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0  INTRODUCTION

End milling of multi-layered metal materials is an 
important manufacturing function in the automotive 
tool making industry. The most well-known process 
to fabricate the multi-layered materials was developed 
by Sandia National Laboratories and is known as 
laser engineered net shaping (LENS). The company 
Optomec makes and sells equipment based on 
Sandia’s LENS process. LENS uses a laser power 
of up to 4 kW to fuse metal powders into three-
dimensional structures layer by layer, guided by a 
CAD model. The process is enclosed in an airtight, 
argon environment which prevents oxidation. The 
closed-loop process controls ensure the geometric 
and mechanical integrity of the completed part [1]. 
Due to the inhomogeneous structure of multi-layered 
metal materials manufactured with the LENS process, 
the machining of these materials leads to undesirable 
effects such as tool breakage, rapid cutting tool wear, 
surface deterioration and shelling of the cladded 
layers (delayerization). All of these undesirable 
effects are directly connected to the cutting tool forces 
acting on the workpiece. Delayerization of material is 
tightly related to the cutting force normal to the layer 
deposition plane [2]. Cutting forces can be seen as a 
control parameter for many other phenomena involved 
in the milling of these materials. Therefore, there is a 
considerable practical interest to analyse and predict 
precisely the cutting forces during milling of multi-
layered metal materials. Knowing the cutting forces is 

fundamental for understanding the cutting processes, 
optimizing the milling operations and evaluating 
the presence of instabilities that could affect the 
effectiveness of milling processes.

Many cutting force models have been developed 
for ball-end milling processes, especially the 
mechanistic models, including the work of Sui [3], 
Zhou [4] and Milfelner [5]. Mechanistic models try 
to relate the cutting forces to the chip geometry by 
experimentally determined cutting force coefficients. 
The major problem is the lack of cutting force 
coefficients for oblique cutting and for different 
tool/workpiece combinations, such as multi-layered 
laser based metal deposition (LBMD) materials. The 
coefficients are obtained by labour intensive and time-
consuming cutting experiments and adjusting of model 
parameters. The problem is even more complicated 
due to the highly nonlinear and inhomogeneous nature 
of multi-layer LBMD materials as compared with 
metals. For these reasons, the generation of specific 
cutting energy data for LBMD materials is more 
challenging. No evidence of research efforts that 
attempts to model the cutting forces in milling LBMD 
materials has been found. Additionally, the obtained 
models are also difficult to extend to different tooling 
systems, conditions, and parameters.

An artificial neural network (ANN) can be used 
as an alternative to analytical approaches. The method 
has become widespread in the predictive modelling 
of milling processes [6] to [8]. ANNs determine an 
implicit relationship between the input(s) and output(s) 
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by learning from a training data set that represents 
the behaviour of a process. Zuperl [9] proposed a 
multilevel perceptron for on-line modelling of forces 
in ball-end milling. Das et al. [10] developed an ANN 
model to predict the surface roughness generated 
while machining a metal matrix composite. Dave et al. 
[11] also proposed a modified back-propagation ANN, 
which adjusts its learning rate and adds a dynamic 
factor in the learning process for the on-line modelling 
of the milling system. Mounayri et al. [12] replaced 
the back-propagation neural network with a new, more 
efficient and practical RBM neural network which is 
finally successfully implemented for the case of ball-
end milling.  Nevertheless, it should be mentioned 
that according to Navarro at al [13] the ANNs cannot 
produce better results than statistical methods when 
stochastic events are analysed. As a result, the ANN 
techniques in metal cutting are used less and less. 
Instead, intelligent statistical methods, such as the 
group method of data handling, are used.

This research employs a feedforward neural 
network in order to obtain a predictive cutting force 
model for the milling of four-layered metal material. 
The ANN predictive capabilities are used to capture 
the highly nonlinear relationship between machining 
parameters, tool angle rotation, LENS process 
parameters, and sensor readings. 

The proposed method offers advantages such as 
automatic searching for the non-linear connection 
between the inputs and outputs, and no required 
knowledge of internal system parameters. The 
computational complexity of model does not increase 
much with the complexity of process, mathematically 
modelling-free and simple extending of the model 
with new input parameters and new data without 
modifying the existing model structure.

The most significant advantage of the proposed 
method is that once the experimental data are 
obtained and arranged, the prediction model for a 
specific tooling system can be built in a few minutes 
through training without any knowledge of statistics, 
machining cutting theory and programming. 

By pressing a button in the application software, 
the processed data from experimental tests and 
corresponding parameters are automatically arranged 
in datasets for training and testing, then training and 
validating of the predefined architecture of ANN is 
performed. The validated neural model is then capable 
of predicting the cutting forces in end milling of 
specific multi-layered metal material. 

This makes the proposed method more practical 
and appropriate for industrial application than 
predictive models based on cutting force coefficients. 

The main drawback of the laser cladding process 
is the lack of knowledge about the machinability of 
the metal deposited materials. For LBMD materials, 
it is difficult to gather data related to the influence of 
the laser-cladding parameters on the produced cutting 
forces, flank wear, and surface roughness. Published 
research relating to the machinability of these 
materials is extremely scarce. Nevertheless, there are 
a few studies about the machinability of difficult-to-
machine metal deposited materials, such as nickel-
based alloys, titanium alloys, and composites. 
M´Saoubi [14] provided industrial perspectives 
in the context of machinability of specific alloys 
used in aerospace applications. He stated that the 
machinability of aerospace materials should be 
considered in much broader terms than machining 
tests that are directed at the tool performance/
material removal rates. A group of researchers 
carried out mechanical [15] and machinability [14] 
assessment of a nickel-based superalloy (Inconel 718) 
in machining operations. Shokrani et al. [16] have 
reviewed and identified difficult-to-machine materials 
such as alloys used in the aerospace, nuclear and 
medical industries. Koyilada et al. [17] performed an 
evaluation of machinability characteristics of Nimonic 
C-263 using chemical vapour deposition (CVD) and 
physical vapour deposition (PVD) coated tools. Dong 
et al. [18] studied the chip formation during machining 
of nickel-based alloy Inconel 718 by observing 
chip metallographic graph. In this research, an 
experimental investigation was carried out to realize 
the machinability behaviour of the four-layered metal 
material in terms of the nature of the cutting force 
generated while performing the machining operation. 

1  PREDICTIVE CUTTING FORCE MODELING

The aim of this research is to develop a methodology 
for predicting the cutting forces produced during 
ball-end milling of four-layered metal materials. This 
chapter outlines the adaptation of the ANN topology 
to the cutting force prediction problem. To carry out 
the modelling of the three cutting force components, 
a popular, three-layer architecture of feedforward 
neural network is used based on the back propagation 
learning algorithm.  The developed ANN has seven 
input neurons for modelling: spindle speed n, feed 
rate f, axial depth of cutting AD, radial depth of cutting 
RD, the angle of cutting tool rotation Θ, cutting tool 
diameter D, the hardness of the machined material HV 
and the thickness of manufactured layer d. The number 
of hidden layers, the optimum number of neurons in 
the individual hidden layer and the training parameters 
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were determined by simulations. The optimum ANN 
contains 3 and 6 neurons in hidden layers. The output 
from the ANN are three cutting force components; 
therefore, three output neurons are necessary. Signals 
passed through the neurons in the hidden and output 
layers are transformed by an ArcTangent activation 
function. Fig. 1 shows the detailed topology of the 
developed ANN-based cutting force prediction model. 

Four steps are required to develop an ANN based 
cutting force model. In Step 1, the training and testing 
data sets were introduced to the ANN. A total of 525 
scaled data points were utilized as the inputs and 
outputs to train the ANN.

Table 1 presents a list of 81 data sets (LENS test 
no. 6) used for training and testing of the ANN; 28 % 
of these data (highlighted sets) were used for ANN 
testing to verify the accuracy of the predicted values. 
Table 1 lists 11 % of the total 729 datasets (Table 2) 
obtained in the LENS end milling tests for the purpose 
of ANN modelling. The columns of Table 1 represent 
the ANN data set number, input vector, and output 
vector. The ANN topology and training parameters 
were defined in Step 2. A number of hidden layers, the 
number of neurons, momentum rate (β), learning rate 
(α), the overall error of the network and the maximal 
number of training iterations is defined. To evaluate 
the individual effects of training parameters on the 
performance of ANN 42 different networks were 

trained, tested and analysed. The ANN performances 
were evaluated using the two different criteria: 
average percentage error (APE) and the number of 
training iterations. The following conclusions can be 
drawn from the results of testing:
• The optimum number of hidden layer neurons for 

the prediction of cutting forces is 9; beyond this 
number, there is no significant improvement in 
the error prediction. 

• If the training of the ANN is performed at learning 
rates (α) higher than 0.2, the network converges to 
a local minimum instead of the global minimum 
in the error space. It is set to 0.15 in hidden Layer 
1 and 0.17 in Layer 2.

• To minimize the estimation errors, β should be 
between 0.008 and 0.01. It is set to 0.01 in both 
hidden layers.

• Networks trained with the ArcTangent transfer 
function give the least prediction errors, while 
those employing sigmoid and sine give the 
highest prediction errors respectively; Networks 
that employ the sine function require the lowest 
number of training cycles followed by the 
ArcTangent.
In Step 3, the training and testing phase is 

performed. During the training stage, the ANN adjusts 
its internal structure by adjusting the interconnection 
weights on the synapses in order to give correct output 

Fig. 1.  Flow chart for training and employing the ANN-based cutting force model with its detail structure
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results according to the input features. 525 sets of 
experimental data are used to conduct 500 iterations 
of training.

Training of the ANN is stopped when the 
prediction error reaches its global minimum within 500 
training iterations. After the ANN had been trained, it 
was applied to 204 additional input-output data pairs 

that were excluded from the training process. This 
time, the values of the output vector were not supplied 
so that the ANN had to predict them. The predictions 
were compared to the cutting force measurements and 
the prediction errors were calculated. It was found 
out that the error of testing for the 204 examples was 

Table 1. 81 datasets for training and testing of neural network (LENS test no. 6)

No. n
 [min-1]

t
[mm/min]

AD
 [mm]

Θ 
[°]

Fx 
[N]

Fy 
[N]

Fz 
[N]

No. n
 [min-1]

t
[mm/min]

AD
 [mm]

Θ 
[°]

Fx 
[N]

Fy 
[N]

Fz 
[N]

406 3000 200 0.5 25 181.9 179.4 -59.9 448 4000 250 1 25 106.7 129 -43.4
407 3000 200 0.5 50 195.6 195 -65.8 449 4000 250 1 50 99.2 117.8 -39.1
408 3000 200 0.5 75 7 11.2 5.8 450 4000 250 1 75 6.8 12.2 -7.6
409 3600 200 0.5 25 89.3 104.2 -34.7 451 3000 300 1 25 190.3 205.1 -68.6
410 3600 200 0.5 50 96 112.6 -38.2 452 3000 300 1 50 177 184.5 -63.8
411 3600 200 0.5 75 7.2 11.8 6 453 3000 300 1 75 7.2 10.6 -4.4
412 4000 200 0.5 25 38.8 59.2 -20.1 454 3600 300 1 25 151.2 158.4 -53.5
413 4000 200 0.5 50 32.9 66.32 -21.7 455 3600 300 1 50 139.1 146.9 -48.7
414 4000 200 0.5 75 6.4 11.4 -7.6 456 3600 300 1 75 4.8 10.6 -7.2
415 3000 250 0.5 25 193.1 186.6 -61.8 457 4000 300 1 25 102.0 151.8 -49.6
416 3000 250 0.5 50 207.6 204.9 -68.7 458 4000 300 1 50 81.1 147.8 -51.1
417 3000 250 0.5 75 5.6 12.3 -6.4 459 4000 300 1 75 -3.9 12.9 -4.8
418 3600 250 0.5 25 105.8 119.6 40.1 460 3000 200 1.5 25 208.6 200.7 -86.3
419 3600 250 0.5 50 117.6 130.1 -43.6 561 3000 200 1.5 50 229.2 223 -75
420 3600 250 0.5 75 4.8 11.0 -6.4 462 3000 200 1.5 75 4.4 12.6 -5.6
421 4000 250 0.5 25 78.9 101.2 -33.8 463 3600 200 1.5 25 114.1 132.9 -44.6
422 4000 250 0.5 50 85.8 110.3 -37.5 464 3600 200 1.5 50 125.4 146.9 -49.5
423 4000 250 0.5 75 7.2 9.8 -4.4 465 3600 200 1.5 75 5.2 12.2 -4.4
424 3000 300 0.5 25 203.1 196.2 -65.8 466 4000 200 1.5 25 110.4 122.8 -40.5
425 3000 300 0.5 50 223.2 218.1 -73.1 467 4000 200 1.5 50 120.3 132.9 -44.0
426 3000 300 0.5 75 6.4 13.9 -9.2 468 4000 200 1.5 75 6.4 9.4 -7.6
427 3600 300 0.5 25 121.2 133.0 -44 469 3000 250 1.5 25 233.7 223.9 -75.5
428 3600 300 0.5 50 133.2 134.4 -48.4 470 3000 250 1.5 50 256.8 246.1 -82.1
429 3600 300 0.5 75 4.8 12.2 -5.2 471 3000 250 1.5 75 7.2 10.2 -6.0
430 4000 300 0.5 25 88.8 130.6 -42.2 472 3600 250 1.5 25 148.4 148.5 -50.7
431 4000 300 0.5 50 99.1 138.6 -47.3 473 3600 250 1.5 50 159.6 165 -55.1
432 4000 300 0.5 75 7.2 -3.6 -2.4 474 3600 250 1.5 75 4.4 11.8 -5.6
433 3000 200 1 25 206.4 204.1 -68.6 475 4000 250 1.5 25 113.2 129.2 -43.7
434 3000 200 1 50 189.9 187.7 -63.8 476 4000 250 1.5 50 121.0 142.6 -48.1
435 3000 200 1 75 6.0 9.8 -6.9 477 4000 250 1.5 75 6.0 12.2 -6.4
436 3600 200 1 25 110.2 132.6 -45 478 3000 300 1.5 25 217.6 211.1 -69.5
437 3600 200 1 50 101.2 118.8 -41.7 479 3000 300 1.5 50 234.1 227.3 -76.4
438 3600 200 1 75 7.6 10.6 -6.8 480 3000 300 1.5 75 6.6 11.2 -5.3
439 4000 200 1 25 100.1 123.8 -41.2 481 3600 300 1.5 25 146.3 159.3 -54.1
440 4000 200 1 50 90.1 114.4 -37.1 482 3600 300 1.5 50 157.3 175.9 -58.8
441 4000 200 1 75 5.6 12.2 -7.6 483 3600 300 1.5 75 6.0 10.6 -6.4
442 3000 250 1 25 247.2 238 -79.9 484 4000 300 1.5 25 133.0 145.8 -50.2
443 3000 250 1 50 225.6 219.0 -73.5 485 4000 300 1.5 50 143.0 162.74 -54.6
444 3000 250 1 75 5.2 11.8 -4.8 486 4000 300 1.5 75 5.6 12.6 -6.4
445 3600 250 1 25 145.2 153.1 -51.0

LENS test no. 6  (P = 380 W,  c =  60 mm/s); 
Cutting tests no. 136 to 162.

446 3600 250 1 50 130.7 140.8 -47.0
447 3600 250 1 75 6.8 9.4 -7.6
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converged to 4 %, which is higher than the error of 
training (2.8 %). 

Finally, in the fourth step, the trained ANN is 
used to predict cutting forces. Fig. 1 shows the basic 
flow chart for training the ANN and predicting the 
cutting forces via ANN. 

2  EXPERIMENTAL PROCEDURE AND EQUIPMENT

To build the ANN model, experimental results were 
obtained according to the following procedure:
1. Nine four-layered metal workpieces with different 

layer thicknesses were produced. LENS process 
parameters at three levels are indicated in Table 2.

2. Thickness d and hardness HV of manufactured 
layers were measured.

3. The impact of LENS process parameters on 
the HV and d of the manufactured layer was 
examined.

4. A total of 243 machining tests were carried out to 
obtain cutting forces in three directions (Table 2); 
27 tests were conducted on each workpiece. Three 
machining factors at three levels are indicated in 
Table 1. Each test was repeated three times under 
the same operating parameters.

5. The results of measured cutting forces were 
analysed and prepared for ANN training.

Table 2.  LENS parameters and corresponding machining tests 
numbers

LENS 
test

P
[W]

c
[mm/s]

Machining test no.

(n;  f; AD ; Θ)
ANN data  
set no.

1 300 30 1 to 27 1 to 81
2 300 48 28 to 54 82 to 162
3 300 60 55 to 81 163 to 243
4 380 30 82 to 108 244 to 324
5 380 48 109 to 135 325 to 405
6 380 60 136 to 162 406 to 486
7 400 30 163 to 189 487 to 567
8 400 48 190 to 216 568 to 648
9 400 60 217 to 243 649 to 729

The machining experiments were carried out on 
the CNC milling machine (type HELLER BEA02), 
under dry cutting conditions. The cutting forces in 
the feed Fx, normal Fy and axial directions Fz were 
measured with a Kistler (Type 9257) piezoelectric 
dynamometer. The dynamometer expresses some 
limitations since it is conditioned by the vibration of 
the surrounding system and by the transducer’s natural 
frequency [19]. These parameters could affect the 
measurement accuracy when measuring cutting forces 
in high-speed machining. Relevant distortions of 

cutting force signals are not experienced if low tooth 
passing frequencies are used [19]. The cutting force 
measurements experiment in this research showed 
no need for dynamic compensation at employed, 
low tooth passing frequencies (133 Hz). However, 
to cleanse measured force signals of possible errors 
induced by vibrations of the surrounding systems, the 
signals were conditioned through a dual mode charge 
amplifier (Type 5001) with a low pass filter of 1 kHz 
cut-off frequency. The used filter is a one pole passive 
filter with second order Butterworth characteristic. 
The low pass filter is set to about one-third of the 
natural frequency of the dynamometer. The analogue 
force signal is then output to an NI 925A board control 
by the Labview software. To avoid the distortion, the 
first natural frequency of the dynamometer has to be at 
least 3 times higher than the cutting frequency. When 
the spindle speed is 4000 min–1 using the 2-flute end 
mill, the cutting frequency is 133 Hz. The natural 
frequency of the dynamometer should be therefore 
higher than 400 Hz to measure cutting force signals 
at the spindle speed of 4000 min–1. The frequency 
bandwidth of Kistler 9257 dynamometer is, therefore, 
adequate for all of the machining cutting-force 
frequency regimes in this research due to relatively 
low spindle speeds. 

The solid ball-end milling cutting tools (Tornado) 
of 8 mm diameter with two cutting edges, of 29.9° 
helix angle and 2.28° rake angle were used. The ball-
end mills were made of a sintered tungsten carbide 
material K88UF with the hardness of 1770 HV. The 
cutting edges were coated with PVD-TiAlN coating. 

The machining tests were carried out for all 
combinations of machining parameters and LENS 
process parameters. One and/or three values for 
the radial and axial depth of cut have been selected: 
RD1 = 0.2 mm; AD1 = 0.5 mm, AD2 = 1 mm, 
AD3 = 1.5  mm. The following values for spindle speed 
and feed rate have been selected: n1 = 3000 min–1, 
n2 = 3600 min–1, n3 = 4000 min–1; f1 = 200 mm/min, 
f2 = 250 mm/min, f3 = 300 mm/min. The combination 
of three values for the laser power (P) and the cladding 
speed (c) was used to make the four-layered material: 
P1 = 300 W, P2 = 380 W, P3 = 400 W; c1 = 30 mm/s, 
c2 = 48 mm/s, c3 = 60 mm/s. 

The workpiece material is made of a 16MnCr5 
basic material and 4 stainless steel (316L) layers with 
a singular 0.3 mm to 1.0 mm thickness, length of 
50 mm and width of 15 mm. 

Nine such belts of stainless steel layers were 
cladded on a singular workpiece with the 60 mm 
thickness, length of 180 mm and width of 70 mm. By 
varying the two LENS process parameters, 9 different 
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test workpieces (9 tests) of four-layered metal material 
with different layer hardness and thickness were 
produced on the Optomec LENS 850-R machine. The 
overlapping in all layers was set to 40 %. The diameter 
of laser ray was 0.8 mm. The experimental setup can 
be seen in Fig. 2.

The Vickers hardness of manufactured layers was 
measured by 7061 Zwick 3212 hardness tester. Layer 
thicknesses d of the manufactured metal material 

were measured with a Nikon Epiphot 300 Inverted 
Metallurgical Microscope.

3  THE IMPACT OF LENS PARAMETERS TO THE HARDNESS 
AND THICKNESS OF THE MANUFACTURED LAYER

The results that were obtained from the 9 tests 
performed on LENS machine are presented in Fig. 
3. Two plots have been worked out to determine the 

Fig. 2.  Experimental set-up

a)    b)
Fig. 3.  The impact of LENS parameters to the a) thickness and b) hardness of the manufactured layer
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variation of two LENS parameters with respect to the 
course of HV and d. 

In the tests, it was found out that the laser power 
and a cladding speed have a significant impact on the 
HV and thickness d of the manufactured layer in the 
four-layered material.

Fig. 3b indicates that the layer hardness increases 
from 275 HV to 318 HV when the P increases from 
300 W to 400 W at the constant cladding speed of 60 
mm/s. Fig. 3b shows that the layer hardness increases 
gradually when the cladding speed increases at the 
same P. The relationship is close to a linear trend.

Fig. 3a shows that the manufactured layer 
thickness decreases when the cutting power and the 
cladding speed increases. The relationship is close 
to a linear trend. It was found out that the cladding 
speed has the largest impact on manufactured layer 
thickness.

4  INFLUENCE FACTORS AND ANALYSIS RESULTS  
OF MILLING FORCE

The prediction results and/or the values of measured 
cutting forces are graphically represented by means 

of diagrams depending on the angle of rotation of the 
cutting tool (Fig. 4). Samples of the cutting forces 
obtained during milling of the four-layered metal 
material are represented by a continuous line. The force 
signals outline the tool engagement in 1/2 revolution. 
Each force signal was obtained by averaging ten one-
revolution engagements at different time periods in 
the cutting test in order to eliminate signal anomalies 
due to the inhomogeneity of the manufactured 
stainless steel layers. The force signals clearly 
outline one characteristic peak corresponding to the 
engagement of the one flute, separated by periods of 
no engagement. The rise of the cutting forces in each 
cycle is due to the increase of chip thickness from zero 
at the cutting edge entry to a maximum at the exit. The 
force signal is also influenced by the direction of layer 
cladding. The order in which the peak forces appear 
and the spacing between them is also related to the 
number of manufactured layers and their thickness.

The cutting forces for milling at the ratio 
AD /d = 0.55 are relatively higher than expected for 
milling when the AD ≈ d (Fig. 4). Force signals also 
exhibit more fluctuation. This is probably due to 
the material inhomogeneity at the border between 

a)   b) 
Fig. 4.  Comparison between experimental and predicted forces for 16MnCr5/316L four-layered material at:  
a) middle depth of cutting AD = 0.45 d ; (test no. 144); b) at high depth of cutting; AD /≈ d ; (test no. 163)
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Fig. 5.  The effect of LENS and machining parameters to the directions of cutting force;  
comparison of the maximal values of measured and predicted cutting force
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separate stainless steel layers. The chip obtained in 
this region is heavily discontinuous and very small. 
Force fluctuations and magnitude increase slightly as 
AD becomes larger than d.

Plots have been worked out to determine the 
variation of LENS and machining parameters with 
respect to the course of the resultant cutting force. A 
part of these plots were plotted in Fig. 5 to present the 
relationship of these operating parameters. 

Fig. 5 shows that the cutting force decreases when 
the spindle speed increases at the same feed rate and 
depth of cut. The relationship is close to a linear trend. 
It was found that feed rate has the largest impact on 
cutting force. 

The cutting force decreases when the feed rate 
decreases. It is also obvious that the force signal for 
the multi-layered material is characteristic of the 
architecture of the material, which depends on the 
LENS machine settings. Figs. 5a to f indicate that 
the cutting force increases significantly (up to 60 %) 
when the P setting increases from 300 W to 400 W 
at the constant c (60 mm/s) and constant machining 
parameters.

Figs. 5e and g outline that the F increases 
moderately (for 16 %) when the c increases from 
48 mm/s to 60 mm/s at the constant P (400 W) and 
AD. The analysis of the plots indicate that two-way 
(dual) effect interaction P × c has a significant effect 
on the value of the resultant cutting force F. It could 
be observed from Fig. 5 that the laser power setting 
has the second largest impact on the cutting force.

Figs. 5b, d, and f indicate that the cutting 
force increases significantly (by 40 %) when the 
manufactured layer thickness decreases (1.5 mm 
down to 0.3 mm) at the same cutting parameters. 

By comparing Figs. 5f and g, it is found that 
when cutting with constant AD = 1 mm at the 
ratio AD /d = 3.3, the cutting forces are 8 % higher 
in comparison to cutting at the ratio AD /d = 0.6. 
Therefore, the cutting forces are higher when the 
cutting involves more than one layer.

5  MODELING RESULTS AND DISCUSSION

Several experimental tests have been performed 
in order to validate the developed ANN model for 
different cutting conditions and LENS machine 
parameters. 

The partial testing results of the ANN model are 
shown in Fig. 5. The results include data in which 
LENS parameters are different. The eight graphs on 
Fig. 5 compare the predicted values and measured 
values of maximal cutting forces. It could be observed 

from Fig. 5 that the predicted values of cutting force 
are very close to the experimental measurement 
values. The maximum percentage prediction cutting 
force error is found to be less than 4.8 % for all the 
cases tested. 

A criterion in this experiment used to judge the 
efficiency of the model was the APE error, defined as:

 APE
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where F~i is the actual cutting force component 
measured by the dynamometer, Fi is the predicted 
cutting force component generated by ANN and m is 
the size of sample data. 

An example of test conditions for one LENS 
machine setting (LENS test no. 6) and cutting test 
no. 144 and 163 are given in Table 3. Table 3 lists 
the input and output of the prediction model results 
for cutting conditions, cutting tool rotation, layer 
thickness and cutting force components. It compares 
the experimental data and the predicted values of the 
cutting force components after training of the ANN 
model. The results mutually differ as follows: from 
0.9 % to 4.7 % for Fx, from 0.3 % to 4.5 % for Fy and 
from 0.7 % to 3.7 % for Fz. Graphical comparisons 
between the experimental cutting forces and the 
predicted cutting forces for a machining example are 
shown in Fig. 4. 

The results in Figs. 4a and b show that the ANN 
model provides good agreement with experimental 
results. The greatest difference between predictions 
and experimental results appear in the normal force 
on the boundary region between two cladded stainless 
steel layers (Fig. 4b). From Figs. 4a and b it can be 
seen that the values from prediction coincide well with 
the values from the experiments and, in addition, the 
process of the change of the cutting force with respect 
to the angle of rotation of the milling cutter and the 
amplitude agree well, with only slight differences in 
the peak and valley regions. The slight differences 
between the simulated and measured results are 
believed to be caused by the cutter runout, which is 
evident from the repeated tooth passing patterns in the 
measured forces. Fig. 6 shows the scatter diagram of 
the predicted values and measurement values of the 
Fx , Fy and Fz cutting forces of 100 sets of testing data. 
It shows that the predicted values of cutting forces 
follow the 45º line very closely. The predicted values 
are very close to the experimental measurement 
values. If the model is used outside training 
parameters or if the conditions are changed (tool/
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workpiece combination), the ANN model has to be 
adapted via additional training with new experimental 
data in order to remain valid.

The reliability of an ANN model is determined by 
two factors: extrapolation and the local areas of poor 
fit. Finding exact reliability in multi-layered back-
propagation network (BPN) is a non-deterministic 
polynomial-time hard (NP-Hard) problem [20], 
because BPNs do not have inherent ability to indicate 
the extrapolation and to calculate confidence limits 
on their predictions. If one attempted to train a BPN 
to recognize extrapolation, a comprehensive set 
of examples representing extrapolation would be 
needed. Forming such a training set is tantamount to 
solving the extrapolation problem in advance [20]. It 
is conceivable to add auxiliary outputs to a BPN to 
produce the output confidence intervals. However, 

this approach is also not efficient because of the need 
for extensive additional training [20].

6  CONCLUSIONS

The present research outlines the experimental 
investigation of cutting forces during computer 
numerical control (CNC) end-milling operation of 
four-layered metal material. Based on the experimental 
data the ANN approach was developed to predict 
the cutting forces while machining. Hardness and 
thickness of the particular manufactured layer in 
multi-layered metal material has been included in 
the input vector of the prediction model in order to 
improve the accuracy of predictions. The following 
conclusions can be drawn:

Table 3.  Cutting force predictions, measurements, and APE errors for experiment with constant LENS machine settings (LENS test no. 6; P = 
380 W, c = 60 mm/min)

n [min–1] AD [mm] RD [mm] f  [mm/min] d [mm] HV Cutting test no. 144; 
ANN data set no. 460-4324000 0.5 0.2 300 0.9 310

Angle of cutting 
tool rotation 
Θ [°]

Cutting force
Error
[%]

Cutting force
Error [%]

Cutting force
Error [%]Measured 

Fx [N]

Predicted 

Fx [N]

Measured 

Fy [N]

Predicted 

Fy [N]

Measured 

Fz [N]

Predicted 

Fz [N]
25 88.8 91.9 3.51 130.6 133.54 2.25 -42.2 -40.98 2.88
50 99.1 103.7 4.68 138.6 142.84 3.06 -47.3 -46.07 2.6
75 7.2 7.1 1.03 -3.6 -3.64 1.12 -2.4 -2.32 3.21

n [min–1] AD [mm] RD [mm] f  [mm/min] d [mm] HV Cutting test no. 163; 
ANN data set no. 457-4594000 1 0.2 300 0.9 310

Angle of cutting 
tool rotation 
Θ [°]

Cutting force
Error
[%]

Cutting force
Error [%]

Cutting force
Error [%]Measured 

Fx [N]

Predicted 

Fx [N]

Measured 

Fy [N]

Predicted 

Fy [N]

Measured 

Fz [N]

Predicted 

Fz [N]

25 102.0 101.0 -0.95 151.8 153.48 1.11 -49.6 -48.33 2.56

50 81.1 78.8 2.89 147.8 152.32 3.06 -51.1 -51.62 1.01

75 -3.9 -3.7 -4.5 12.9 13.20 2.34 -4.8 -4.70 2.02

Fig. 6.  Scatter diagram of predicted and measured forces for testing data set
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• Laser power and cladding speed have the largest 
impact on the hardness and thickness of the 
manufactured layer in the four-layered metal 
material.

• The layer thickness has a significant influence on 
predicted cutting forces.

• The cutting forces for milling at the ratio 
AD /d = 0.55 are relatively higher than expected 
for milling when the AD ≈ d. Force signals also 
exhibit more fluctuation. This is probably due to 
the material inhomogeneity at the border between 
separate stainless steel layers. The chip obtained 
in this region is heavily discontinuous and very 
small. Force fluctuations and magnitude increase 
slightly as AD becomes larger than d.

• The majority of the predicted cutting force values 
are equivalent to the appurtenant experimental 
values with negligible error. 
Future activities will be carried out to implement 

the ANN model to the tool shop environment and to 
upgrade it with different tool/workpiece combinations.
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