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0  INTRODUCTION

Nowadays the increasing performance of modern 
computers makes it possible to solve very large linear 
systems of millions of degrees of freedom (DOF). 
Nevertheless, since dynamic analysis requires solving 
a lot of linear systems and since the refinement of finite 
element models is increasing faster than the computing 
capabilities, dynamic substructuring still remains 
an essential tool for analyzing dynamical systems 
in an efficient manner. Building reduced models 
of subparts of a structure enables sharing models 
between design groups. Moreover the reduction of the 
DOF of substructures is also important for building 
reduced order models for optimization and control. If 
a single component of a system is changed, only that 
component needs to be reanalyzed and the system 
can be analyzed at low additional cost. Thus dynamic 
substructuring offers a flexible and efficient approach 
to dynamic analysis.

Dynamic substructuring techniques can be 
classified in two categories depending on the 
underlying modes which are used [1]. The term mode 
can refer to all kind of structural shape vectors. The 

first class consists of methods using fixed interface 
vibration modes and interface constraint modes to 
represent the substructure dynamics. The method 
commonly used is the Craig-Bampton method (CBM) 
[2] which assembles the substructures in a primal 
way using interface displacements in order to enforce 
interface compatibility. The second class consists 
of methods using free interface vibration modes 
and attachment modes. Common representatives 
of that class are MacNeal‘s method (MNM) [3] and 
Rubin‘s method (RM) [4] using a primal assembly 
process as well. Herting generalizes in [5] the concept 
of component mode synthesis to include any kind 
of interface boundary condition for the modes. In 
contrast to the aforementioned methods, the dual 
Craig-Bampton method (DCBM) [6] uses the same 
ingredients as MacNeal‘s and Rubin‘s method, but 
assembles the substructures in a dual way using 
interface forces. As a consequence, the DCBM 
enforces only weak interface compatibility between 
the substructures, thereby avoiding interface locking 
problems as sometimes experienced in the primal 
assembly approaches. Furthermore, the dual Craig-
Bampton method leads to simpler reduced matrices 
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compared to other free interface methods and the 
reduced matrices are sparse, similar to the classical 
Craig-Bampton matrices. In this contribution we 
evaluate the primal (classical) formulation of the 
Craig-Bampton method, the MacNeal method, the 
Rubin method and the dual formulation of the Craig-
Bampton method. The presented theory and the 
comparison between the four substructuring methods 
will be illustrated on three different examples.

In section 1, the differences between primal 
and dual assembly are stated. Following this, the 
formulation of the CBM, the MNM, the RM and 
the DCBM will be outlined in section 2 explaining 
general properties of the fixed interface method 
(subsection 2.1) and of the free interface methods 
(subsection 2.2). These properties will be illustrated 
subsequently in detail in section 3 using the Benfield 
Truss (subsection 3.1), a three-dimensional beam 
frame (subsection 3.2) and a two-dimensional solid 
plane stress problem (subsection 3.3). Finally a brief 
summary and conclusions are given in section 4.

1  PRIMAL AND DUAL ASSEMBLY OF SUBSTRUCTURES

Consider a finite element model of a global domain. 
This domain is divided into N non-overlapping 
substructures such that every node belongs to exactly 
one substructure except for the nodes on the interface 
boundaries. The linear/linearized equation of motion 
of one substructure  is written as

 M K u f gus s s s s s( ) ( ) ( ) ( ) ( ) ( )+ = +� � ,  (1)

where the superscript (s) is the label of the particular 
substructure s N=( )1,..., . M s( ) , K s( )  and u s( )  are 
the mass matrix, the stiffness matrix and the 
displacement vector of the substructure, respectively. 
f s( )  is the external force vector and g s( )  is the vector 

of reaction forces on the substructure due to its 
connection to adjacent substructures at its boundary 
DOF. The local displacements u s( )  of each 
substructure can be divided in local internal DOF ui

s( )  
and boundary DOF ub

s( ) :
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assembled boundary DOF ub  of the global domain to 
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the equation of motion, Eq. (1), of one substructure  
partitioned in the same manner writes

 

M M

M M

Ku

u
bb
s

bi
s

ib
s

ii
s

b
s

i
s

bb
( ) ( )

( ) ( )

( )

( )
























+





ss
bi
s

ib
s

bb
s

b
s

i
s

b
s

i
s

( ) ( )

( ) ( )

( )

( )

( )
























=

=

K

K K

u

u

f

f (( )
( )










+










gb
s

0
.  (3)

Defining the local Boolean localization matrix 
A s( )  which is selecting the boundary DOF of 

substructure s gives the relation

 u A ub
s s s( ) ( ) ( )= , (4)

which will be used later. 

1.1  Primal Assembly

The Eqs. (1) and (2) of all substructures N can be 
assembled in a primal way as:

 M K u fua a a a a + = ,  (5)
where
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The reaction forces g s( )  on the interfaces of the 
substructures cancel out during assembly. This 
assembly is called primal assembly since the 
compatibility between the substructures is enforced 
using the same boundary displacements for adjacent 
substructures.

1.2  Dual Assembly

Another way to enforce the interface compatibility 
between the substructures is to consider the interface 
connecting forces as unknowns. These forces must 
be determined to satisfy the interface compatibility 
condition (displacement equality) and the local 
equation of motion of the substructures:

 B us s
s

N ( ) ( )
=

=∑ 0,
1

 (9)

 M u K u B fs s s s s sT( ) ( ) ( ) ( ) ( ) ( )+ + = λλ .  (10)

B s( )  is a signed Boolean matrix (constraint matrix) 
acting on the substructure interface DOF. B s T( ) λλ  is 
representing the interconnecting forces between 
substructures which is corresponding to the negative 
interface reaction force vector g s( )  in Eq. (1) meaning

 g B g Bs s
b
s

b
sT T( ) ( ) ( ) ( )= − = −λλ λλ, ,  (11)

and λλ  is the vector of all Lagrange multipliers acting 
on the interfaces which are the additional unknowns. 
The displacement vector u s( )  is partitioned according 
to Eq. (2). With the block-diagonal matrices
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the set of Eqs. (9) and (10) can be written as:
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In this hybrid formulation the Lagrange 
multipliers λλ  enforce the interface compatibility 
constraints and can be identified as interface forces [6]. 
The dual assembled system in Eq. (16) is equivalent to 
the primal assembled system in Eq. (5) since both 
systems express the same local equilibrium for each 
substructure and enforce the same interface 
compatibility.

2  COMPONENT REDUCTION METHODS

2.1  Craig-Bampton Method (CBM)

Considering the partitioned equation of motion in 
Eq. (3), the internal DOF ui

s( )  of every substructure  
can be seen as being excited by its boundary DOF  
ub
s( ) , namely
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This indicates that ui
s( )  of each substructure can 

be approximated by a superposition of a static 
response and of eigenmodes associated to M ii

s( )  and 
K ii

s( ) . The static response is given by
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where the columns of matrix ΨΨib
s( )  are the static 

response modes also called constraint modes [2]. The 
fixed interface normal modes φφ k

s( )  are obtained as 
eigensolutions of the generalized eigenproblem 
K Mii

s
k
s

k
s
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k
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2

. The columns of the 
n ni
s s( ) ( )× φ  matrix ΦΦi

s
φ
( )  contain the first n s

φ
( )  fixed 

interface normal modes  φφ k
s( )  which can also be 

considered as the free vibration modes of the 
substructure s clamped on its boundary DOF ub

s( ) . The 
approximation of ui

s( )  therefore writes

 u ui
s
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s

i
s s( ) ( ) ( ) ( )≈ +, ΦΦφ ηη ,  (19)

and the displacements of the substructure are 
approximated by
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with the vector of modal parameters ηη s( )  of dimension 
n s
φ
( )  corresponding to the amplitudes of the fixed 

interface normal modes ΦΦi
s
φ
( ) . The CBM reduction 

matrix TCB  for reducing the primal assembled system 
can be defined as:
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and the CBM reduced matrices

 K T K Tred CB CB
T

a CB, = ,  (22)

 M T M Tred CB CB
T

a CB, = ,  (23)

are found in [2].

2.2  Free Interface Methods

Considering the equation of motion (Eq. (10)) of 
substructure s, every substructure can be seen as being 
excited by the interface connection forces and the 
external forces. This indicates that the displacements 
of each substructure u s( )  can be expressed in terms of 
local static solutions ustat

s( )  and in terms of eigenmodes 
associated to the entire substructure matrices K s( )  and 
M s( ) :
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The static response ustat
s( )  is obtained by solving 

Eq. (10) under the assumption of no inertia forces and 
no external forces acting on the substructure. K s( )+  is 
equal to the inverse of K s( )  when there are enough 
boundary conditions to prevent the substructure from 
floating when its interface with neighboring 
substructures is free [6]. If a substructure is floating,   
K s( )+  is a generalized inverse of K s( )  and R s( )  is the 
matrix containing the r s( )  rigid body modes as 
columns. The vector αα s( )  contains the amplitudes α j

s( )  
of the rigid body modes and the vector ηη s( )  contains 
the amplitudes η j

s( )  of the local eigenmodes θθ j
s( )  

being eigensolutions of the generalized eigenproblem 
K Ms

j
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j
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2

. An approximation is 
obtained by retaining only the first n s

θ
( )  free interface 

normal modes θθ j
s( ) . Calling ΘΘ s( )  the matrix containing 

only these n s
θ
( )  eigenmodes, the approximation of the 

displacements u s( )  of the substructure is given by:
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Since a part of the subspace spanned by ΘΘ s( )  is 
already included in K s( )+  the residual flexibility 

matrix Gr
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defined by:
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Note that, by construction G Gr
s

r
s T( ) ( )= , which is 

computed using the second equality in Eq. (27). For 
further properties of Gr

s( )  see [6]. As a result the 
approximation of one substructure writes:
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G Ar
s s T( ) ( )  is the matrix containing the residual 

flexibility attachment modes of substructure s, since 
the Boolean localization matrix A s T( )  as defined in 
Eq. (4) simply picks the columns of Gr

s( )  associated to 
the boundary DOF [7]. The approximation in Eq. (28) 
can now be used to reduce the substructure DOF. 
Using the orthogonality properties of the modes in 
Eq. (28) the equation of motion of one substructure in 
Eq. (1) becomes
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Gr bb
s
,
( )  is the residual flexibility and M r bb

s
,
( )  is the 

interface inertia associated to the residual flexibility   
related to the boundary DOF, respectively, and ΩΩ s( )  
being a diagonal matrix containing the remaining n s

θ
( )     

eigenvalues ω j
s( ) .

2.2.1  Rubin Method (RM)

In order to assemble the substructure equation of 
motion in Eq. (29) in the global system a second 
transformation is applied by the RM [4]. The force 
DOF gb

s( )  are transformed back to the boundary 
displacements ub

s( )  using Eq. (28) [7]:

    u A u R G gb
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Rb
s( )  and ΘΘb

s( )  are the subparts of R s( )  and ΘΘ s( )  
related to the boundary DOF, respectively. From this 
equation the interface force DOF can be solved as:

 g K u Rb
s

r bb
s

b
s

b
s s

b
s s( ) ( ) ( ) ( ) ( ) ( ) ( )= − −( ), αα ηηΘΘ ,  (35)

with K Gr bb
s

r bb
s

, ,
( ) ( )=

−1

. The transformation matrix T2
s( )  

from force DOF gb
s( )  back to the boundary 

displacements ub
s( )  leaving αα s( )  and ηη s( )  unchanged  

writes then:
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Application of this transformation to the matrices 
of Eqs. (30) and (31) gives the RM reduced matrices 
of one substructure
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The RM reduction matrix for one substructure writes 
therefore:

 T T TR
s s s( ) ( ) ( )=

1 2
,  (39)

and the RM reduced matrices
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R
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R
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s

R
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R
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are found [7]. These matrices can be directly 
assembled using primal assembly to get the RM 
reduced matrices K red R,  and M red R,  of the global 
system. This process was outlined in section 1.1 and 
applied in section 2.1 for the CBM. The RM applies 

the reduction matrix TR
s( )  consistently to the mass and 

stiffness matrix resulting in a true Rayleigh-Ritz 
method as was observed in [8].

2.2.2  MacNeal Method (MNM)

The MNM [3] is nearly identical to the RM except for 
a small change. First we will derive the preliminary 
MNM reduced matrices K red MN

s
,

( )  and M red MN
s
,

( )  
following the derivation of the RM to show the 
similarities between these two methods. The reduced 
stiffness matrix of both the RM and the MNM are 
identical (given in Eq. (40))

 K Kred MN
s

red R
s

, ,
( ) ( )= ,  (42)

but the MNM reduced mass matrix M red MN
s
,

( )  is 
obtained differently. The residual mass term M r bb

s
,
( )  of 

the matrix M free
s( )  in Eq. (30) is neglected resulting in a 

modified matrix labeled

 M
I
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s
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0 0
0 0
0 0 0

,  (43)

instead of M free
s( )  for the MNM [7]. The preliminary 

MNM reduced mass matrix writes now:

 M T M T Mred MN
s s

free MN
s s

free MN
sT

, , , .( ) ( ) ( ) ( ) ( )= =2 2  (44)

This gives in fact inconsistent equations of 
motion since the mass and stiffness matrices are not 
reduced with the same basis. The assembly of the 
MNM reduced matrices K red MN

s
,

( )  and M red MN
s
,

( )  in the 
global system proceeds in the same manner as for the 
RM. Observing that the boundary DOF ub  have no 
associated inertia in Eq. (44), those DOF can be 
condensed out of the equation of motion of the 
assembled problem and the final MNM reduced 
matrices K red MN,  and M red MN,  are obtained [3]. Thus 
the size of the assembled MNM system is reduced 
further by the number of DOF of ub .

2.2.3  Dual Craig-Bampton Method (DCBM)

Replacing gb
s( )  according to Eq. (11) by the Lagrange 

multipliers λλ  in the equation of motion of one 
substructure in Eq. (29), the reduced substructure 
matrices can be directly coupled using the dual 
assembly procedure [6] as outlined in section 1.2. 
Assembling all substructures N in a dual fashion by 
keeping the interface forces λλ  as unknowns, the 
entire structure can consequently be approximated by
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The approximation of the dynamic equations of 
the dual assembled system in Eq. (16) is
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with the DCBM reduced mass and stiffness matrix
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M red DCB,  and K red DCB,  are diagonal for the parts 
related to the different substructures. The coupling 
between the substructures is only achieved by the 
rows and columns related to λλ . The DCBM applies 
the reduction matrix TDCB  consistently to the mass 
and stiffness matrix resulting in a true Rayleigh-Ritz 
method.

The DCBM enforces only a weak compatibility 
between the substructures and does not enforce a 
strong displacement compatibility between the 
interfaces compared to many other common reduction 
methods [6]. Considering the system of Eqs. (9) 
and (10) multiplied by the reduction matrix TDCB

T , the 
last row of Eq. (47) results from
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multiplied from left by the last row of TDCB
T  which is

 − −





( ) ( ) ( ) ( )B G B G I1 1
r

N
r
N

 .  (52)

Replacing the strong interface compatibility 
condition of Eq. (9) by the weak form according to the 
multiplication of Eq. (51) by Eq. (52) can be 
interpreted as follows. Denote ∆f s( )  the residual 
forces of substructure s resulting from the weak 
satisfaction of the local equilibrium of the substructure 
approximating the dynamics by a small number of 
free interface normal modes. Name ∆ ∆u G fs

r
s s( ) ( ) ( )=  

the displacements these residual force ∆f s( )  would 
create locally. Then the weak interface compatibility 
condition (Eqs. (51) and (52)) states that a 
compatibility error (i.e. an interface displacement 
jump) equal to the incompatibility of ∆u s( )  is 
permitted [6]. Compared to MacNeal‘s and Rubin‘s 
method [3] and [4], the weak interface compatibility of 
the DCBM avoids locking problems occurring during 
the application of the aforementioned methods. 
Therefore, the approximation accuracy is 
improved [6]. But the fact that a weak interface 
compatibility is allowed in the DCBM implies that the 
infinite eigenvalues related to the Lagrange multipliers  
λλ  in the non-reduced problem in Eq. (16) are now 
becoming finite and negative [9]. In practice those 
negative eigensolutions will appear only in the higher 
eigenvalue spectrum if the reduction space is rich 
enough [9]. Nevertheless, the reduction basis has to be 
selected with care avoiding potential non-physical 
effects of the possibly occurring negative eigenvalues.

If M r  in Eq. (48) is neglected  strong interface 
compatibility is enforced again and the DCBM 
reduced system with M r = 0  is equivalent to the 
MNM [6]. Then static condensation can be applied 
again to remove λλ  (as it was done for ub  at the end of 
the derivation of the MNM in section 2.2.2) from the 
assembled system since no mass is associated. Thus 
the size of the assembled system is reduced again by 
the number of DOF of λλ .
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3  EXAMPLES AND DISCUSSION

3.1 Benfield Truss

The Benfield truss [10] of Fig. 1 is used to compare 
the results obtainable by the CBM, the MNM, the RM 
and the DCBM. The planar truss consists of two 
substructures having uniform bay section whereas all 
members have constant area and uniform stiffness and 
mass properties. The left component consists of five 
equal bays and has a total of 18 joints and the right 
component consists of four equal bays and has a total 
of 15 joints [10]. The lowest eigenfrequencies ω  of 
the entire structure shall be approximated by the 
different methods. The relative error 
ε ω ω ωrel j red j full j full j, , , ,/= −  of the jth eigenfrequency 
is used as a criterion to assess the accuracy of the 
different methods. Thereby ω full j,  is the jth 
eigenfrequency of the full (non-reduced) system and 
ωred j,  represents the jth eigenfrequency of the reduced 
system obtained by each method. Using 5 elastic 
(fixed or free interface normal modes) per substructure 
the relative errors ε rel  depicted in the semi-log graph 
in Fig. 2 are resulting. 

Fig. 1.  Benfield truss [10]

Fig. 2.  Relative error  of eigenfrequency  using 5 normal 
modes per substructure for the approximation of the lowest 

eigenfrequencies of the Benfield truss

Since all methods give the correct rigid body 
modes only the relative errors of the elastic modes are 
plotted. All methods give a relative error less than 1 % 
for the first six eigenfrequencies. Comparing the free 

interface methods for this example, the RM performs 
always better than the DCBM and the DCBM 
performs again always better as the MNM. The CBM 
and the DCBM result in similar frequency errors.

The sparsity pattern of the reduced stiffness 
matrix K red  and reduced mass matrix M red MN,  of the 
CBM (Fig. 3), the MNM (Fig. 5), the RM (Fig. 6) and 
the DCBM (Fig. 4), respectively, illustrate the 
differences of the assembled reduced structures. Both 
the reduced stiffness matrix K red  and the reduced 
mass matrix M red  applying the CBM and the DCBM, 
respectively, have only diagonal entries for the 
subparts of each substructure. On the one hand the 
coupling between the substructures using the CBM is 
entirely achieved by the last rows and last columns in 
the mass matrix M red CB,  (Fig. 3b) and the remaining 
part is diagonal [2]. On the other hand the coupling 
applying the DCBM is entirely achieved by the last 
rows and last columns in the stiffness matrix K red DCB,  
(Fig. 4a) and again the remaining part is diagonal [6]. 
The corresponding degrees of freedoms are either the 
interface displacements ub  or the interface forces λλ  
but no direct coupling between the modal parameters 
of adjacent substructures occurs which ensures the 
sparse structure.

Fig. 3.  Sparsity pattern of the reduced matrices applying the CBM 
using 5 normal modes per substructure

Fig. 4.  Sparsity pattern of the reduced matrices applying the 
DCBM using 5 normal modes per substructure

In contrast the sparsity pattern of the reduced 
stiffness matrix K red  and the reduced mass matrix 
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M red  obtained by the MNM and the RM, respectively, 
show full matrices. The MNM gives indeed an entirely 
diagonal reduced mass matrix M red MN,  (Fig. 5b) but 
causes always a full coupling between all DOF of all 
substructures via the reduced stiffness matrix K red MN,  
(Fig. 5a). This makes the reusability of reduced 
models obtained by the MNM very inefficient and 
therefore nearly impossible from a practical point of 
view. The RM also causes a coupling between the 
substructures via interface displacements ub  in the 
reduced stiffness matrix K red R,  (Fig. 6a) as well as in 
the reduced mass M red R,  (Fig. 6b).

Fig. 5.  Sparsity pattern of the reduced matrices applying the MNM 
using 5 normal modes per substructure

Fig. 6.  Sparsity pattern of the reduced matrices applying the RM 
using 5 normal modes per substructure

Moreover all DOF belonging to one reduced 
substructure are coupled with all other DOF of the 
same substructure which is why the reduced matrices 
of the RM are full for the substructure blocks and not 
diagonal. This result concerning the sparsity of the 
reduced matrices is outlined in Table 1 which shows 
the number n of non-zero elements in the reduced 
matrices K red  and M red  and the sum ntotal  of both 
obtained by the different methods for this example.

The reduced matrices of the CBM, the MNM and 
the DCBM contain a similar number of entries while 
the RM causes even for such a simple example a 
remarkable high number of entries. The number of 
entries of the MNM are comparable to the CBM and 
the DCBM but will increase dramatically if the 

number of substructures is increased since K red  will 
always be completely full.

Table 1.  Number n of non-zero elements in the reduced matrices 
obtained by the different methods for the Benfield truss (5 normal 
modes per substructure)

CBM MNM RM DCBM

n in K red
40 216 314 196

n in M red  118 16 354 50

ntotal 158 232 668 246

3.2  Beam Frame

In [6] a three-dimensional frame made of steel beams 
(Young‘s modulus 210 GPa, Poisson‘s ratio 0.3, and 
density 7500 kgm3) schematically shown in Fig. 7 is 
considered. Each cell in the frame has a height of 
0.35 m and a width and depth of 0.5 m. All outer 
beams have a hollow circular cross-section with the 
outside and inside diameters 0.02 m and 0.018 m. The 
diagonal members inside the cells have a solid circular 
cross section with diameter 0.008 m. The frame is 
divided into 5 substructures and again the objective is 
the approximation of the lowest eigenfrequencies ω  
of the frame. Approximation of the eigenfrequencies 
of this system using the four presented methods with 4 
normal modes per substructure (rigid body modes are 
not counted as free interface normal modes) is carried 
out. The results presented in [6] for the DCBM were 
obtained based erroneously on an incomplete set of 
free interface modes in the substructures using a 
simple Lanczos eigensolver: modes related to multiple 
frequencies were not determined by the simple 
Lanczos algorithm applied in that work.

Fig. 7.  Frame made of steel beams divided  
into 5 substructures [6]
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Considering the geometry of the beam frame 
structure of the arms in Fig. 7, the symmetry of the 
substructures is identifiable resulting in multiple 
eigenfrequencies of the substructures. The simple 
Lanczos eigensolver (no blocks, no restarts) used in 
[6] was not capable of determining multiple 
eigenvalues reliably [11]. Hence, when the simple 
Lanczos algorithm is used to determine the free modes 
of the substructure, modes that are multiple are 
missing and the representation of the lower spectrum 
is incomplete. Normal modes associated to the higher 
eigenfrequencies computed by the simple Lanczos 
eigensolver are used leading to poor approximation 
accuracy. Using the block Lanczos method and taking 
the lowest eigenfrequencies with associated subspaces 
of eigenvectors, the accuracy of the eigenfrequencies 
of the reduced global system obtained by the two 
reduction methods increases in the low frequency 
range [11]. In this work we are using an eigensolver 
capable of determining multiple eigenvalues for the 
comparison of the results obtained by the different 
methods. Again the eigenfrequencies ωred  of the 
reduced system applying the CBM, the MNM and the 
DCBM as well as the eigenfrequencies ω full  of the 
full (non-reduced) system are computed. The 
eigenfrequency relative errors 
ε ω ω ωrel j red j full j full j, , , ,/= −  comparing the 
eigenfrequencies of the non-reduced model with the 
eigenfrequencies ωred  of the reduced system obtained 
by the reduction methods are plotted in Fig. 8. 
Nevertheless, as already observed in [6], this confirms 
that the accuracy of the DCBM in the low frequency 

range is two orders of magnitude better than the CBM. 
Comparing only the free interface methods, the RM 
performs slightly better than the DCBM. Both the RM 
and DCBM give a much better approximation 
accuracy than the MNM.

3.3  Two-dimensional solid

In order to emphasize the weak coupling between the 
substructure interfaces applying the DCBM, as 
described in section 2.2.3, the problem of a two 
dimensional rectangle (density ρ, Young‘s modulus E, 
Poisson‘s ratio ν = 0.3) decomposed in 12 substructures 
as illustrated in Fig. 9 is considered. Each substructure 
is discretized by 16×9 bilinear four-noded elements 
(plane stress) and the structure is clamped on the left 
side in both directions. Again the objective is to 
approximate the lowest eigenfrequencies ω  of the 
entire structure with the four different methods. Using 
8 normal modes per substructure (not including 
potential rigid body modes) the relative errors 
ε ω ω ωrel j red j full j full j, , , ,/= −  depicted in Fig. 10 are 
resulting.

Making use of such a large reduction basis the 
DCBM and the RM give excellent results in the low 
frequency range in comparison to the CBM and the 
MNM. Approximating the 20 lowest eigenfrequencies 
of the full structure, neither compatibility problems 
nor trouble with negative eigenfrequencies occur 
during the reduction process with the DCBM. Similar 
graphs depicting the relative errors ε rel  as in Fig. 10 
are obtained using different numbers of normal modes 
per substructure for the four methods. 

When considering a very small reduction basis 
for the substructures (using only a small number of 
normal modes), non-physical negative eigenvalues of 
the reduced problem show up in the low frequency 

Fig. 8.  Relative error ε rel j,  of eigenfrequency j using 4 normal 
modes per substructure for the approximation of the lowest 

eigenfrequencies of the entire beam frame

Fig. 9.  Two dimensional solid problem (dimensionless width 
lx = 16, height ly = 9 decomposed in 12 substructures; each 

substructure is discretized by 16×9 bilinear four-noded elements 
(plane stress) and the structure is clamped on the left side in both 

directions



Strojniški vestnik - Journal of Mechanical Engineering 62(2016)7-8, 452-462

461Evaluation of Substructure Reduction Techniques with Fixed and Free Interfaces 

range. Using only 2 normal modes per substructure as 
reduction basis for this example negative values 
emerge among the 20 smallest absolute values of 
eigensolutions ω 2  applying the DCBM. In this case 
the first 14 of the lowest absolute values of ω 2  are 
positive and the associated eigenmodes are 
approximating the true eigenvalues and eigenmodes 
of the full system accurately. But, as shown in Table 2, 
the 15th eigenvalue is negative and the associated 
eigenmode depicted in Fig. 11 shows the non-physical 
behavior of this eigensolution.

Fig. 10.  Relative error ε rel j,  of eigenfrequency j using 8 normal 
modes per substructure for the approximation of the lowest 

eigenfrequencies of the entire structure

Table 2.  Number j and associated eigenvalue ω j
2  of the two 

dimensional solid reduced with the DCBM

j ω
ρ

j E
2

1 0.000874
2 0.009729
⁞ ⁞

14 0.245011
15 -0.250785
16 0.261676

The eigenmodes corresponding to negative 
eigensolutions with higher absolute values show 
similar behavior. All these negative eigenvalues are 
related to the weak compatibility on the interfaces 
and not meaningful from a physical point of view. 
Consequently detecting and filtering out those 
negative eigenvalues is an additional step in the 
DCBM compared to the other methods based on 
primal assembly. This extra step is cheap and therefore 
does not increase the effort of the reduction process 

using the DCBM compared to the other four methods 
keeping the DCBM very efficient.

Fig. 11.  Eigenmode number 15 approximated by the DCBM  
using 2 free interface normal modes per substructure  

(ω
ρ15

2
0 250785= − . E )

4  CONCLUSIONS

In this paper the general concepts of the Craig-
Bampton method (CBM), the MacNeal method 
(MNM), the Rubin method (RM) and the dual Craig-
Bampton method (DCBM) were briefly presented, 
compared and discussed using three examples. 
The DCBM is outperforming the CBM using the 
same number of normal modes per substructure as 
reduction basis with comparable computational effort 
and having similar sparsity pattern of the reduced 
matrices. Comparing the free interface methods, 
the RM performs slightly better than the DCBM but 
results in full matrices. Both the RM and DCBM 
give a much better approximation accuracy than the 
MNM while the MNM generated always full coupled 
reduced matrices.

Properties of the DCBM were outlined and an 
additional necessary step, namely filtering out the 
negative eigensolutions, during the reduction process 
was illustrated. Non-physical negative eigenvalues 
of the reduced dual assembled problem are intrinsic 
in the reduction process using the DCBM caused by 
the weak compatibility on the interfaces between the 
substructures. Filtering out these negative eigenvalues 
is the decisive factor for the excellent approximation 
quality of the DCBM. The numerical effort adding 
this additional step is negligible keeping the efficiency 
of this method.
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