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0  INTRODUCTION

Excitations acting upon dynamical systems such as 
wind, wave, and seismic loads commonly exhibit 
evolutionary features. In this setting, not only the 
intensity of the excitation but also its frequency 
content exhibit strong variability. This fact necessitates 
the representation of this class of structural loads 
by non-stationary stochastic processes. Further, 
structural systems under severe excitations can exhibit 
significant nonlinear behavior of the hysteretic kind. 
Thus, of particular interest to the structural dynamics 
community is the development of techniques for 
determining the response and assessing the reliability 
of nonlinear/hysteretic systems subject to evolutionary 
stochastic excitations (e.g., [1] to [3]). 

Further, in engineering dynamics, the evaluation 
of the probability that the system response stays 
within prescribed limits for a specified time interval 
is advantageous for reliability based system design 
applications. In this regard, the first-passage problem, 
that is, the determination of the above time-variant 
probability known as survival probability, has been a 

persistent challenge in the field of stochastic dynamics 
for many decades.

Monte Carlo simulation techniques are among 
the most potent tools for assessing the reliability 
of a system (e.g. [4]). Nevertheless, there are cases 
where the computational cost of these techniques 
can be prohibitive, especially when large-scale 
complex systems are considered; thus, rendering the 
development of alternative efficient approximate 
analytical/numerical techniques for addressing the 
first-passage problem necessary. Indicatively, one 
of the early approaches, restricted to linear systems, 
relies on the knowledge of the mean up-crossing rates 
and on Poisson distribution based approximations 
(e.g., [5] to [7]). Further attempts to address the first-
passage problem range from analytical ones (e.g., [8]) 
to numerical ones (e.g., [9]). Furthermore, techniques 
based on the concepts of the numerical path integral 
(e.g., [10] to [13]), of the probability density evolution 
(e.g., [3]), or of stochastic averaging/linearization 
(e.g., [14]) constitute some of the more recent 
approaches.
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Highlights
• A stochastic dynamics methodology for determining the survival probability of nonlinear MDOF systems.
• Approximate analytical expressions provided for estimating the time-varying survival probability.
• Survival probabilities and the associated first-passage PDFs are determined at a low computational cost. 
• The developed technique is characterized by enhanced versatility as it can handle readily a wide range of nonlinear behaviors 

as well as various stochastic excitations with arbitrary EPS forms.
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In this paper, an approximate analytical technique 
for determining the survival probability and first-
passage probability density function (PDF) of 
nonlinear multi-degree-of-freedom (MDOF) systems 
subject to an evolutionary stochastic excitation vector 
is developed. Specifically, first relying on a statistical 
linearization based dimension reduction approach 
the original MDOF system is decoupled and cast 
into (n) effective single-degree-of-freedom (SDOF) 
linear time-variant (LTV) systems corresponding 
to each and every degree of freedom of the original 
MDOF system. Second, a stochastic averaging 
based approximate technique is utilized to derive the 
nonlinear MDOF system survival probability and 
first-passage PDF at a low computational cost. 

The remainder of this paper is organized as 
follows: In section 1.1 the statistical linearization 
technique for nonlinear MDOF systems is presented. 
Next, in section 1.2 a stochastic averaging/statistical 
linearization treatment of the problem, through a 
system dimension reduction approach is briefly 
delineated. In section 1.3, it is shown that the nonlinear 
MDOF system non-stationary marginal, transition 
and the joint response amplitude probability density 
functions (PDFs) can be approximated by closed-form 
expressions. Further, section 2 provides analytical 
closed-form expressions for the time-dependent 
survival probability of the nonlinear MDOF structural 
system as well as for the corresponding first-passage 
PDF. In section 3, illustrative examples comprising 
a 3-DOF system exhibiting Bouc-Wen hysteresis 
and subject to evolutionary stochastic excitations 
are considered. Pertinent MCS data demonstrate the 
reliability of the proposed technique. Finally, section 4 
provides with concluding remarks.

1  MDOF SYSTEM DIMENSION REDUCTION

In this section, the basic elements of an approximate 
dimension reduction/decoupling technique developed 
by some of the authors for determining the non-
stationary response amplitude PDF of nonlinear 
MDOF systems subject to evolutionary stochastic 
excitation are reviewed for completeness; see [15] and 
[16] for a more detailed presentation.

1.1  Statistical Linearization Treatment

Consider an n-degree-of-freedom nonlinear system 
governed by the equation:

 My C y K y + g y y F  + + ( ) = ( ), .t  (1)

where y  denotes the response acceleration vector, y  
is the response velocity vector, y is the response 
displacement vector, defined in relative coordinates; 
M, C and K denote the (n × n) mass, damping and 
stiffness matrices, respectively; g y y, ( )  is an 
arbitrary nonlinear (n × 1) vector function of the 
variables y and y . F(t)T = ( f1(t),  f2(t), ..., fn(t)) is a 
(n × 1) zero mean, non-stationary stochastic excitation 
vector process defined as F(t) = γa t( )  where  
γT = (γ1, γ2, ..., γn) is an arbitrary (n × 1) vector of 
constant weighting coefficients, and a t( )  is a non-
stationary process with an evolutionary power 
spectrum (EPS) S ta ω,( ) . In this regard, F(t) 
possesses the EPS matrix:
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Further, the non-stationary stochastic excitation 
process is regarded to be a filtered stationary 
stochastic process according to the concept proposed 
by Priestley [17]; see also [18]. Thus, the excitation 
EPS matrix of Eq. (2) takes the form:

 S A S AF Fω ω ω ω, , , ,t t t T( ) = ( ) ( ) ( )


*

 (3)

where the superscripts (T) and (*) denote matrix 
transposition and complex conjugation, respectively;  
A(ω, t) is the modulating matrix which serves as a 
time-variant filter; and SF ω( )  is the power spectrum 
matrix corresponding to the stationary stochastic 
vector process F t( ) . Note that both separable and 
non-separable EPS can be defined considering Eq. (3). 
In this manner, excitations exhibiting variability in 
both the intensity and the frequency content can be 
considered. Focusing next on the frequency domain, 
the response determination problem is defined as 
seeking the corresponding system response EPS 
matrix of the form:
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According to the statistical linearization method 
(e.g., [1] to [3]), a linearized version of Eq. (1) takes 
the form:
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 My C C y K K y Feq eq + +( ) + +( ) = ( )t .�  (5)

Next, adopting the standard assumption that the 
response processes are Gaussian, the time-dependent 
elements of the equivalent linear matrices Ceq and Keq  
are given by the expressions:
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Further, for a linear MDOF system subject to 
evolutionary stochastic excitation a matrix input-
output spectral relationship of the form:

 S H S Hy gen F genω ω ω ω, , , ,t t tT( ) = ( ) ( ) ( )


*

 (8)

can be derived (e.g., [1] and [3]), where

 H h Agen ω τ ω τ τ.ω τ
, ,t t e d

t
i t( ) = −( ) ( )∫ − −( )

0

 (9)

In Eq. (9)  denotes the impulse response function 
matrix. Furthermore, the time dependent cross–
variance of the response can be evaluated by the 
expression:

 E y y S t di j y yi j
  = ( )

−

∞

∫
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It can be readily seen that Eqs. (6) to (10) 
constitute a coupled nonlinear system of algebraic 
equations to be solved numerically for the system 
response covariance matrix. Note in passing that 
instead of the frequency domain Wiener-Khinchin 
relationship of Eq. (8), a state-variable formulation 
can be adopted yielding a system of differential 
equations of the Lyapunov kind (e.g., [1] and [19]) for 
the system response covariance matrix. Nevertheless, 
although a pre-filtering treatment can be applied 
for considering non-stationary stochastic excitation 
processes of the separable kind (e.g., [1]), excitations 
possessing a non-separable EPS (e.g. realistic cases 
of earthquake excitations) cannot be accounted for, at 
least in a straightforward manner. Next, omitting the 
convolution of the impulse response function matrix 
with the modulating matrix can lead to substantial 
reduction of computational effort, especially for the 
case of MDOF systems (e.g., [16] and [20]). In this 
manner, Eq. (9) takes the form:

 H H Agen ω ω ω, , ,t t( ) = ( ) ( )  (11)

where H(ω) is the frequency response function (FRF) 
matrix defined as:

  H M C C K Keq eqω ω ω( ) = − + +( ) + +( )( )−2
1

i .  (12)

Consequently, taking into account Eqs. (3) and 
(8), Eq. (11) becomes:

 S H S Hy Fω ω ω ω, , .t t T( ) = ( ) ( ) ( )*

 (13)

Note that the Eq. (13) can be regarded as a quasi-
stationary approximate relationship which, in general, 
yields satisfactory accuracy in cases of relatively stiff 
systems (e.g., [20] to [22]). Note in passing that the 
spectral input-output relationship of Eq. (13) is exact 
for the case of stationary processes (e.g., [1] to [3]). 
Further, adopting the aforementioned quasi-stationary 
approach, it can be readily seen that for the ith degree 
of freedom, using Eqs. (2), (10) and (13) yields:
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Eqs. (14) and (15) hold true in the approximate 
quasi-stationary sense delineated earlier. Clearly, 
Eq. (13) constitutes an approximate formula for 
determining the MDOF system response EPS matrix 
at a low computational cost; thus, circumventing 
computationally intensive Monte Carlo simulations.

1.2  Effective SDOF Linear Time-Variant System

Following next the system dimension reduction 
approach developed in [16], an auxiliary effective 
SDOF LTV system corresponding to the ith degree of 
freedom can be defined as:

  y t y t y ti eq i i eq i i i+ ( ) + ( ) = ( )β ω α
, ,

,
2  (16)

where the time-varying equivalent stiffness and 
damping elements of the effective LTV system 
can be determined by equating the variances of 
the response displacement and velocity expressed 
utilizing the quasi-stationary FRF of Eq. (16) with the 
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corresponding ones determined via Eqs. (14) and (15); 
this yields:
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Clearly, Eqs. (17) and (18) in conjunction with 
Eqs. (14) and (15) constitute a nonlinear system of 
two algebraic equations to be solved for the evaluation 
of the LTV system time-varying equivalent stiffness 
ωeq i t

,

2 ( )  and damping βeq,i (t) coefficients. Note that 
determining the time-varying natural frequency 
ωeq,i (t) is especially important for a number of reasons 
such as tracking and avoiding moving resonance 
phenomena (e.g., [23]), determining peak system 
response estimates based on design spectrum 
compatible excitation power spectra (e.g., [24]), or 
developing efficient approximate techniques for 
determining nonlinear system survival probability and 
first-passage PDF (e.g., [14]).  

Next, a stochastic averaging technique (e.g., 
[15] and [16]) is applied for casting the second-order 
stochastic differential equation (SDE) of Eq. (1) into 
a first-order SDE governing the evolution in time 
of the response amplitude ai (t). In this regard, and 
based primarily on the assumption of light damping, 
it can be argued that the response yi (t) of the effective 
LTV system of Eq. (16) exhibits a pseudo-harmonic 
behavior described by the equations:

 y t a t cos t t ti i eq i i( ) = ( ) ( ) + ( )( )ω ϕ, ,  (19)

and
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In Eq. (19) the response amplitude ai (t) is a 
slowly varying function with respect to time defined 
as:
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whereas φi (t) stands for the phase of the response yi (t). 
Further, relying on a combination of deterministic 
and stochastic averaging (e.g., [16]) a first-order SDE 

governing each and every degree-of-freedom response 
amplitude process ai (t) takes the form:
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In Eq. (22), η(t) stands for a stationary, zero mean 
and delta correlated Gaussian white noise process of 
unit intensity, i.e., E(η(t)) = 0 ; and E(η(t)η(t+τ)) = δ(τ), 
with δ(τ) being the Dirac delta function. Associated 
with the above SDE (Eq. (22)) is the Fokker-Planck 
(F-P) partial differential equation governing the 
response amplitude transition PDF of the Markovian 
process αi; that is,
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Further, considering the case p(ai,2, t2 | ai,1 = 0, 
t1 = 0) = p(ai, t), the marginal system response 
amplitude PDF has been shown to follow a time-
dependent Rayleigh distribution of the form (e.g., 
[16], [25] and [26]):
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where ci(t) accounts for the non-stationary variance 
of the LTV system of Eq. (16). As it was shown in 
[15] and [16] substituting Eq. (24) into Eq. (23) and 
manipulating yields the following nonlinear ordinary 
differential equation (ODE):

 c t t c t
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to be solved for the non-stationary LTV system 
response variance ci(t) via standard numerical 
schemes such as the fourth order Runge-Kutta.

1.3  Transition and Joint Nonlinear System Response PDFs

Taking into account that no change of state 
can occur if the transition time is zero i.e., 
p(ai,2, t1 | ai,1, t1) = δ(ai,2 – ai,1) and following a similar 
analysis as the one in [25], the transition response 
amplitude PDF p(ai,2, t2 | ai,1, t1) for the ith degree-of-
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freedom of the original MDOF system is assumed to 
be of the form:
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where ci(t1, t2) and hi(t1, t2) are functions to be 
determined and I0 represents the modified Bessel 
function of the first kind and of zero order. Next, 
substituting Eq. (26) into the F-P Eq. (23) and 
manipulating (see also [9],[14] and [25]) yields the 
linear first-order ODEs:
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Relying on the assumption that the equivalent 
damping and stiffness coefficients follow a slowly 
varying with respect to time behavior, the following 
approximations over a small time interval [ti,j–1, ti,j] 
are introduced; i.e., βeq,i(ti,j) = βeq,i(ti,j–1) and 
ωeq,i(ti,j) = ωeq,i(ti,j–1) for t∈  [ti,j–1, ti,j]. Next, based on 
the slowly varying with time behavior of the EPS, 
Sfi,i (ω,t) is also treated as a constant over the interval 
[ti,j–1, ti,j]. Further, based on the above assumptions, 
introducing the variable τi,j = ti,j – ti,j–1, and applying a 
first-order Taylor expansion around the point τi,j = 0, 
Eqs. (27) and (28) become (see [14] for a detailed 
derivation):
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Furthermore, considering Eqs. (25) and (29) 
and applying a first-order Taylor expansion for the 
response variance ci(t) around the point t = ti,j–1 yields:
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Relying next on the Markovian assumption for 
the process ai, the joint-response amplitude PDF 
p(ai, j–1, tj–1 ; ai, j, tj) is given by:
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Utilizing Eqs. (24) and (26), Eq. (32) becomes:
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





,

,

,
,

α jj

i j jc t t
( )

( )












−1,
.  (33)

Further, setting

 r
c t

c t
ti j

i i j

i i j
eq i i j i j,

,

,

, , ,
,

2 1

1
1=

( )
( ) − ( )( )−

−β τ  (34)

Eq. (31) yields:

 c t t c t ri i j i j i i j i j, , , ,
, .−( ) = ( ) −( )1

2
1  (35)

Next, considering Eqs. (29) and (30) and Eqs. 
(34) and (35), the joint response amplitude PDF 
p(ai, j–1, ti, j–1 ; ai, j, ti, j) of Eq. (33) is given in the form:

p t t
c t c t ri j i j i j i j

i j i j

i i j i i j

α α
α α

, , , ,

, ,

, ,

, ; ,− −
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−
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1

1
1 ii j

i j i i j i j i i j

i i j i

c t c t
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, , , ,

,
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2

2

1 1

2

1
2

( ) ×

× −
( ) + ( )

( )
− −

−

α α

ii j i j

i j i j i j

i i j i i j

r
I

r

c t c t

, ,

, , ,

, ,

( ) −( )












×

×
( ) (

−

−

1
2 0

1

1

α α

)) −( )













1

2ri j,
.  (36)

2  NONLINEAR MDOF SYSTEM RELIABILITY ASSESSMENT

In this section the approximate analytical technique 
developed by some of the authors in [14] for 
nonlinear SDOF survival probability determination 
is generalized herein to account for MDOF systems 
by utilizing the dimension reduction/decoupling 
technique outlined in section 1.

In this regard, the survival probability Pi
B  is 

defined as the probability that the system response 
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amplitude ai stays below a prescribed barrier B over 
the time interval [0, T], given that ai(t = 0) < B. Further, 
the first-passage PDF and the survival probability 
p Ti

B ( )  are related according to the expression:

 p T
dP T

dTi
B i

B

( ) = − ( ) .  (37)

Next, adopting the discretization scheme 
employed in [9] yields intervals of the form:

 

t t j m t

t T t t
T t

i j i j i

i m i j i j
eq i

, , ,

, , ,

,

, , , , , , ,

,

−

−

  = … =

= − =

1 0

1

1 2 0

ii j,
,

−( )1
2

 (38)

where the response amplitude ai is assumed to be 
constant over [ti,j–1, ti,j] due to its slowly varying in 
time behavior. In Eq. (38) Teq,i represents the LTV 
system equivalent natural period given by:

 T t
teq i

eq i
,

,

.( ) = ( )
2π

ω
 (39)

Note in passing that a smaller time interval can be 
chosen if higher accuracy is required. In this regard, 
the survival probability Pi

B  is assumed to have a 
constant value over the same time interval as well. 
Obviously, the survival probability is given by

 P T Fi
B

j

m

i j
B( ) = − 

=
∏
1

1
,
,  (40)

where Fi j
B
,  is defined as the probability that the 

response amplitude ai will exceed the prescribed 
barrier B over the time interval [ti,j–1, ti,j], given that no 
crossings have occurred prior to time ti,j–1. Next, 
invoking the Markovian property of the response 
amplitude ai, one gets:

F
Prob a t B a t B

Prob a t B
H

i j
B i i j i i j

i i j

i j
,

, ,

,

,
[ ]

[ ]
=

( ) ≥ ∩ ( ) <
( ) < =−
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1

1

−−

−

1

1

,

,

,
j

B

i j
BH

 (41)

where ∩ denotes the intersection symbol. Utilizing 
Eq. (24) Hi j

B
, −1  can be determined analytically in a 

straightforward manner; that is,

H p a t da exp B
c ti j

B
B

i j i j i j
i i j

, , , ,

,

,− − − −
−

= ( ) − − ( )






=∫1

0

1 1 1

2

1

1
2






,(42)

whereas Hi j j
B
, ,−1  is defined as a double integral of the 

form:

     H da p a t a t dai j j
B

B
i j

B

i j i j i j i j i j, , , , , , , ,
, ; , .− − − −= × ( )∫ ∫1

0

1 1 1

∞

 (43)

Further, taking into account Eq. (36) and 
expanding the Bessel function I0(x) in the form (e.g., 
[27]):

 I x
x

kk

k

0

0

2
2

1
( ) = ( )

+( )=
∑
∞ /

!
,

Γ κ
 (44)

analytical treatment of the involved integrals is 
possible yielding:
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B

i
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where
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and

A
r
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with
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,(48)

In Eq. (48) Γi [γ, z] represents the incomplete 

Gamma function defined as Γ γ γ
i

z

tz t e dt,[ ] = ∫ − −
∞

1 . 

Concisely, the developed technique comprises the 
following steps:
i. Determination of the MDOF system non-

stationary response covariance matrix (Eqs. (10) 
and (13)) via a statistical linearization treatment 
of the problem.

ii. Determination of the equivalent linear time-
varying elements βeq,i(t) and ωeq,i(t) by solving 
the system of algebraic equations (Eqs. (17) and 
(18)).
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iii. Determination of ci(t) via numerically integrating 
the first-order ODE Eq. (25).

iv. Determination of the equivalent natural period  
Teq,i(t) (Eq. (39)) and discretization of the time 
domain via Eq. (38).

v. Determination of the parameters Hi j
B
, −1  and 

Hi j j
B
, ,−1  via Eqs. (42) and (43).

vi. Determination of the survival probability P Ti
B ( )  

via Eq. (40) and of the corresponding first-
passage PDF p Ti

B ( )  via Eq. (37).

3  NUMERICAL APPLICATIONS

In this section, a nonlinear three-degree-of-freedom 
system following the Bouc-Wen hysteretic model 
(e.g., [28] and [29]) subject to evolutionary stochastic 
excitation is considered to demonstrate the reliability 
of the technique.

The survival probabilities and the first-passage 
PDFs obtained via the developed approximate 
technique are compared with survival probability and 
first-passage PDF estimates obtained via pertinent 
Monte Carlo simulations (10,000 realizations). The 
Monte Carlo simulations were conducted by utilizing 
a spectral representation methodology; additional 
details can be found in [30].

Further, a standard fourth-order Runge-Kutta 
numerical integration scheme is employed for solving 
the nonlinear system differential equation of motion 
(Eq. (1)), whereas the barrier level B is expressed as a 
fraction λ of the maximum over time and over DOF 
value of the non-stationary response displacement 
standard deviation, i.e. B t

i and t i= ( )λ σmax( )  with 
σ i it c t( ) = ( ) . Considering displacements defined in 
relative coordinates, the 3-DOF nonlinear system is 
governed by Eq. (1) where

 yT y y y z z z= ( )1 2 3 1 2 3
,  (49)

 M
M M
M M

=










11 12

21 22

,  (50)

where
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
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


m
m m
m m m

1

2 2

3 3 3

0 0

0 ,  (51)

and
 M M M12 21 22 3 30= = = , . (52)

Further,

 K
K K
K K

=










11 12

21 22

,  (53)

where

 K11 =
−

−
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

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

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a

k k
k k

k

1 2

2 3

3

0

0

0 0

,  (54)

      K12 =
−( ) − −( )

−( ) − −( )
−( )
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









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1 1 0

0 1 1

0 0 1

1 2

2 3

3

a a

a a

a

k k
k k

k
,  (55)

and

 K K21 22 3 3= = 0
,
.  (56)

In Eqs. (54) and (55)  stands for the rigidity ratio 
which can be viewed as a form of post-yield to pre-
yield stiffness ratio (a = 1 corresponds to the linear 
system). Further, the damping matrix of the structural 
system C is assumed to be proportional to the stiffness 
matrix; that is,

 C
C C
C C

=










11 12

21 22

,  (57)

where

 C K11 11= c ,  (58)

 C C12 21 3 3= = 0
,
,  (59)

and

 C22 =
















1 0 0

0 1 0

0 0 1

.  (60)

In Eq. (58) c is taken equal to 0.2 × 10–2. For 
the specific example γi = mi, and the loading vector 
becomes

 F t f t f t f tT( ) = ( ) ( ) ( )( )1 2 3
0 0 0 .  (61)

Further,

   

g y y T
,

, , , .



  

( ) =

= − ( ) − ( ) − ( )( )0 0 0
1 1 1 2 2 2 3 3 3

g y z g y z g y z  (62)

In the Bouc-Wen model the additional state zi is 
associated with the displacement yi via the equation:

  z g y zi i i i= ( ), ,  (63)

where
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 g y z y z z y z Ayi i i i i i
n

i i
n

i   , .( ) = − − +−γ β1  (64)

The parameters γ, β, A and n are capable of 
representing a wide range of hysteresis loops (e.g., 
[28] and [29]). In this example the values a = 0.15, 
β = γ = 0.5, n = 1 and A = 1 are considered. The 
equivalent linear matrices take the form (e.g., [1] to 
[3]):

 C
C C
C Ceq
eq eq

eq eq
=










11 12

21 22
,  (65)

where

 C C Ceq eq eq11 12 22 3 3= = = 0
,
,  (66)

and
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eq
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Further,
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K K
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eq eq

eq eq
=
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







11 12

21 22
,  (68)

where
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,  (69)

and
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k
k

k

eq

eq

eq

1

2

3

0 0

0 0

0 0

.  (70)

The elements ceqi
 and keqi

 in Eqs. (67) and (70) 
are given by the expressions:
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and
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2 2

2π
γ β


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respectively.

3.1  A 3-DOF Hysteretic System under Evolutionary 
Stochastic Excitation of the Separable Form

In this example, the excitation EPS S t
α ω,( )  takes the 

form

 S t w t SCPα ω ω, ,( ) = ( ) ( )2

 (73)

where SCP (ω) represents the widely used in 
engineering applications Clough-Penzien power 
spectrum (e.g., [31]) and w (t) denotes a time-
modulating envelope function given by:

 w t k e eb t b t( ) = −( )− −1 2 ,  (74)

where b1 = 0.1 and b2 = 0.3; and k is a normalization 
constant so that w (t)max = 1. The Clough-Penzien 
spectrum is given by:
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g g g

g g g
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ω
ω ξ ω ω

ω ω ξ ω ω

ω ω
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4

4

4

1
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/

/(( )( ) + ( )2
2

2
2

4ξ ω ωf f/

,

 (75)

where S0 is the amplitude of the excitation spectrum, 
modeled as a white noise process. The parameters 
values used are ξg = 0.7, ωg = 2 rad s–1, ξf = 0.6, 
ωf = 12.5 rad s–1. The total duration of the excitation is 
20 seconds. Further, the hysteretic 3-DOF system has 
the properties m1 = 2.0615×105 kg, m2 = 2.0559×105 kg, 
m3 = 2.0261×105 kg, k1 = 3.9668×108 Nm–1, 

k2 = 3.5007×108 Nm–1 and k3 = 2.6927×108 Nm–1. In 
Fig. 1 the EPS of S t

α ω,( )  is plotted for S0 = 20 m2s–3.

Fig. 1.  Separable excitation evolutionary power spectrum 

In Figs. 2 and 3 the equivalent time-varying 
natural frequency ωeq,i(t) and βeq,i(t) the damping 
element  corresponding to each DOF are plotted, 
respectively. Note that the hysteretic/degrading 
behavior of the system is captured by the decreasing 
with time trend of the stiffness element, as well as the 
increasing with time trend of the damping element.

Further, in Figs. 4 and 5 the survival probabilities   
P Ti

B ( )  and indicatively the corresponding first-
passage PDFs p Ti

B ( )  for the first DOF of the 
hysteretic MDOF system are plotted for various 
barrier levels, respectively. The value N = 30 is chosen 
regarding the number of terms to be included in Eq. 
(45). Comparisons between the analytical approximate 
technique and MCS data (10,000 realizations) 
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demonstrate a satisfactory degree of agreement. Note 
that the irregular/non-smooth shape of the approximate 
technique based first-passage PDFs is due to the 
differentiation of the survival probability (Eq. (37)). 
In this regard, the survival probability Eq. (40) is 
assumed to have constant values over the time 
intervals [ti,j–1, ti,j], resulting in a non-smooth 
representation. Obviously, the level of non-
smoothness increases when differentiation takes 
place.

Furthermore, in Figs. 6 and 7 the survival 
probabilities P Ti

B ( )  corresponding to the second and 
third DOF of the system are plotted for various barrier 
levels. Comparisons with MCS demonstrate a 
satisfactory degree of accuracy for these cases as well.

3.2 A 3-DOF Hysteretic System under Evolutionary 
Stochastic Excitation of the Non-Separable Form

The excitation EPS S t
α ω,( )  is assumed to have the 

non-separable form:

 S t S e t ebt
t

α

ω
πω

ω
π

, ,( ) = 







−
−







0

2

2 15

15

2

 (76)

with S0 = 10 m2s–3 and b = 0.5. This spectrum comprises 
some characteristics of particular interest, such as 
decreasing of the dominant frequency with respect to 

Fig. 4.  Survival probability for various values of the parameter λ 
for the first DOF; comparisons with MCS (10,000 realizations)

Fig. 5.  First-passage PDF for various values of the parameter λ for 
the first DOF; comparisons with MCS (10,000 realizations)

Fig. 6.  Survival probability for various values of the parameter λ for 
the second DOF; comparisons with MCS (10,000 realizations)

Fig. 7. Survival probability for various values of the parameter λ for 
the third DOF; comparisons with MCS (10,000 realizations)

Fig. 2.  Equivalent natural frequency ωeq,i(t)

Fig. 3.  Equivalent damping coefficient βeq,i(t)
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time (e.g., [25] and [32]). Further, the hysteretic 3-DOF 
system parameters take the values m1 = 1.0240×105 kg, 
m2 = 1.0225×105 kg, m3 = 1.0105×105 kg and 
k1 = 5.6889×107 Nm–1, k2 = 5.6889×107 Nm–1 and 
k3 = 4.3945×107 Nm–1. In Fig. 8 the non-separable 
excitation EPS is plotted.

Fig. 8.  Non-separable excitation evolutionary power spectrum  
S t
α ω,( )

Fig. 9.  Εquivalent natural frequency ωeq,i(t)

Fig. 10.  Εquivalent damping coefficient βeq,i(t)

In Figs. 9 and 10 the equivalent time-varying 
natural frequency ωeq,i(t) and damping βeq,i(t) 
elements corresponding to each DOF are plotted, 
respectively. Underlying the analytical approximate 
approach is the attempt to capture the time evolution 
as well as the essential characteristics of the frequency 
content of the nonlinear system response. Note 
that the ability of the technique to provide with 
time-varying natural frequencies ωeq,i(t) can be of 

particular importance if seen in conjunction with 
recent theoretical developments regarding the concept 
of the mean instantaneous frequency (MIF) (e.g., 
[33] to [35]). In this regard, ωeq,i(t) together with the 
MIF of the excitation can be potentially employed for 
evaluating the effects of temporal non-stationarity in 
the frequency content of the excitation on the system 
response as well as for tracking moving resonance 
phenomena (e.g., [23] and [36]).

Further, in Figs. 11, 12 and 13 the survival 
probabilities P Ti

B ( )  for every DOF of the hysteretic 
MDOF system are plotted for various barrier levels, 
respectively; comparisons with MCS (10,000 
realizations) demonstrate a satisfactory degree of 
accuracy. 

Fig. 11.  Survival probability for various values of the parameter λ 
for the first DOF; comparisons with MCS (10,000 realizations)

Fig. 12.  Survival probability for various values of the parameter λ 
for the second DOF; comparisons with MCS (10,000 realizations)

Fig. 13.  Survival probability for various values of the parameter λ 
for the third DOF; comparisons with MCS (10,000 realizations)
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4  CONCLUDING REMARKS

An approximate analytical technique for determining 
the time-varying survival probability and associated 
first-passage PDF of nonlinear/hysteretic MDOF 
systems subject to evolutionary stochastic excitation 
has been developed. Specifically, based on an efficient 
dimension reduction approach and relying on the 
concepts of stochastic averaging and statistical 
linearization, the original nonlinear n-degree-of-
freedom system has been decoupled and cast into (n) 
effective single-degree-of-freedom (SDOF) linear 
time-variant (LTV) oscillators corresponding to each 
and every DOF. In this regard, time-varying effective 
stiffness ωeq, i t2 ( )  and damping βeq,i t( )  elements 
corresponding to each and every DOF have been 
defined and computed, while the non-stationary 
marginal, transition and joint response amplitude 
PDFs have been efficiently determined in closed-form 
expressions. Finally, the MDOF system survival 
probability and first-passage PDF have been 
determined approximately in a computationally 
efficient manner. Overall, the developed technique 
exhibits enhanced versatility since it can handle 
readily a wide range of nonlinear behaviors as well as 
various stochastic excitations with arbitrary non-
separable EPS forms that exhibit strong variability in 
both the intensity and the frequency content. A 3-DOF 
system exhibiting hysteresis following the Bouc-Wen 
model has been included in the numerical examples 
section. Comparisons with pertinent Monte Carlo 
simulations have demonstrated the reliability of the 
technique.
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