclosure, which 
was heated from the left vertical wall and was cooled 
from the top wall; the other two walls were adiabatic. 
The thermal performance of rectangular enclosures 
is dependent on the aspect ratio of the enclosures [7].  
The conducted studies on the natural convection field 
have been reviewed by Ganguli et al. [8].  Arpino et 
al. [9] analysed transient natural convection in tall 
cavities. They used a dual time-stepping to improve 
the transient solution. In another study, Arpino et al. 
[10] numerically studied transient natural convection 
in porous and partially porous cavities with an 
emphasis on the dependence of flow behaviour on Ra, 
porous layer permeability, and cavity aspect ratio [1] 
to [10]. 

Ozoe and Churchill [11] were perhaps the first to 
study forced convection in non-Newtonian fluids in 
cavities. They investigated natural convection in two 
non-Newtonian fluids, i.e. Ostwald-de Waele (power-
law) and Ellis, in a shallow horizontal cavity heated 
from the bottom and cooled from above. They found 
that the critical value of Rayleigh number for the onset 
of natural convection increases with the fluid index. 
Cavities with natural convection are divided into two 
general groups. The first group includes cavities that 
are heated and cooled from the side walls, and the 
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second group includes cavities that are heated from 
the bottom. In the second group, natural convection 
begins when the Rayleigh number exceeds a critical 
value. 

Kaddiry et al. [12] conducted a numerical 
investigation of a Rayleigh- Benard convection of a 
non-Newtonian power-law fluid in a square cavity. 
They showed that the critical value of the Rayleigh 
number for onset natural convection was an increasing 
function of the power-law index. For example, 
the results indicated that Rac ≈ 600  for  n = 0.6  and  
Rac ≈ 5000 for n = 1.4.

Kim et al. [13] studied transient natural convection 
in non-Newtonian power-law fluids in a vertical cavity 
by assuming the horizontal walls to be insulated and 
taking the cause of the buoyancy force and natural 
convection inside the cavity to be the simultaneous 
temperature change at the vertical walls. They found 
that, at a certain value of the Rayleigh number, both 
the convection strength and the heat transfer rate 
change for non-Newtonian fluids in comparison to 
Newtonian fluids, so that they are both increased at 
n < 1 and reduced at n > 1. Lamsaadi et al. [14] studied 
transient natural convection in non-Newtonian power-
law fluids in a shallow cavity using numerical and 
analytical methods. Their cavity consisted of long, 
insulated, horizontal walls and short vertical walls, 
with the vertical walls heated and cooled with a 
constant heat flux. The results of their study showed 
that heat transfer and flow characteristics were not 
sensitive to an increase in the Prandtl number or the 
aspect ratio of the cavity, given that the parameters 
were sufficiently large. They argued that n (the 
power-law index) and the Rayleigh number were 
parameters that affected the rate of heat transfer and 
flow field in shallow cavities with non-Newtonian 
fluids and large Prandtl numbers. Lamsaadi et al. [15] 
also investigated steady natural convection in non-
Newtonian power-law fluids in a tilted rectangular 
slit using the numerical method. A constant heat flux 
was applied to the side walls, and the remaining walls 
were insulated. This study was conducted within the 
Rayleigh  number  range  of  10 ≤ Ra ≤ 105, the power-
law  index  of  0.6 ≤ n ≤ 1.4  and  the  rotation  angle  of 
–180° ≤ Φ ≤ 180°.  They  found  that  given  a  certain 
value of Rayleigh number, the rotation of the cavity 
had a dramatic effect on the rate of heat transfer. The 
highest rate of heat transfer occurred when the cavity 
was heated from the bottom, and the effect of the 
cavity rotation increased as the value of n decreased.

Several studies have recently investigated natural 
convection in non-Newtonian fluids in square and 
rectangular cavities with horizontal insulated walls 

and vertical walls with constant temperatures. Turan 
et al. [16] used the FLUENT ANSYS commercial 
package to simulate power-law fluids. Ternik and 
Rudolf [17] investigated the natural convection of 
a non-Newtonian nanofluid in an enclosure with 
isothermal sidewalls and adiabatic horizontal walls. 
The natural convection of power-law fluids has been 
assessed in a rectangular enclosure [18] and in a square 
enclosure [19] with isothermal vertical walls. The 
common findings of these studies showed that the heat 
transfer and flow field were affected by the Rayleigh 
number and n (the power-law index). However, for 
any given n and Ra, the average Nusselt number was 
not affected by the Prandtl number. Moreover, for 
rectangular cavities with a boundary condition of a 
constant temperature on the vertical walls, the Nusselt 
number did not vary uniformly as the aspect ratio 
increased; however, when the boundary condition was 
a constant heat flux applied to the vertical walls, this 
variation was uniform. 

Alloui [20] studied natural convection in a 
non-Newtonian fluid in a vertical cavity using the 
Carreau-Yasuda model and showed that compared 
to Newtonian fluids, the rate of heat transfer and 
convection strength increased when n < 1 and 
decreased when n > 1. The changes in the n value did 
not greatly affect the rate of heat transfer when the 
Rayleigh number was small. 

Natural convection in non-Newtonian fluids 
in cavities heated from the bottom has received less 
attention in literature than the studies considering 
cavities heated from the sides. Lamsaadi et al. [21] 
studied natural convection in a horizontal cavity 
heated from the bottom and cooled from above using 
numerical and analytical methods. They showed 
that fluid flow, temperature distribution and the rate 
of heat transfer were sensitive to n (the power-law 
index); however, for large Prandtl numbers, they were 
no longer sensitive to the Prandtl number. Compared 
to Newtonian fluids, non-Newtonian fluids were 
associated with the onset of natural convection by 
a single cell flow when n < 1 and behaved inversely 
when n > 1.

Ouertatani et al. [22] conducted a numerical 
assessment of Rayleigh-Bénard convection in a 
rectangular cavity; they considered a cavity with the 
bottom wall at a constant temperature of Th and the 
top wall at a constant temperature of Tc. They assumed 
the vertical walls to be insulated. Their study yielded 
streamlines and isotherms for the Rayleigh numbers in 
the range of 104 ≤ Ra ≤ 106. They argued that the rate 
of heat transfer increased with the Rayleigh number. 
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Mahrood Khadangi et al. [23] conducted an 
experimental study of natural convection of a non-
Newtonian nanofluid in a cavity heated from the 
bottom with a constant heat flux and cooled from 
above. They used the Al2O3 and  TiO2 nanoparticles 
and  a  0.5 weight  percent  solution  of  carboxymethyl 
cellulose as the base fluid for the nanofluid. The results 
of their study showed improvements in the rate of 
heat transfer of natural convection in non-Newtonian 
nanofluids at low concentrations of nanoparticles. 
However, the rate of heat transfer began to decline 
as the volume percent of nanoparticles exceeded a 
certain amount.

Khazzar et al. [24] conducted a numerical study 
of natural convection in a non-Newtonian power-law 
fluid in a tilted rectangular cavity heated from the 
bottom and cooled from above. They conducted this 
study for different tilt angles of the cavity (0 ≤ φ ≤ 90) 
and calculated the rate of heat transfer and flow field 
for different aspect ratios, Rayleigh numbers and 
power-law indices. Their results showed an increasing 
and a decreasing average Nusselt number for non-
Newtonian shear-thinning (n < 1) and non-Newtonian 
shear-thickening (n > 1) fluids, in respective order. 
The increase and decrease in the average Nusselt 
number depended on the Rayleigh number, the Prandtl 
number, the aspect ratio, and the power-law index.

Alloui et al. [25] conducted a numerical and an-
alytical investigation on the onset of natural convec-
tion in a shallow rectangular cavity filled with pow-
er-law fluids. The cavity was heated from the bottom 
through a constant heat flux. They calculated the criti-
cal value of the Rayleigh number for non-Newtonian 
fluids given n > 1 and n < 1 using the linear stability 
theory. Turan et al. [26] conducted a numerical study 
of a laminar natural convection of power-law fluids 
in a square cavity heated from the bottom through a 
constant heat flux. They argued that the average Nus-
selt number was significantly affected by the Rayleigh 
number and n (the power-law index); however, it was 
not affected significantly by the Prandtl number. They 
also compared bottom-heated and side-heated cavi-
ties and concluded that for shear-thinning fluids and at 
high Rayleigh numbers, the average Nusselt number 
was higher for side-heated cavities in comparison to 
bottom-heated ones. However, for shear-thickening 
and Newtonian fluids, the Nusselt number remained 
approximately the same for both side-heated and bot-
tom-heated cavities.

Yigit et al. [27] studied the effects of aspect ratio 
on natural convection in non-Newtonian Bingham 
fluids in bottom-heated and top-cooled rectangular 
cavities. They varied the aspect ratio in the range 

of  (0.25 ≤ AR ≤ 4) and the Rayleigh number in the 
range  of  103 ≤ Ra ≤ 105 while assuming the Prandtl 
number was  constant  and  equal  to  500. They  found 
that the convection heat transfer was enhanced with 
an increased Rayleigh number, but that the average 
Nusselt number was lower in Bingham fluids in 
comparison to in Newtonian fluids due to an increased 
yield stress viscosity.

The natural convection of a non-Newtonian 
power-law fluid was numerically studied by 
Vinogradov et al.  in an inclined cavity [28]. They 
found that for square-shaped cavities (AR = 1), the heat 
transfer rate in the horizontal position is substantially 
lower  than  the  heat  transfer  rate  in  the  vertical  90° 
position with the vertical walls conducting. They also 
indicated that the thermal behaviour of rectangular 
cavities (AR > 1) becomes more complicated due to 
the formation of the Banard cells.

Despite the valuable studies conducted on 
the natural convection of non-Newtonian fluids in 
bottom-heated cavities as shown in the review of 
the literature, no studies were found on cooling a 
local heat source placed on the bottom of a cavity by 
power-law fluids. The heat source in mind can be an 
electronic device producing heat while operating in 
an electronic circuit, which requires cooling so as not 
to exceed a certain permitted temperature. As regards 
the length of the heat source, as well as the position 
of its placement on the floor of the cavity, there can 
be significant effects on the heat transfer and flow of 
fields; in this study, the effects of the length of the heat 
source and its position are also reviewed. The present 
study is, therefore, conducted to examine the effects of 
parameters such as the Rayleigh number, the power-
law index and the positioning and length of the heat 
source on the rate of heat transfer and temperature and 
flow fields.

1  METHODS

1.1  Governing Equations

It is assumed that the enclosure is full of a non-
Newtonian power-law fluid. The flow is considered 
to be steady, two-dimensional and laminar, and the 
radiation effects are negligible. Also, density changes 
have been modeled in the momentum equation with 
the Boussinesq approximation. Based on the stated 
assumptions, the dimensional governing equations of 
continuity, momentum, and energy are as follows:

 ∂
∂

+
∂
∂

=
u
x

v
y

0,  (1)
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For a non-Newtonian fluid which follows the 
power-law model the viscous stress tensor is given by 
[29]:
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where Dij is the rate of strain tensor for the two-
dimensional Cartesian coordinate and μa is the 
apparent viscosity that is derived for the two-
dimensional Cartesian coordinate as:
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where K and n are power-law model constants. K is 
the consistency coefficient and n is the power-law 
index. Where (n < 1), is for shear-thinning fluids and 
(n > 1), is for shear-thickening fluids. When (n = 1), a 
Newtonian fluid is obtained. By using the following 
non-dimensional parameters:
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Eqs. (1) to (4) are converted to dimensionless 
forms, as follows:
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1.2  Problem Description

A schematic diagram of the problem under 
examination is shown in Fig. 1. The figure illustrates 
a two-dimensional cavity containing a non-Newtonian 
power-law fluid. A heat source is placed on the bottom 
wall of the cavity, producing a uniform heat flux. The 
remaining parts of the bottom walls are insulated, and 
the vertical side walls and the top horizontal walls are 
kept at a relatively low temperature of Tc. The cavity 
contains a shear-thinning fluid (n < 1), a Newtonian 
fluid (n = 1), and a shear-thickening fluid (n > 1). The 
Prandtl number is assumed constant and equal to 100. 

Fig. 1.  Schematic diagram of the physical model

According to the schematic diagram of the 
physical model (Fig. 1), the dimensionless boundary 
conditions are as follows:
 on the left and right walls: U = V = θ = 0,
 on upper horizontal wall: U = V = θ = 0,
 on the edges of the lower wall: U = V = ∂θ/∂Y = 0,
 on the heat source: U = V = 0 and ∂θ/∂Y = –1.  (13)

After solving the governing equations 
numerically, as a measure of the heat transfer rate of 
the enclosure, the local Nusselt number on the heat 
source surface can be defined as follows:
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In Eq. (14), h is the convection heat transfer 
coefficient. Using the dimensionless parameters, the 
following relationship is obtained for the local Nusselt 
number:

 Nu
Xs

=
( )
1
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,   (15)

where θs is the dimensionless temperature of the heat 
source. The average Nusselt number can be obtained 
by integrating the local Nusselt number along the heat 
source.
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1.3  Numerical Method, Grid Study and Code Validation

For obtaining a numerical solution, the governing 
differential equations have to be converted into 
algebraic equations. The governing dimensionless 
equations (Eqs. (8) to (11)) are integrated over each 
of the finite control volumes in the flow domain; 
obtained integrated transport equations along with 
the relevant boundary conditions are discretized 
by using finite difference method. The convection-
diffusion terms are estimated using the power-law 
scheme. For obtaining a numerical solution to the 
discretized equations, SIMPLE algorithm proposed 
by Patankar [30] is used and a computer program is 
written in FORTRAN. The convergence criterion is to 
reduce the maximum mass residual of the grid control 
volume below 10–8.

A uniform staggered grid is used for obtaining 
the numerical solution. The grid independence is 
examined for n = 0.6,  Ra = 106, S = 0.5  and  W = 0.4. 
The results of grid study for three different uniform 
meshes are presented in Table 1. Using the Richardson 
extrapolation, the grid-converged value of a general 
variable such as φ is obtained as follows. 

 ϕ ϕ
ϕ ϕ

ext M
M M

pr
= −

−
−3

2 3

1
,  (17)

where φM3 is obtained on the basis of the finest grid 
and φM2 is thus based on the next level of coarse 
grid, r = 2 is the ratio between the coarse to fine grid 
spacing and p = 2 is the theoretical accuracy. 

The results of the grid study show that as the grid 
points  increase  from  50×50  to  200×200  the  error  of 
the numerical solution decreases, and the agreement 

between the predictions obtained with mesh M2 
and extrapolated values is extremely good for both 
the average Nasselt number and the maximum 
temperature of the heat source. The grid size 100×100 
is, therefore, used in the numerical solution.

Table 1.  Grid independence study (Ra = 106, n = 0.6, W = 0.4, 
S = 0.5).

Nx×Ny Num Error [%] θs,max Error [%]

Mesh M1 50×50 26.0491 1.6 0.06431 4
Mesh M2 100×100 25.7902 0.6 0.0669 0.194
Mesh M3 200×200 25.6755 0.15 0.067 0.045

φext 25.6372 0.06703

Fig. 2 shows a quarter of the computational grid 
which is made up of uniform meshes, and Fig. 3 
shows the staggered grid in the x direction.

Fig. 2.  A quarter of the computational grid

Fig. 3. Staggered grid in the x direction

For validation of the numerical code, the results 
of the present code are compared with the results 
obtained by Turan et al. [16]. For this purpose, a 
square cavity filled with a non-Newtonian power-law 
fluid is considered, as are insulated horizontal walls, 
and vertical walls that are at constant and different 
temperatures of Th and Tc. The average Nusselt 
number is calculated for different Rayleigh numbers 
and power-law indices. Fig. 4 compares the results 
and shows a good consistency between the results of 
the present study and of the one by Turan et al. [16].
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Fig. 4.  Validation of the present code against Turan et al. [16]

2  RESULTS AND DISCUSSION

The results of the present study are shown in the form 
of the effects of the Rayleigh number (103 ≤ Ra ≤ 106), 
the  power-law  index  (0.6 ≤ n ≤ 1.8),  the  heat  source 
length  (0.2 ≤ W ≤ 0.8)  and  the  heat  source  position 
(0.2 ≤ S ≤ 0.5) on  the  flow and  temperature  fields and 
the rate of heat transfer excreted from the heat source. 
The Prandtl number is assumed to be 100 throughout 
the study.

2.1  Effect of the Rayleigh number and power-law index

In this part of the study, the effects of the Ra and n on 
the flow and temperature fields and the rate of heat 
transfer are examined. The length and the position of 
the heat source are constant, Tc.

Figs. 5 and 6 show the streamlines and isotherms 
for different Rayleigh numbers at three different 
power-law indices (n = 0.6, 1, 1.8). According to Fig. 
5,  for  all  values  of  the  Rayleigh  number  and  the 
power-law index, two symmetrical counter-rotating 
cells are formed inside the cavity. For a given value 
of n, the strength of the rotating cells increases with an 
increase in the Rayleigh number. Due to the reduction 
in the apparent viscosity of shear-thinning fluids 
compared to Newtonian fluids, the greatest increase 
in convection strength occurred at n = 0.6. Fig. 5 also 
shows that, for a given Rayleigh number, an increase 
in n leads to an increase in apparent viscosity and a 
decrease in the strength of the rotating cells. However, 
given that poor convection is created inside the cavity 
at Ra = 103, increasing the power-law index has no 
significant effect on the flow field. However, at 
higher Rayleigh numbers, natural convection inside 
the cavity becomes stronger, and an increased n then 
reduces the strength of the rotating cells considerably.

According  to  Fig.  6,  at  Ra = 103, 104, the form 
of the isotherm lines implies the dominance of the 

Fig. 5.  Streamlines at different Rayleigh numbers and power-law 
indexes (W = 0.4, S = 0.5, Pr = 100)

Fig. 6. Isotherms at different Rayleigh numbers and power-law 
indexes (W = 0.4, S = 0.5, Pr = 100)
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conduction heat transfer mechanism. At higher 
Rayleigh numbers, isotherm lines imply that 
convection is the dominant heat transfer mechanism. 
For all Rayleigh numbers, convection is weakened by 
an increase in the power-law index, thereby increasing 
the heat source temperature, while an increased 
Rayleigh number reduces the heat source temperature.

Fig. 7 shows the effect of the power-law index on 
the dimensionless vertical velocity component at the 
cavity’s mid-section (Y = 0.5)  for  Ra = 105. With an 
increase in n, the maximum and minimum values of 
the dimensionless vertical velocity component reduce 
due to an increase in the apparent viscosity of the fluid 
and a reduction in the strength of the rotating cells, 
so that for n = 1.8, convection is almost damped inside 
the cavity and fluid velocity tends to zero.

Fig. 7. Vertical velocity profiles along the mid-section of the 
enclosure for three different power-law indices  

(Ra = 105, W = 0.4, S = 0.5, Pr = 100)

Fig. 8.  Variation of heat source maximum temperature versus 
power-law index at various Rayleigh numbers  

(W = 0.4, S = 0.5, Pr = 100)

Fig. 8 shows the effects of the Rayleigh 
number and the power-law index on the maximum 
dimensionless temperature of the heat source. Since a 
weak convection is set up inside the cavity at Ra = 103, 
the power-law index has only a negligible effect on 
the maximum temperature of the heat source. At 

higher Rayleigh numbers, an increased n leads to a 
weakened natural convection inside the cavity and 
the fluid takes less heat away from the heat source, 
thereby increasing the maximum temperature of the 
heat source. However, an increased Rayleigh number 
reduces the maximum temperature of the heat source.

Fig. 9 presents the variation of average Nusselt 
number (Num) with the Rayleigh number and the 
power-law index. At Ra = 103, where convection 
inside the cavity is weak, and conduction is the 
dominant mechanism of heat transfer, the power-law 
index has no effect on the average Nusselt number. 
At Ra = 104, an increased n and weakened convection 
turn conduction into the dominant mechanism of heat 
transfer, so that for n > 1, the average Nusselt number 
is not affected by changes in n. At high Rayleigh 
numbers (Ra = 105, 106), the average Nusselt number 
increases due to an enhanced convection; in these 
states, an increase in n reduces the average Nusselt 
number significantly.

Fig. 9.  Variation of average Nusselt number versus power-law 
index at various Rayleigh numbers (W = 0.4, S = 0.5, Pr = 100)

For a better understanding of the variations 
of Num with Ra and the power-law index (n), Table 
2 presents the percentage changes in the average 
Nusselt number of non-Newtonian fluids compared to 
Newtonian fluids at various Rayleigh numbers. 

Table 2.  The percentages of average Nusselt number variation for 
non-Newtonian fluids (W = 0.4, S = 0.5, Pr = 100)

Nu Nu
Nu
m m n

m n

−







×

=

=

,

,

1

1

100

Ra 103 104 105 106

n = 0.6 0.02 57.2 114.3 92.44

n = 0.8 0 10.6 45.67 40.03

n = 1.2 –0.01 –0.96 –24.68 –27.26

n = 1.4 –0.01 –1.31 –35.63 –45.41

n = 1.8 –0.02 –1.54 –40.67 –63.28
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In Ra = 103, the percentage of changes in 
the average Nusselt number is negligible in non-
Newtonian fluids compared to Newtonian fluids. 
In general, the percentage of changes in the average 
Nusselt number is positive for shear-thinning non-
Newtonian fluids (n < 1) and negative for shear-
thickening non-Newtonian fluids (n > 1) compared 
to Newtonian fluids. At increased Rayleigh numbers 
and an enhanced convection inside the cavity, the 
percentage of changes in the average Nusselt number 
increases in non-Newtonian fluids compared to in 
Newtonian fluids. The percentage of changes in the 
average Nusselt number is highest for shear-thinning 
fluids compared to Newtonian fluids at Ra = 105, 
mainly because the dominant mechanism of heat 
transfer changes from conduction to convection at this 
Ra value and the reduction in viscosity has the most 
significant enhancing effect on convection.

3.2  The Effects of the Heat Source Length 

In this section, the power-law index and the position 
of the heat source were taken as constant and equal to 
n = 0.6 and S = 0.5, and  the effects of  the heat  source 
length  (0.2 ≤ W ≤ 0.8)  on  the  flow  and  temperature 
fields and thermal performance of the cavity were 
then investigated.

Fig.  10  presents  the  streamlines  (left)  and  the 
isotherms (right) at Ra = 105 for various lengths of 
the heat source. The strength of the rotating cells is 
increased due to the greater heat generated by the 
heat source’s increased length. The isotherms indicate 
that convection is the dominant mechanism of heat 
transfer. Although convection is boosted with the 
increase in the length of the heat source, the maximum 
heat source temperature has not been reduced. In 
contrast, since a greater heat is generated in the heat 
source by the increase in its length, the heat source 
temperature has also increased.

Fig. 11 shows the effects of the Rayleigh number 
and the length of the heat source on the average 
Nusselt number (Num) and the maximum temperature 
of the heat source. As expected, the average Nusselt 
number increases with an increase in the Rayleigh 
number and the subsequently enhanced convection. 
The average Nusselt number decreases slightly with 
the increase in the length of the heat source. When 
the length of the heat source increases, the fluid is in 
contact with the heat source for a prolonged period, 
thereby leading to an increase in fluid temperature and 
a reduction in the temperature gradient next to the heat 
source. As a result, Num decreases slightly with the 
increase in the length of the heat source and despite 

Fig. 10.  Streamlines (left) and isotherms (right) for different heat 
source lengths (Ra = 105, n = 0.6, S = 0.5, Pr = 100)

a)  

b)  
Fig. 11.  Effect of heat source length and Rayleigh number 

on; a) average Nusselt number; and b) heat source maximum 
temperature (n = 0.6, S = 0.5, Pr = 100)



Strojniški vestnik - Journal of Mechanical Engineering 62(2016)10, 553-564

561Natural Convection of Non-Newtonian Fluids in a Square Cavity with a Localized Heat Source 

the enhanced convection. The reduction in the average 
Nusselt number reduces the cooling power of the 
fluid; as a result, the maximum temperature of the heat 
source increases with the length of the heat source. 
The increase in the maximum temperature of the heat 
source occurs with greater intensity at Ra = 103, as 
at this Rayleigh number, heat is transferred through 
conduction, and an increase in the length of the heat 
source leads to the generation of more heat, which 
then has to be let out by conduction.

3.3  Effects of the Positioning of the Heat Source

In this section, the Rayleigh number is taken as 
Ra = 105 and the length of the heat source as W = 0.4, 
and through changing the position of the heat source 
(0.2 ≤ S ≤ 0.5) for three values of the power-law index 
(n = 0.6, 1, 1.4),  the  flow  and  temperature  fields  and 
the rate of heat transfer have been examined.

Fig. 12.  Streamlines for different locations of the heat source at 
three different power-law indexes (Ra = 105, W = 0.4, Pr = 100)

Figs. 12 and 13 show the streamlines and the 
isotherms for four different positions of the heat source 
(S = 0.2, 0.3, 0.4, 0.5) and three values of n. When the 
heat source is placed next to the cold wall on the left, 

two asymmetric counter-rotating vortices are formed 
in the cavity. The strength of the left vortex is lower 
than the right one due to the limitations of the space 
in which the fluid rotates and because it is less in 
contact with the heat source. Through distancing, the 
heat source from the left wall, the strength of the left 
vortex increases while the strength of the right vortex 
decreases following a brief phase of increase. Finally, 
the strength of both vortices becomes equal when the 
heat source is in the mid-section of the bottom wall of 
the cavity. 

Fig. 13.  Isotherms for different locations of the heat source at 
three different power-law indexes (Ra = 105, W = 0.4, Pr = 100)

Isotherms show different behaviours with power-
law index changes (Fig. 13). At n = 0.6,  isotherms 
indicate that a considerable convection strength exists 
inside the cavity for different positions of the heat 
source and also that convection is the main mechanism 
for heat transfer. Distancing the heat source from 
the left wall enhances convection and reduces the 
maximum temperature of the heat source.

At n = 1, both conduction and convection 
mechanisms play a role in heat transfer. By distancing 
the heat source from the cold left wall, less heat is 
conducted out and the maximum temperature of 
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the heat source, therefore, increases, until the heat 
source reaches the mid-section of the bottom wall 
of the cavity, where cold fluid is in contact with the 
heat source from both sides, thereby reducing the 
maximum temperature of the heat source. Finally, at 
n = 1.4, where conduction is the main mechanism of 
heat transfer, distancing the heat source from the left 
wall increases the maximum temperature of the heat 
source.

Table 3 presents the average Nusselt number for 
four different positions of the heat source and three 
values of the power-law index. At n = 0.6, at which a 
strong convection is generated inside the cavity, the 
average Nusselt number does not vary significantly 
with the position of the heat source. At this state, 
distancing the heat source from the left wall reduces 
the average Nusselt number slightly and then, when 
two vortices with equal strength are formed inside the 
cavity (S = 0.5), the average Nusselt number increases 
slightly. At n = 1, where conduction and convection 
are equally powerful mechanisms for heat transfer, 
distancing the heat source from the left wall slightly 
reduces the average Nusselt number at first due to the 
reduced rate of conduction heat transfer, and when 
two vortices with equal strength are formed, the 
average Nusselt number increases. At n = 1.4, where 
conduction is the main mechanism of heat transfer, 
the average Nusselt number decreases with the heat 
source distancing from the left wall and approaching 
the mid-section of the bottom wall.

Table 3.  Average Nusselt number for different locations of the heat 
source at three different power-law indexes (Ra = 105, W = 0.4,  
Pr = 100)

Num
n = 0.6 n = 1 n = 1.4

S = 0.2 14.5487 9.3163 7.9428

S = 0.3 14.5450 7.0014 5.0477

S = 0.4 14.5148 6.9105 4.6306

S = 0.5 14.9846 7.0234 4.5285

4  CONCLUSIONS

This study examines the natural convection in a cavity 
filled with a non-Newtonian power-law fluid and 
partially heated from the bottom through a source of 
uniform heat flux. The effects of the Rayleigh number, 
the power-law index for non-Newtonian fluids and the 
length and position of the heat source on the thermal 
performance of the cavity were investigated. The 
following conclusions are drawn based on the results 
obtained.

Increasing the Rayleigh number enhances the 
natural convection inside the cavity, resulting in a 
higher rate of heat transfer and a reduced temperature 
for the heat source. At n < 1, the natural convection 
is further enhanced when the Rayleigh number is 
increased.

Reducing the power-law index (n) reduces 
the apparent viscosity of the fluid and enhances 
natural convection inside the cavity, which then 
leads to an increased rate of heat transfer and a 
reduced temperature for the heat source. Enhancing 
natural convection as a result of reducing n is more 
pronounced at higher Rayleigh numbers.

The average Nusselt number increases for shear-
thinning and decreases for shear-thickening fluids 
compared to Newtonian fluids. These changes are 
more pronounced for shear-thinning fluids (n < 1).

Increasing the length of the heat source 
enhances natural convection inside the cavity, but 
simultaneously increases the temperature of the heat 
source and also reduces its average Nusselt number.

When the heat source approaches the mid-section 
of the bottom wall from the left wall of the cavity, the 
thermal behaviour of the cavity varies depending on 
whether the value of the power-law index is greater 
than, less than or equal to unity.

5  NOMENCLATURE

Dij rate of strain tensor [s–1]
g gravitational acceleration [ms–2]
h convection heat transfer coefficient [Wm–2K–1]
k  thermal conductivity [Wm–1K–1]
K  consistency coefficient [Nsnm–2]
L Cavity length [m]
n  power-law index [-]
Nu  Nusselt number [-]
Num average Nusselt number [-]
p  fluid pressure [Nm–2]
p   modified pressure [Nm–2]
P dimensionless pressure[-]
Pr  Prandtl number[-]
q’’ heat flux [Wm–2]
Ra  Rayleigh number[-]
s  heat source distance from the left wall [m]
S  dimensionless distance of heat source from the 

left wall [-]
T  temperature [K]
u,v  velocity components in x, y directions [ms–1]
U, V   dimensionless velocity components [-]
w  length of the heat source [m]
W dimensionless length of the heat source [-]
x, y Cartesian coordinates [m]
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X, Y dimensionless coordinates[-]

Greek symbols
α  thermal diffusivity [m2s–1]
β  thermal expansion coefficient [K–1]
∆T  reference temperature difference [K]
τij  stress tensor[Nm–2]
θ  dimensionless temperature[-]
μ  dynamic viscosity [Nsm–2]
μa* dimensionless apparent viscosity [-]
ρ  density [kgm–3]

Subscripts
a  apparent
c  cold
m average
s surface of the heat source
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