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0  INTRODUCTION

In modern industry, the finite element analysis has 
become an essential approach in the analysis of 
complex engineering processes. The accurate and 
efficient simulation of thin structures has motivated 
a number of researchers to develop advanced finite 
element technologies. Among these, the solid–shell 
concept [1] and [2] has emerged in recent decades for 
the efficient modelling of thin 3D structures [3] and 
[4], while accurately describing the various non-linear 
phenomena [5] and [6]. The formulation of solid–
shell elements is based on the reduced-integration 
technique, which makes them very attractive due to 
their low computational cost. However, they require 
special numerical treatments to avoid several locking 
phenomena. Among these techniques, the assumed 
strain method (ASM) has been used in [7] to eliminate 
locking modes. The enhanced assumed strain (EAS) 
technique is also widely used in the formulation of 
solid–shell elements, which is based on the inclusion 
of additional deformation modes for removing locking 
problems [2], [8] and [9]. The EAS technique is often 
combined with the assumed natural strain (ANS) 
method in order to prevent most locking phenomena 
[4], [10] and [11]. The concept of solid–shell elements 
has been widely adopted in the analysis of non-linear 

elastic and elastic-plastic thin structures, and it has 
been recently extended to the modelling of laminates 
[12] and [13], and multilayer sandwich structures [14].

In the current contribution, four assumed-strain 
based solid-shell (SHB) elements are proposed. 
They consist of linear prismatic (SHB6) [15] and 
hexahedral (SHB8PS) [1] and [7] elements, and 
their quadratic counterparts (SHB15) and (SHB20) 
[16] and [17], respectively. These SHB elements are 
formulated within a three-dimensional framework 
with large displacements and rotations. An in-plane 
reduced-integration scheme with an arbitrary number 
of integration points along the thickness is adopted, 
which allows modelling thin structures with only 
a single element layer. The spurious zero-energy 
modes that are inherent in the reduced-integration 
technique are stabilized with a special procedure, 
while most locking phenomena are eliminated using 
an appropriate projection of the discrete gradient 
operator. The resulting SHB elements are coupled 
with three-dimensional anisotropic elastic–plastic 
constitutive models for metallic materials and then 
implemented into the ABAQUS standard/quasi-static 
and explicit/dynamic software packages. Several 
quasi-static and dynamic benchmark tests, which 
induce geometric and material nonlinearities, are first 
conducted to evaluate the performance of the SHB 
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elements. Next, attention is focused on the simulation 
of a complex deep drawing process involving large 
strains, anisotropic plasticity, and contact.

1  BASIC CONCEPTS OF THE SHB ELEMENTS

A unified formulation for the linear hexahedral 
SHB8PS and prismatic SHB6 solid–shell elements, 
as well as their quadratic counterparts SHB20 and 
SHB15, is briefly presented in this section. The 
current developments extend and enlarge the earlier 
quasi-static formulations of the SHB elements [7], 
[15] and [16]. Note that the earlier formulations of the 
linear prismatic element SHB6 [15] and the quadratic 
elements SHB15 and SHB20 [16] have been restricted 
to small-strain analysis and linear elastic behaviour. 
In this paper, all of the SHB elements are extended 
to explicit dynamic analysis, as well as being coupled 
with advanced large-strain anisotropic plasticity 
models, for the analysis of quasi-static and dynamic 
structural problems as well as sheet metal forming 
processes.

1.1  Definition of the Element Reference Geometry

Fig. 1 shows the reference geometry of all SHB 
elements with the location of their integration points. 
In the element reference frame, direction ζ denotes 
the thickness, along which multiple integration 
points can be used. In general, only two integration 
points along the thickness direction are sufficient to 
model elastic problems, while five integration points 
are recommended for non-linear (elastic–plastic) 
problems.

a)    b)

c)    d)
Fig. 1.  Reference geometry of the SHB elements and location of 
their integration points: a) linear hexahedral SHB8PS element; b) 
linear prismatic SHB6 element; c) quadratic hexahedral SHB20 

element, and d) quadratic prismatic SHB15 element

1.2 Quasi-Static Framework

The classical isoparametric linear and quadratic 
interpolation functions for standard hexahedral and 
prismatic elements are adopted in the formulation 
of the SHB elements. Accordingly, the three-
dimensional position and displacement of any point 
inside the element, xi and ui (i = 1, 2, 3) respectively, 
can be defined using the interpolation functions 
NI (I = 1, 2, ..., n) as:

 x x N x Ni iI I iI I
I

n

= ( ) = ( )
=
∑ξ η ζ ξ η ζ, , , , ,
1

 (1)

 u d N d Ni iI I iI I
I

n

= ( ) = ( )
=
∑ξ η ζ ξ η ζ, , , , ,
1
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where xiI and diI denote the Ith nodal coordinate and 
displacement, respectively. The lowercase subscript 
i represents the spatial coordinate directions, while n 
indicates the number of nodes per element.

Next, the discrete gradient operator B defining 
the relationship between the strain field ∇ ( )s u  and 
the nodal displacement field d is given by:

 ∇ ( ) = ⋅s u B d.  (3)

The SHB element formulation is based on 
the assumed-strain method, which corresponds to 
the simplified form of the Hu-Washizu variational 
principle proposed by Simo and Hughes [18]:

 π δ δ  εε εε σσ( ) = ⋅ − ⋅ =∫ T T ext

e
d

Ω
Ω d f 0,  (4)

where δ represents a variation, εε  the assumed-strain 
rate, σ the Cauchy stress tensor, d  the nodal velocities, 
and f ext the external nodal forces. The assumed-strain 
rate εε  is defined using a B  matrix, which is obtained 
by projecting the classical discrete gradient operator B 
involved in Eq. (3):

  εε = ⋅B d.  (5)

Inserting Eq. (5) into the variational principle 
(Eq. (4)), the element stiffness matrix Ke and internal 
force vector f int can be derived as:
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where the additional term KGEOM in the expression of 
the stiffness matrix originates from the non-linear part 
of the strain field and is commonly called geometric 
stiffness matrix [7], while C ep is the elastic–plastic 
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tangent modulus associated with the material 
behaviour law [19].

In addition to the basic formulation of the SHB 
elements described above, some special treatments 
are required for the linear SHB8PS and SHB6 
elements in order to improve their performance. In 
particular, a physical stabilization matrix, computed 
in a co-rotational coordinate frame [7], is used in 
the formulation of the SHB8PS element in order to 
control the zero-energy modes, which are inherent 
in the reduced-integration technique. Furthermore, 
an appropriate projection of the strains is required to 
eliminate some locking phenomena, in particular for 
the linear SHB6 and SHB8PS elements [7] and [15].

1.3  Explicit/Dynamic Framework

The dynamic version of the SHB elements is 
essentially based on the quasi-static formulation 
described above; therefore, it will not be repeated 
here. However, the mass matrix is required in dynamic 
problems in order to calculate the inertial term in the 
variational principle. Note that the stiffness matrix Ke 
(see Eq. (6)) is not required in such dynamic analysis, 
except for problems dealing with natural frequency 
extraction, for which both the stiffness and mass 
matrix are computed. Several computational methods 
exist in the literature for the calculation of the 
element mass matrix [20]. Among them, the lumped 
mass matrix approach is usually adopted in most 
dynamic problems, which results in a diagonal mass 
matrix. In the formulation of the current solid-shell 
elements, the lumped mass matrix method is followed, 
due to its computational advantages. Accordingly, 
the element mass matrix Me (with a size of 3n×3n) 
can be expressed in terms of the following block of 
components:

 M IJ
I Jm N N d I J

I J
e=

=

≠







∫ ρ Ω
Ω
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are the element interpolation functions and ρ is the 
mass density.

2  FINITE ELEMENT SIMULATIONS AND DISCUSSIONS

In this section, several benchmark tests, including 
both linear and non-linear problems, are selected 
to evaluate the performance of the SHB solid-shell 
elements. The first two linear tests are investigated to 

examine the convergence rate of the SHB elements. 
Then, the SHB elements are tested in vibration analysis 
in order to predict the first four eigenfrequencies of 
a rectangular cantilever plate and a fully clamped 
square plate. Finally, three non-linear benchmark 
problems involving quasi-static and dynamic analyses 
are carried out to assess the performance of the SHB 
elements in the framework of large displacements and 
rotations as well as large strains.

In the following simulations, the geometries are 
meshed using the nomenclature N1×N2×N3 for the 
linear and quadratic hexahedral elements (SHB8PS 
and SHB20), and N1×N2×2×N3 for the linear and 
quadratic prismatic elements (SHB6 and SHB15), 
where N1 denotes the number of elements in the 
length direction, N2 the number of elements in the 
width direction, and N3 the number of elements in 
the thickness direction. The latter is equal to 1 in all 
simulations, which represents a single element layer 
through the thickness. 

2.1  Linear Static Beam Problems

2.1.1  Elastic Cantilever Beam Subjected to Bending Forces

The first linear static test is an elastic cantilever 
beam with four concentrated loads at its free end. 
The geometric parameters and material properties are 
given in Fig. 2. This simple test aims to analyse the 
behaviour of the SHB elements in the case of bending-
dominated conditions. The analytical solution for the 
deflection at the load point is Uref = 7.326×10–3 m. 
The convergence results are given in Tables 1 and 2 
in terms of normalized deflection with respect to the 
analytical solution. These simulation results prove 
that all of the SHB elements provide an excellent 
convergence rate, but with a slower convergence 
rate for the linear prismatic element SHB6. For the 
latter, the triangular geometry and the associated 
interpolation functions lead to constant strain fields 
inside the element, which requires finer meshes to 
obtain accurate solutions [15].

Fig. 2.  Elastic cantilever beam subjected to bending forces



Strojniški vestnik - Journal of Mechanical Engineering 63(2017)1, 25-34

28 Wang, P. – Chalal, H. – Abed-Meraim, F.

Table 1.  Normalized deflection results obtained with the linear 
SHB elements

Mesh
SHB8PS

Mesh
SHB6

U/Uref U/Uref
5×1×1 0.9750 12×2×2×1 0.7062

10×1×1 0.9898 24×2×2×1 0.9019
12×4×1 0.9898 48×2×2×1 0.9669
24×4×1 0.9933 100×4×2×1 0.9807

Table 2.  Normalized deflection results obtained with the quadratic 
SHB elements

Mesh
SHB20

Mesh
SHB15

U/Uref U/Uref
2×1×1 0.9672 12×2×2×1 0.9896
5×1×1 0.9865 24×2×2×1 0.9925

10×1×1 0.9929

2.1.2  Elastic Cantilever Beam Subjected to Torsion-Type 
Forces

The second linear static test is illustrated in Fig. 3 and 
consists of a cantilever beam subjected to a torsion-
type loading. The end of the beam is loaded by two 
opposite concentrated forces causing a twisting-type 
loading along the beam. The geometric and material 
parameters are given in Fig. 3. In the same way, the 
deflection results at one load point, normalized with 
respect to the reference solution Uref = 3.537×10–4 m, 
are reported in Tables 3 and 4. 

Fig. 3.  Elastic cantilever beam subjected to torsion-type loading

Table 3.  Normalized deflection results obtained with the 
hexahedral SHB elements

Mesh
SHB8PS SHB20

U/Uref U/Uref

10×5×1 1.0470 1.0278 

20×5×1 1.0479 1.0280 

50×5×1 1.0500 

50×10×1 1.0289 

Table 4.  Normalized deflection results obtained with the prismatic 
SHB elements

Mesh
SHB6 SHB15

U/Uref U/Uref
10×5×2×1 0.0107 0.9783 
20×5×2×1 0.0247 1.0111 
50×5×2×1 0.0916 

50×10×2×1 0.3438 

100×20×2×1 1.0873 

Similar to the previous test problem, the 
simulation results again show that all of the SHB 
elements provide a good convergence rate, without 
noticeable locking phenomena, except for the linear 
prismatic element SHB6 that requires finer meshes for 
convergence.

2.2  Plate Vibration Problems

2.2.1  Simple Rectangular Cantilever Plate

The first plate vibration problem is a rectangular 
cantilever plate with constant thickness. As illustrated 
in Fig. 4, the rectangular plate, with length L, width 
b = L/2, and thickness t, is fully clamped on one side, 
while the other sides are entirely free. The predicted 
results, in terms of non-dimensional frequency 
coefficient ω ρD tL

4 , associated with the first four 
natural frequencies ω are summarized in Table 5, 
where D E= −( )( )t

3 2
12 1 ν  is the flexural rigidity of 

the plate; E and ν are the Young modulus and Poisson 
ratio, respectively. All predicted results using the 
SHB8PS, SHB20, and SHB15 elements are in good 
agreement with the theoretical results as well as with 
the reference solutions given in [21] and [22]. For the 
linear prismatic SHB6 element, due to its relatively 
poor performance, finer meshes are required to obtain 
relatively accurate solutions.

Fig. 4.  Simple rectangular cantilever plate

2.2.2  Fully Clamped Square Plate

The second plate vibration problem relates to a fully 
clamped square plate, as illustrated in Fig. 5. The 
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length to thickness ratio of this square plate is fixed 
equal to 1000 and the Poisson ratio of the material is 
0.3. For comparison with reference solutions from the 
literature, the non-dimensional frequency coefficient λ 
is calculated for the first six natural frequencies of the 
plate, which is defined as λ ω ρ2 2= L t D , where D 
is the flexural rigidity defined in the previous test 
problem. All predicted frequency coefficients obtained 
using SHB elements are summarized in Table 6 and 
compared with reference solutions taken from [23] 
and [24]. Similar to the previous vibration problem, 
the obtained results show the performance and 
efficiency of the SHB elements in determining the 
natural frequencies of plates, except for the linear 
prismatic SHB6 element, for which finer meshes are 
inherently required to obtain accurate results.

Fig. 5.  Clamped square plate

2.3  Non-Linear Static Problems

2.3.1  Fully Clamped Circular Plate

A fully clamped elastic circular plate subjected to a 
uniform pressure is considered here, which involves 
geometric nonlinearities. The geometric dimensions 

Table 5.  Natural frequency coefficients for the rectangular cantilever plate

Mode
Theoretical 

results* 
Experimental 

results*
Simulated 
results**

SHB8PS SHB20 SHB6 SHB15

20×10×1 10×5×1 400×200×2×1 10×5×2×1

1 3.47 3.42 3.44 3.44 3.44 4.022 3.44
2 14.93 14.52 14.77 14.66 14.46 20.51 14.56
3 21.26 20.86 21.50 21.42 21.22 28.03 21.43
4 48.71 46.9 48.19 47.69 46.95 59.97 47.63

Note: results marked by * are taken from [21], while results marked by ** are available in [22].

Table 6.  Natural frequency coefficients for the clamped square plate

Mode
Reference 
solution*

Simulated 
results**

SHB8PS SHB20 SHB6 SHB15

16×16×1 16×16×1 400×400×2×1 16×16×2×1

1 5.999 6.024 6.004 6.012 6.659 6.027
2,3 8.567 8.671 8.599 8.605 9.079 8.632
4 10.4 10.52 10.387 10.545 11.337 10.533

5,6 11.5 11.78 11.590 11.523 12.257 11.614

Note: results marked by * are taken from [23], while results marked by ** are taken from [24].

and material elastic properties are taken from [25] and 
summarized in Fig. 6. Due to the symmetry of the 
problem, only one quarter of the plate is modelled, 
which is meshed using 105 SHB8PS elements, 3200 
SHB6 elements, 39 SHB20 elements, and 78 SHB15 
elements, successively. Fig. 7 shows the numerical 
results, in terms of the non-dimensional ratio of the 
central deflection W0 to the thickness t, obtained 
with the SHB elements together with the reference 
solution from [25] and the analytical solution given by 
Chia [26]. As revealed by Fig. 7, all SHB solid‒shell 
elements provide an accurate solution for this type of 
bending problem as compared to the reference and 
analytical solutions.

Fig. 6.  Clamped circular plate

2.3.2  Pinched Semi-Cylindrical Shell

The pinched semi-cylindrical shell, as shown in Fig. 8, 
is a popular benchmark test that has been considered 
in several references [27]; both isotropic and laminated 
shells have been studied. This semi-cylindrical shell 
is subjected to a vertical radial force at the middle 
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of the free circumferential edge, while the other 
circumferential edge is fully clamped (see Fig. 8 for 
the geometric and material parameters as well as the 
remaining boundary conditions). Due to the symmetry 
of the problem, only one half of the structure is 
modelled. Fig. 9 displays the load-deflection curves at 
the load point A, which are obtained using the SHB 
elements along with the reference solution available 

in [27]. The simulation results show good agreement 
with the reference solution given in [27], which was 
obtained using (40×40) shell elements. Note, however, 
that these good convergence results are obtained 
here with less computational effort, since the SHB 
elements most often require coarser meshes, except 
for the linear prismatic SHB6 element, where a finer 
mesh is required to obtain an accurate solution.

2.4  Explicit Dynamic Problems

2.4.1  Elastic Cantilever Beam Bending

In order to evaluate the dynamic non-linear response 
of the SHB elements, we consider here an elastic 
cantilever beam that is loaded impulsively with 
a concentrated force applied at its free end. The 
geometric parameters and material properties are 
summarized in Fig. 10. The deflection history at Point 
A (indicated at the free edge in Fig. 10), which is 
obtained with the SHB elements, is plotted in Fig. 11, 
where it is compared with the reference results given 
in [8]. From this figure, one can observe that for all of 
the SHB elements, both the maximum deflection and 
time period are in good agreement with those provided 
by the reference solution.

Fig. 10.  Elastic cantilever beam under impulsively-applied loading

Fig. 11.  Deflection history for the elastic cantilever beam under 
dynamic loading

Fig. 7.  Normalized central deflection results for the clamped 
circular plate

Fig. 8.  Pinched semi-cylindrical shell

Fig. 9. Load–deflection curves for the pinched semi-cylindrical 
shell
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2.4.2  Simply Supported Elastic Beam

The second non-linear dynamic problem is an elastic 
beam, which is simply supported at both ends. The 
beam is subjected to a uniform load, resulting in a 
maximum deflection of the order of its depth. The 
geometric dimensions, material properties, and 
boundary conditions are all summarized in Fig. 12. 
Owing to the symmetry of the problem, only half of 
the beam is discretized. The deflection of the central 
point, obtained with the SHB solid-shell elements, is 
depicted in Fig. 13 and compared with the reference 
solution taken from [28]. It can be seen that the 
numerical results obtained with the proposed SHB 
elements are in good agreement with the reference 
solution.

Fig. 12.  Simply supported elastic beam

Fig. 13.  Deflection results for the simply supported elastic beam

2.5  Application to the Simulation of Deep Drawing Process

In this section, a popular sheet metal forming process, 
involving geometric and material nonlinearities as 
well as double-sided contact, is simulated to further 
evaluate the performance of the proposed SHB 
elements. This selective benchmark consists in the 
simulation of the deep drawing process of a cylindrical 
cup, which is commonly used to study the earing 
profile of the cup when the anisotropic behaviour of 
sheet metals is considered. The initially circular metal 
sheet, with a diameter of 158.76 mm and a thickness 
of 1.6 mm, is made of an AA2090-T3 aluminium alloy 

[29]. For the modeling of the elastoplastic material 
behaviour, isotropic hardening described by the Swift 
law is considered. Its expression is given by

 σ ε εy eq
p nk= +( ) ,

0  (8)

where σy is the yield stress, εeq
p  is the equivalent 

plastic strain, and (k, ε0, n) are the hardening 
parameters. The Hill’48 quadratic yield criterion is 
adopted in this work to characterize the anisotropic 
plasticity of the sheet metal. All of the material 
parameters are summarized in Tables 7 and 8 [29]. The 
schematic view and dimensions of the drawing setup 
are given in Fig. 14.

Table 7.  Elastic−plastic parameters for the AA2090-T3 aluminium 
sheet

E [MPa] ν k [MPa] ε0 n
70500 0.34 646 0.025 0.227

Table 8.  r-values for the AA2090-T3 aluminium sheet

r0 r45 r90

0.2115 1.7695 0.6923

Owing to the symmetry of the problem, only 
one quarter of the circular blank is discretized. The 
holding force is kept constant during the deep drawing 
and equal to 22.2 kN (for the complete model). The 
standard Coulomb law is used to model the contact 
between the circular sheet and the rigid tools, with 
a friction coefficient of 0.1 [29]. This process is 
simulated using the ABAQUS explicit/dynamic and 
implicit/quasi-static solvers for comparison purposes. 
The simulation results are compared with the 
experimental ones taken from [29]. It is worth noting 
that, for all of the SHB elements, the simulations are 
performed using only a single element layer in the 
thickness with five integration points. Fig. 15 shows 
the deformed meshes of the blank, as obtained with the 
four SHB elements, which correspond to a completely 
drawn cup. It can be seen that all SHB elements predict 
four ears for the cylindrical cup, which is consistent 
with the use of the quadratic Hill’48 yield surface 
for the description of the material planar anisotropy. 
Fig. 16 shows the final height profiles for the cup as 
obtained with the SHB elements for the quarter model. 
On the whole, one can observe that the shape of the 
predicted earing profiles is in good agreement with the 
experimental results for both quasi-static and dynamic 
versions of the SHB elements. More specifically, the 
SHB element predictions are closer to the experiment 
cup heights in the range around the experimental 
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peak value at 50° from the rolling direction, while the 
predicted cup heights are underestimated at 0° and 90° 
from the rolling direction. These predictions could 
be improved in the future by using more appropriate 
anisotropic yield criteria [29], which can predict more 
than four earing profiles for the complete circular 
blank, as observed experimentally for aluminium 
alloys [30] and [31].

Fig. 14.  Schematic view of the drawing setup [29]

a)      b)

c)    d)
Fig. 15.  Final deformed shape for a completely drawn cylindrical 
cup using a) the SHB8PS elements; b) the SHB6 elements; c) the 

SHB20 elements; and d) the SHB15 elements

3  CONCLUSIONS

The assumed-strain solid–shell finite element 
technology SHB has been extended to explicit 
dynamic analysis and coupled with advanced 
anisotropic plasticity models for the modeling of thin 
three-dimensional structures under quasi-static or 
dynamic loading conditions and sheet metal forming 
processes. This family of SHB solid–shell elements 
consists of a linear 6-node prismatic element and 
a linear 8-node hexahedral element as well as their 
quadratic counterparts (15-node prismatic element 
and 20-node hexahedral element, respectively). All of 
these linear and quadratic solid–shell elements have 
been implemented into ABAQUS implicit/static and 
explicit/dynamic software packages to model various 

quasi-static and dynamic problems. The respective 
capabilities of the proposed SHB elements were first 
evaluated through a series of linear and non-linear 
benchmark tests, both in static and dynamic analyses. 
The obtained results, using only a single element 
layer with two integration points, showed excellent 
performance in terms of convergence rate and accuracy 
when compared to reference solutions yielded by 
existing state-of-the-art solid and shell finite elements 
from the literature. Then, the performance of the SHB 
elements has been assessed via the simulation of the 
deep drawing process of a cylindrical cup made of an 
aluminium alloy with anisotropic plastic behaviour. 
For comparison purposes, both implicit/quasi-static 
and explicit/dynamic versions of the SHB elements 
have been used for these deep drawing simulations. 
The earing profiles predicted by the implicit/quasi-
static and explicit/dynamic versions were found to 
be reasonably close to each other, and in satisfactory 
agreement with the experiments on the whole. 
Nevertheless, the prediction of the earing profiles 
could be improved by adopting advanced non-
quadratic anisotropic yield functions that are more 
suitable to aluminium alloys.

a) 

b) 
Fig. 16. Predicted cup height profiles obtained by a) implicit/

static and b) explicit/dynamic analysis, along with experimental 
measurements



Strojniški vestnik - Journal of Mechanical Engineering 63(2017)1, 25-34

33Linear and Quadratic Solid-Shell Elements for Quasi-Static and Dynamic Simulations of Thin 3D Structures: Application to a Deep Drawing Process 

4  REFERENCES

[1] Abed-Meraim, F., Combescure, A. (2002). SHB8PS–a new 
adaptive, assumed-strain continuum mechanics shell element 
for impact analysis. Computers & Structures, vol. 80, no. 9-10, 
p. 791-803, DOI:10.1016/S0045-7949(02)00047-0.

[2] Parente, M.P.L., Fontes Valente, R.A., Natal Jorge, R.M., 
Cardoso, R.P.R., Alves de Sousa, R.J. (2006). Sheet metal 
forming simulation using EAS solid-shell finite elements. Finite 
Elements in Analysis and Design, vol. 42, no. 13, p. 1137-
1149, DOI:10.1016/j.finel.2006.04.005.

[3] Reese, S. (2007). A large deformation solid-shell concept 
based on reduced integration with hourglass stabilization. 
International Journal for Numerical Methods in Engineering, 
vol. 69, no. 8, p. 1671-1716, DOI: 10.1002/nme.1827.

[4] Schwarze, M., Reese, S. (2009). A reduced integration solid-
shell finite element based on the EAS and the ANS concept—
Geometrically linear problems. International Journal for 
Numerical Methods in Engineering, vol. 80, no. 10, p. 1322-
1355, DOI:10.1002/nme.2653.

[5] Caseiro, J.F., Valente, R.A.F., Reali, A., Kiendl, J., Auricchio, F., 
Alves de Sousa, R.J. (2015). Assumed natural strain NURBS-
based solid-shell element for the analysis of large deformation 
elasto-plastic thin-shell structures. Computer Methods in 
Applied Mechanics and Engineering, vol. 284, p. 861-880, 
DOI:10.1016/j.cma.2014.10.037.

[6] Flores, F.G. (2016). A simple reduced integration hexahedral 
solid-shell element for large strains. Computer Methods in 
Applied Mechanics and Engineering, vol. 303, p. 260-287, 
DOI:10.1016/j.cma.2016.01.013.

[7] Abed-Meraim, F., Combescure, A. (2009). An improved 
assumed strain solid–shell element formulation with physical 
stabilization for geometric non-linear applications and elastic–
plastic stability analysis. International Journal for Numerical 
Methods in Engineering, vol. 80, no. 13, p. 1640-1686, 
DOI:10.1002/nme.2676.

[8] Pagani, M., Reese, S., Perego, U. (2014). Computationally 
efficient explicit nonlinear analyses using reduced integration-
based solid-shell finite elements. Computer Methods in 
Applied Mechanics and Engineering, vol. 268, p. 141-159, 
DOI:10.1016/j.cma.2013.09.005.

[9] Sena, J.I.V., Alves de Sousa, R.J., Valente, R.A.F. (2011). On the 
use of EAS solid-shell formulations in the numerical simulation 
of incremental forming processes. Engineering Computations, 
vol. 28, no. 3, p. 287-313, DOI:10.1108/02644401111118150.

[10] Cardoso, R.P.R., Yoon, J.W., Mahardika, M., Choudhry, S., 
Alves de Sousa, R.J., Fontes Valente, R.A. (2008). Enhanced 
assumed strain (EAS) and assumed natural strain (ANS) 
methods for one-point quadrature solid-shell elements. 
International Journal for Numerical Methods in Engineering, 
vol. 75, p. 156-187, DOI:10.1002/nme.2250.

[11] Ben Bettaieb, A., Velosa de Sena, J.I., Alves de Sousa, R.J., 
Valente, R.A.F., Habraken, A.M., Duchene, L. (2015). On the 
comparison of two solid-shell formulations based on in-plane 
reduced and full integration schemes in linear and non-linear 
applications. Finite Element in Analysis and Design, vol. 107, 
p. 44-59, DOI:10.1016/j.finel.2015.08.005.

[12] Moreira, R.A.S., Alves de Sousa, R.J., Valente, R.A.F. (2010). 
A solid-shell layerwise finite element for non-linear geometric 
and material analysis. Composite Structures, vol. 92, p. 1517-
1523, DOI:10.1016/j.compstruct.2009.10.032.

[13] Naceur, H., Shiri, S., Coutellier, D., Batoz, J.L. (2013). On the 
modeling and design of composite multilayered structures 
using solid-shell finite element model. Finite Elements in 
Analysis and Design, vols. 70-71, p. 1-14, DOI:10.1016/j.
finel.2013.02.004.

[14] Kpeky, F., Boudaoud, H., Abed-Meraim, F., Daya, E.M. (2015). 
Modeling of viscoelastic sandwich beams using solid–shell 
finite elements. Composite Structures, vol. 133, p. 105-116, 
DOI:10.1016/j.compstruct.2015.07.055.

[15] Trinh, V.D., Abed-Meraim, F., Combescure, A. (2011). A new 
assumed strain solid–shell formulation “SHB6” for the six-
node prismatic finite element. Journal of Mechanical Science 
and Technology, vol. 25, no. 9, p. 2345-2364, DOI:10.1007/
s12206-011-0710-7.

[16] Abed-Meraim, F., Trinh V.D., Combescure, A. (2013). New 
quadratic solid–shell elements and their evaluation on linear 
benchmark problems. Computing, vol. 95, no. 5, p. 373-394, 
DOI:10.1007/s00607-012-0265-1.

[17] Wang, P., Chalal, H., Abed-Meraim, F. (2015). Efficient solid-
shell finite elements for quasi-static and dynamic analyses 
and their application to sheet metal forming simulation. 
Key Engineering Materials, vols. 651-653, p. 344-349, DOI: 
10.4028/www.scientific.net/KEM.651-653.344.

[18] Simo, J.C., Hughes, T.J.R. (1986). On the variation foundations 
of assumed strain methods. Journal of Applied Mechanics, 
vol. 53, no. 1, p. 51-54, DOI:10.1115/1.3171737.

[19] Salahouelhadj, A., Abed-Meraim, F., Chalal, H., Balan, T. 
(2012). Application of the continuum shell finite element 
SHB8PS to sheet forming simulation using an extended 
large strain anisotropic elastic–plastic formulation. Archive 
of Applied Mechanics, vol. 82, no. 9, p. 1269-1290, 
DOI:10.1007/s00419-012-0620-x.

[20] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. (2006). The Finite 
Element Method: Its Basis and Fundamentals, Sixth ed., 
Elsevier Ltd., Oxford, UK.

[21] Barton, M.V. (1951). Vibration of rectangular and skew 
cantilever plates. Journal of Applied Mechanics, vol. 18, p. 
129-134.

[22] Anderson, R.G., Irons, B.M., Zienkiewicz, O.C. (1968). Vibration 
and stability of plates using finite elements. International 
Journal of Solids and Structures, vol. 4, no. 10, p. 1031-1055, 
DOI:10.1016/0020-7683(68)90021-8.

[23] Leissa, A.W. (1969). Vibration of Plates. Scientific and 
Technical Information Division, NASA, Washington, DC, USA.

[24] Sze, K.Y., Yao, L.Q. (2000). A hybrid stress ANS solid-shell 
element and its generalization for smart structure modelling. 
Part I: solid-shell element formulation. International Journal for 
Numerical Methods in Engineering, vol. 48, no. 4, p. 545-564, 
DOI:10.1002/(SICI)1097-0207(20000610)48:4<545::AID-
ME889>3.0.CO;2-6.

[25] Cai, Y.C., Atluri, S.N. (2012). Large rotation analyses of plate/
shell structures based on the primal variational principle 
and a fully nonlinear theory in the updated lagrangian co-
rotational reference frame. Computer Modeling in Engineering 

http://dx.doi.org/10.1016/S0045-7949(02)00047-0
http://dx.doi.org/10.1016/j.finel.2006.04.005
http://dx.doi.org/10.1002/nme.1827
http://dx.doi.org/10.1002/nme.2653
http://dx.doi.org/10.1016/j.cma.2014.10.037
http://dx.doi.org/10.1016/j.cma.2016.01.013
http://dx.doi.org/10.1002/nme.2676
http://dx.doi.org/10.1016/j.cma.2013.09.005
http://dx.doi.org/10.1108/02644401111118150
http://dx.doi.org/10.1002/nme.2250
http://dx.doi.org/10.1016/j.finel.2015.08.005
http://dx.doi.org/10.1016/j.compstruct.2009.10.032
http://dx.doi.org/10.1016/j.finel.2013.02.004
http://dx.doi.org/10.1016/j.finel.2013.02.004
http://dx.doi.org/10.1016/j.compstruct.2015.07.055
http://dx.doi.org/10.1007/s12206-011-0710-7
http://dx.doi.org/10.1007/s12206-011-0710-7
http://dx.doi.org/10.1007/s00607-012-0265-1
http://dx.doi.org/10.4028/www.scientific.net/KEM.651-653.344
http://dx.doi.org/10.1115/1.3171737
http://dx.doi.org/10.1007/s00419-012-0620-x
http://dx.doi.org/10.1016/0020-7683(68)90021-8


Strojniški vestnik - Journal of Mechanical Engineering 63(2017)1, 25-34

34 Wang, P. – Chalal, H. – Abed-Meraim, F.

& Sciences, vol. 83, no. 3, p. 249-273, DOI:10.3970/
cmes.2012.083.249.

[26] Chia, C.Y. (1980). Nonlinear analysis of plate, McGraw-Hill, 
New York, USA.

[27] Sze, K.Y., Liu, X.H., Lo, S.H. (2004). Popular benchmark 
problems for geometric nonlinear analysis of shells. Finite 
Elements in Analysis and Design, vol. 40, no. 11, p. 1551-
1569, DOI:10.1016/j.finel.2003.11.001.

[28] Flanagan, D.P., Belytschko, T. (1981). A uniform strain 
hexahedron and quadrilateral with orthogonal hourglass 
control. International Journal for Numerical Methods in 
Engineering, vol. 17, no. 5, p. 679-706, DOI:10.1002/
nme.1620170504.

[29] Yoon, J.W., Barlat, F., Dick, R.E., Karabin, M.E. (2006). 
Prediction of six or eight ears in a drawn cup based on a new 
anisotropic yield function. International Journal of Plasticity, 
vol. 22, no. 1, p. 174-193, DOI:10.1016/j.ijplas.2005.03.013.

[30] Banabic, D., Barlat, F., Cazacu, O., Kuwabara, T. (2010). 
Advances in anisotropy and formability. International Journal 
of Material Forming, vol. 3, p. 165-189, DOI:10.1007/s12289-
010-0992-9.

[31] Wang, J., Sun, J. (2012). Plane strain transversely anisotropic 
analysis in sheet metal forming simulation using 6-component 
Barlat yield function. International Journal of Mechanics and 
Materials in Design, vol. 8, p. 327-333, DOI:10.1007/s10999-
012-9198-2.

http://dx.doi.org/10.1016/j.finel.2003.11.001
http://dx.doi.org/10.1002/nme.1620170504
http://dx.doi.org/10.1002/nme.1620170504
http://dx.doi.org/10.1016/j.ijplas.2005.03.013

