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Real-Time Cutting Tool Condition Monitoring in Milling

Franci Čuš - Uroš Župerl* 
University of Maribor, Faculty of Mechanical Engineering, Slovenia

Reliable tool wear monitoring system is one of the important aspects for achieving a self-adjusting 
manufacturing system. The original contribution of the research is the developed monitoring system that 
can detect tool breakage in real time by using a combination of neural decision system and ANFIS tool 
wear estimator. The principal presumption was that force signals contain the most useful information for 
determining the tool condition. Therefore, the ANFIS method is used to extract the features of tool states 
from cutting force signals. ANFIS method seeks to provide a linguistic model for the estimation of tool wear 
from the knowledge embedded in the artificial neural network.  The ANFIS method uses the relationship 
between flank wear and the resultant cutting force to estimate tool wear. A series of experiments were 
conducted to determine the relationship between flank wear and cutting force as well as cutting parameters. 
Speed, feed, depth of cutting, time and cutting forces were used as input parameters and flank wear width 
and tool state were output parameters. The forces were measured using a piezoelectric dynamometer and 
data acquisition system. Simultaneously flank wear at the cutting edge was monitored by using a tool 
maker’s microscope. The experimental force and wear data were utilized to train the developed simulation 
environment based on ANFIS modelling. The artificial neural network, was also used to discriminate 
different malfunction states from measured signals. By developed tool monitoring system (TCM) the 
machining process can be on-line monitored and stopped for tool change based on a pre-set tool-wear 
limit. The fundamental limitation of research was to develop a singlesensor monitoring system, reliable as 
commercially available system, but 80% cheaper than multisensor approach.
© 2011 Journal of Mechanical Engineering. All rights reserved. 
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0 INTRODUCTION

The demand to reduce production costs has 
driven manufacturers to automate most operations 
previously controlled by skilled operators. 
Therefore, the Unmanned Flexible Manufacturing 
Systems (UFMS) have been developed. In such 
automated and unmanned machining system, 
a computerized system must have capabilities 
for monitoring and controlling the machining 
process to perform the role of a human operator. 
A tool condition monitoring system (TCM) is a 
fundamental requirement for the control of the 
machining process. 

The main goal of developing TCM 
systems is to increase productivity and hence 
competitiveness by maximizing tool life, 
minimising down time, reducing scrappage and 
preventing damage. The traditional ability of the 
operator to determine the condition of the tool 
based on their experiences and senses is now the 
expected role of the monitoring system. The role 
of the operator is typically supervisory. Usually 

the operator is also responsible for loading 
and unloading parts for several machines in a 
manufacturing cell, meaning that their reaction 
time to a problem with any one machine will not 
be sufficient for the speed at which machining 
operations take place on modern machine tools. 

Each TCM system consists of: sensors, 
signal conditioners/amplifiers and a monitor [1]. 
The monitor uses a strategy to analyse the signals 
from the sensors and to provide reliable detection 
of tool and process failures. It can be equipped 
with some signal visualisation system and is 
connected to the machine control. 

Many studies have been conducted 
on monitoring of malfunctions and abnormal 
cutting states of machine tools [2]. With regard 
to the monitoring of cutting tool states, two main 
factors are tool wear and failure. Tool failure 
has become more important recently since hard 
tools are frequently used in the cutting process. 
Current research in TCM is oriented towards the 
development of online TCM techniques. 
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There are two techniques for tool wear 
sensing: direct and indirect. The direct technique 
includes measuring the actual wear, using 
radioactive analyses of the chip. Generally direct 
measurements are avoided because of difficulty 
of online measurements. For indirect methods of 
TCM, the following steps are followed: use of 
single or multiple sensors [3] to capture process 
information; use of signal processing methods to 
extract features from the sensor information; use 
of decision-making strategy to utilise extracted 
featured for prediction of tool failure. Indirect 
technique includes the measuring of cutting 
forces, torque, vibration, acoustic emission (stress 
wave energy), sound, temperature variation of 
the cutting tool, power or current consumption 
of spindle or feed motors and roughness of the 
machined surface [4]. Recent trend in TCM is a 
multisensory approach which is termed as sensor 
fusion /sensor integration/sensor synthesis. The 
idea is to gather information from several sensors 
to make a comprehensive estimate of tool wear. 
The application of TCM in the industry has mostly 
relied on robust and reliable sensor signals such 
as force, power and AE. They are relatively easy 
to install in existing or new machines, and do not 
influence machine integrity and stiffness.

Recent studies show that force signals 
contain the most useful information for 
determining the tool condition [5]. However, in 
many cases the use of force sensors is not practical 
for retrofit applications and spindle power signal 
is often used as an alternative.

Several different approaches have been 
proposed to automate the tool monitoring function. 
These include classical statistical approaches as 
well as fuzzy systems and neural networks. For 
instance, Iqbal [6] developed an approach based 
on the least-squares regression for estimating tool 
wear in machining while Haber [7] has measured 
the flank wear of the cutting tool using computer 
vision. The capacity of artificial neural networks 
to capture nonlinear relationships in a relatively 
efficient manner has motivated Chien and Tsai 
[8] to apply these networks for developing tool 
wear prediction models. But in such models, the 
nonlinear relationship between sensor readings 
and tool wear embedded in a neural network 
remains hidden and inaccessible to the user [9]. In 
this research we attempt to solve this situation by 

using the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) to predict the flank wear of the tool in 
end-milling process. This model offers an ability 
to estimate tool wear as its neural network based 
counterpart but provides an additional level of 
transparency that neural networks fails to provide. 
Then a neural network is used as a decision 
making system to predict the condition of the 
tool. In this study, the cutting forces are used as an 
indicator of the tool flank wear variation. 

1 MONITORING SYSTEM COST AND 
SENSORS JUSTIFICATION

The ability of a TCM system relies on 
two basic elements: first, the number and type 
of sensors used and second, the associated signal 
processing and simplification methods utilised 
to extract the necessary important information 
from machining signals [3]. The first element 
involves expensive hardware which influences the 
cost of the system, whereas the second element 
affects the efficiency and the speed of the system. 
The main issue here is to design a condition 
monitoring system with high efficiency, short 
development time, and with a reduced number 
of sensors. This basically includes a selection of 
sensors and associated signal processing methods 
which provide the minimum classification error of 
process faults.

Most commonly used, in TCM systems, 
are sensors measuring cutting force components 
or quantities related to cutting force (power, 
torque, distance/displacement and strain). They 
are relatively easy to install in existing or new 
machines, and do not influence machine integrity 
and stiffness. Piezoelectric force sensors are well 
adjusted to harsh machine tool environment. 

Monitoring systems developed in 
laboratories, are often multisensor systems 
embodying complex AI-based strategies to 
integrate information, extract features and 
make more reliable decisions on the state of 
the tool. In commercially available systems, 
the one sensor–one tool approach dominates. 
Multisensor here means providing the best sensor 
for each application. Only one manufacturer 
“wear estimator” uses more than one signal for 
monitoring the wear of one tool (exclusively for 
turning).
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tool state. If the tool condition is good, the peak 
measurement of each tooth’s force should be 
roughly the same during one revolution of the 
cutter. If a tooth is broken, it generates a smaller 
peak force because it carries a smaller chip load. 
As a result, the tooth that follows a broken tooth 
generates a higher peak force as it extracts the chip 
that the broken tool could not. One main force 
principle can be used to detect tool condition: 
Maximum peak force in each revolution should 
differ between good and broken tools [10]. 
Maximum peak force of a broken tool must be 
larger than that of a good tool.

Fig. 1. Cutting force signal of a good and 
damaged cutter (cutter diameter = 16 mm)

Fig. 1 illustrates the diagram of undamaged 
and broken tools. 

Applying these principles, an in-process 
tool breakage monitoring system was developed 
for end milling operations. The cutting forces 
and machining parameters were selected as input 
factors. 

3 METHODOLOGY AND SYSTEM 
COMPONENTS

The proposed approach consists of two 
main steps: First, an ANFIS model of tool wear 
is developed from a set of data obtained during 
actual machining tests performed on a Heller 
milling machine using a Kistler force sensor. 
The trained ANFIS model of tool wear is then 
subsequently merged with a neural network for 
estimating tool wear condition (fresh, worn). Fig. 
2 shows the basic architecture of the proposed 
system. 

The goal of developing the TCM is not 
only to produce a reliable monitoring system, but 
also to keep the system as cheap as possible. In 
order to do this, the utilisation of sensors in the 
system should be kept relatively low (i.e. there 
is no need to maximise the number of sensory 
characteristic features used from an implemented 
sensor). The sensor utilisation factor (SUF) [3] 
is a function of: the number of sensory features 
used from the sensor (NSF), the total number 
of sensory features in the system (TNSF) and 
the number of signals which can be physically 
produced by the sensor (NS). It is found out that 
SUF factor is very useful in reducing the cost 
of the TCM by removing sensors which do not 
produce sufficient useful signals. The cost analysis 
is calculated using the variable cost of the system 
(costs of sensors). The fixed costs such as the PC, 
data acquisition card, and the software cost should 
be added to the nominal variable cost to acquire 
the total cost of the system. If a cheaper TCM 
with good performance is needed it is essential 
to make a compromise between cost and systems 
performance.

From our calculation it is obvious that the 
force dynamometer is the most utilised sensor. It 
has been found that the proposed sensor system 
has the lowest cost of 4,612 € but has an error 
of 20.21%. On the other hand the multisensor 
approach has an error of 9.01% but it has a high 
nominal cost of 23,524 €. Comparing both systems 
it can be seen that an improvement of 11.20% has 
caused an increase in the system cost of 18,912 €. 
Therefore, it is essential to compromise between 
cost and performance of the systems if a cheaper 
system with good performance is needed. The 
new system is 18,912 € cheaper than the cheapest 
multisensor monitoring approach.

2 PROBLEM DEFINITION

End-milling is interrupted cutting process, 
which means that each cutting tooth generates 
a cyclic cutting force ranging from negative to 
maximum force, and back to negative. This force 
is graphed as a series of peaks (Fig. 1). 

Cutting parameters and tool conditions 
affect the magnitude of resultant force. Therefore, 
the resultant force FR, generated from X and Y 
directions, is used in this experiment for detecting 
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This is a typical TCM system where the 
sensor is used to collect the signals during milling 
through a data acquisition module. The signal 
processing module analyses the machining signals 
for extracting features sensitive to tool wear. The 
features together with the machining parameters 
constitute the data set to be used as input to the 
decision system and estimator. The main purpose 
of the decision system and estimator is to map the 
input features to the current state of tool .i.e. the 
amount of tool wear. 

A multi-layer perceptron neural network 
with backpropagation algorithm is used in TCM 
as a decision system due to its ability of learning, 
noise suppression and parallel processing. A 
random pattern classifier module divides the 
data into training and testing set. The training 
set is used for learning the purpose while the 
testing set is used for testing the decision system 
performance.

3.1 ANFIS Based Tool Wear Predictor

The relationship between the machining 
parameters/sensor signals and flank wear is 
first captured via a network and is subsequently 
reflected in linguistic form with the help of a fuzzy 
logic based algorithm. The estimation design 
process consists of a linguistic rule construction, 
partition of fuzzy subsets and the definition of 
the membership function shapes. It uses training 
examples as input and constructs the fuzzy if-then 
rules and the membership functions (MF) of the 

fuzzy sets involved in these rules as output. This 
process is called a training phase. 

In this model, we adopted two different 
types of membership functions for analysis in 
ANFIS training and compared their differences 
regarding the accuracy rate of the flank wear 
prediction. After training the estimator, its 
performance was tested under various cutting 
conditions. The performance of this method turned 
out to be satisfactory for evaluating flank wear, 
within a 5% mean percentage error. Generally, 
a worn tool is not a catastrophic event and 
when detected, it is usually possible to continue 
machining to the end of the current operation.

3.1.1 ANFIS Arhitecture and Learning Method

Using a given input/output data set, the 
ANFIS method constructs a fuzzy inference system 
(FIS) whose membership function parameters are 
adjusted using the backpropagation algorithm. 
This allows fuzzy systems to learn from the data 
they are modeling. FIS Structure is a network-
type structure, which maps inputs through input 
membership functions and associated parameters, 
and then through output membership functions 
and associated parameters to outputs. 

Fig. 3 shows the fuzzy rule architecture of 
ANFIS when the triangular membership function 
is adopted. The architectures shown in Fig. 3 
consist of 31 fuzzy rules.

ANFIS applies Hybrid Learning method 
for updating parameters. For premise parameters 

Fig. 2. Architecture of tool condition monitoring system
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that define membership functions, ANFIS 
employs gradient descent to fine-tune them. For 
consequent parameters that define the coefficients 
of each output equations, ANFIS uses the least-
squares method to identify them. 

This approach is thus called Hybrid 
Learning.

Fig. 3. Components of TCM (in-process ANFIS 
predictor and ANN decision system)

3.1.2 ANFIS Modeling Algorithm

Modeling process starts by selecting a data 
set (input-output data pairs) and dividing it into 
training and testing data sets. The training data 
set is used to find the initial premise parameters 
for the membership functions by equally spacing 
each of the membership functions. A threshold 
value for the error between the actual and desired 
output is determined. The consequent parameters 
are found using the least-squares method. Then an 
error for each data pair is found. If this error is 
larger than the threshold value, update the premise 
parameters using the gradient decent method 

as the following (Qnext=Qnov+ηd, where Q is a 
parameter that minimizes the error, η the learning 
rate, and d is a direction vector). The process is 
terminated when the error becomes less than the 
threshold value. Then the testing data set is used 
to compare the model with actual system. 

During training in ANFIS, 150 sets of 
experimental data were used to conduct 500 
cycles of learning.

The findings are analyzed and discussed in 
the fourth chapter.

3.2 Neural Decision System Development

A neural decision-making system was 
developed in Matlab software. The neural network 
used to predict the cutting tool condition is shown 
in Fig. 3. It has tool-breakage detection capability 
and is based on pattern recognition. The neural 
network stores a number of reference force 
patterns that are characteristic of tool breakage. 
When a tool tooth breaks, cutting force suddenly 
rises for a while, and then drops to zero. The 
system continuously monitors the signal for the 
break pattern. If a pattern is identified, a break is 
declared within 10 ms of the breakage. 

Four steps are required to develop a neural 
decision system. In step one, network architecture 
and prediction factors were selected. The 
network has two hidden layers and uses a set of 
5 normalized inputs for tool condition prediction: 
(1) cutting speed, (2) feed rate, (3) depths of cut, 
(4) forces, (5) tool wear.  Output layer consist 
of only two neurons: (1) normal and (2) broken/
worn. 

In step 2 the learning rate, momentum 
factor and the number of hidden layers/hidden 
neurons were defined. The number of hidden 
neurons was set at 12, the learning rate was set at 
1, and the momentum item was 0.4. The number 
of training/testing cycles was 1700.

In step 3 the data set was divided into 
training and testing set. 200 data points were used 
in this research. Good tools collected half of these 
and broken tools collected the rest. All the data 
were scaled. 

In step 4 the training and testing faze is 
accomplished. During the training stage, the 
neural network adjusted its internal weight values 
to give correct output results according to the input 
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features. Finally, in the last step the trained neural 
network was used to predict tool conditions. 

4 EXPERIMENTAL DESIGN

Monitoring experiments were performed 
on a HELLER machine tool (type BEA1) with 
FAGOR CNC controller. It involved an end-
milling process of steel parts using two end-mill 
cutters [11]: normal and on tooth broken. The 
cutting tool used in the machining test was a solid 
end-milling cutter (R216.24-16050 IAK32P) with 
four cutting edges. The tool diameter was 16 mm. 
Its helix angle was 10°.  The corner radius of the 
cutter was 4 mm. The insert had an outer coated 
layer of TiN featuring low friction and welding 
resistance. 

The workpiece material used in the 
machining test was Ck 45 and Ck 45 (XM) with 
improved machining properties. Workpieces were 
cut off from a warm-rolled bar. The dimension 
of the workpiece was 200 × 70 × 70 mm. The 
workpiece was mounted in a 3 component 
piezoelectric dynamometer (Kistler 9255) 
to monitor the cutting forces in the X and Y 
directions. Force dynamometer was mounted on 
the machining table and connected to a 3-channel 
charge amplifier. The signals were monitored 
using a fast data acquisition card (National 
Instruments PC-MIO-16E-4) and software written 
with The National Instruments CVI programming 
package. 

The force measurements were sampled 
at 15000 points/second, then digitally low-

pass filtered at a cut-off frequency of 400 Hz 
to eliminate the high-frequency components 
resulting from the machine tool dynamics. 

The measured force signals were digitized 
using an A/D converting board at 1 kHz sampling 
rate for each channel. The experimental set-up is 
shown in Fig. 2. 

The flank wear was observed during the 
experiments. The cutting tool flank wear was 
discontinuously measured with a tool microscope 
of 0.01 mm accuracy. The experiments were 
carried out for all combinations of the chosen 
cutting parameters and tool wear.

In the experiments the cutting parameters 
were set as [12]: four level of feed rate (f1 = 0.05, 
f2 = 0.25, f3 = 0.35, f4 = 0.45 mm/tooth),  four level 
of spindle speed (n1 = 200, n2 = 360, n3 = 340 and 
n4 = 480 min-1) and three levels of radial/axial 
depth of cut (RD1 = 1d, RD2 = 0.5d, RD3 = 0.25d; 
AD1 = 2, AD2 =4, AD3 = 8 mm; d = 16 mm cutting 
parameter). Parameters such as tool diameter, rake 
angle, etc. are kept constant. 

The sampling frequency was 400 Hz 
and total numbers of 83 data points were used 
for signal processing at the spindle speed of  
360 min-1, and 45 data points at 580 min-1. The 
number of data points is the total sampled during 
one revolution of a spindle with a 0.0025 s 
sampling interval.

5 RESULTS AND DISCUSSION

In-process sensing technique in connection 
with decision-making system is essential for 

Table 1. Partial results of TCM testing (ANFIS wear prediction and ANN tool condition estimation)

Tool 
conditions

Input factors ANN outputs
ANN 

Prediction

ANFIS 
Prediction 
WB [mm]

F 
[N]

N 
[min-1]

F 
[mm/rev]

AD 
[mm]

RD 
[mm] ANN1 ANN2

Normal 427.2 440 0.17 1.2 8 0.9 0.1 Normal 0.11
Broken 777.9 440 0.17 1.2 8 0.02 0.98 Broken 0.24
Normal 433.9 440 0.13 1.4 8 0.3 0.7 Broken 0.17
Broken 729.6 440 0.13 1.4 8 0 1 Broken 0.26
Normal 650.5 440 0.20 1.4 8 0.89 0.11 Normal 0.13
Broken 925.7 440 0.20 1.4 8 0 1 Broken 0.27
Normal 614.4 480 0.20 1.4 8 0.88 0.12 Normal 0.15
Broken 751.9 480 0.20 1.4 8 0.03 0.97 Broken 0.23
Normal 904.3 360 0.22 1.6 8 0.89 0.11 Normal 0.14
Broken 991.9 360 0.22 1.6 8 0 1 Broken 0.31
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the successful operation of TCM. The neural 
network was capable of detecting tool conditions 
accurately in real time. The accuracy of training 
data was 98.1%, and the accuracy of testing data 
was 94.9%. The results of neural network testing 
are shown in Table 1. The output node value of a 
back-propagation neural network was mapped as 
0.01 for the normal cutting state, and 0.99 for the 
tool breakage. 

When the neural network outputs are over 
0.9 (tool breakage), it sends the signal “Tool 
broken” to the PC. When both the neural network 
outputs are below 0.9, it sends the signal “Tool 
condition Normal”.

Fig. 4. Thrust force of a) normal and b) broken 
tool in real time monitoring, c) indicative tool 

breakage force pattern with limits

Figs. 4a and b represent the cutting force 
signals for the normal and broken cutter. Cutting 
conditions used in the experiments are: spindle 
speeds of 360 min-1, and feed rates of 187  
mm/min. Neural network takes 0.1575 s to 
accumulate 83 data points in one buffer using the 

sampling time of 0.0025 s under the cutter rotation 
of 360 min-1. Total processing time is 0.143 s for 
processing data points in a buffer, identifying the 
states in neural networks and sending/presenting a 
result to a computer.

The developed decision system 
incorporates simple fixed limits for tool breakage 
detection. Limits are: L1 (collision), L2 (tool 
fracture), L3 (worn tool) and L4 (missing tool 
limit).

In the future it will be appropriate to 
replace fixed limits with self-adjusting limits. 
The detection system demonstrated a very short 
response-time to tool conditions. Since tool 
conditions could be monitored in real-time, the 
worn tool could be replaced immediately to 
prevent damage to the product and machine. In 
this research ANFIS system is used to predict 
the flank wear of the cutter in an end-milling 
process. A total of 150 sets of data were selected 
from the total of 300 sets obtained in the end-
milling experiments for the purpose of training 
in ANFIS. The other 150 sets were then used for 
testing after the training was completed to verify 
the accuracy of the predicted values of flank 
wear. The experimental results indicate that the 
proposed ANFIS model has a high accuracy for 
estimating flank wear with small computational 
time. The following conclusions can be drawn 
from the analysis: 
1. The flank wear could efficiently be predicted 

by using cutting conditions and forces as the 
fuzzy input variables in ANFIS system.

2. The error of the tool wear values predicted 
by ANFIS with the triangular membership 
function is only 4%, reaching accuracy 
as high as 94%. When the trapezoidal 
membership function is adopted the average 
error is around 5.4%, with an accuracy of 
92%. 

3. The ANFIS system could predict flank wear 
for different cutting conditions with an 
average percentage deviation of 4.72%, or an 
accuracy of 93.64%.

4. The predicted flank wear was found to 
be significantly sensitive to the measured 
maximum cutting forces (radial), especially 
the thrust cutting component (Fx).

Fig. 5 shows the scatter diagram of the 
predicted values and measurement values of 
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the flank wear of 150 sets of testing data when 
triangular membership functions are used in 
ANFIS.

Fig. 5.  Scatter diagram of measured WB and 
predicted for the testing data using the triangular 

membership function

Fig. 6. Comparison of measured and predicted   
flank wear (v=180 m/min, AD=2 mm,  

f = 0.1 mm/tooth)

It shows that the predicted values of flank 
wear between 0.15 and 0.4 all follow the 45° line 
very closely. In other words, the predicted values 
are not far from the experimental measurement 
values. Fig. 6 compares the predicted values and 
measurement values after training by ANFIS with 
triangular membership functions.

6 CONCLUSION

We developed a system for monitoring tool 
condition in real time and obtained the following 
results through verification experiments: (1) 
The proposed monitoring system of cutting 
process may be very useful because of its parallel 

processing capability; (2) It enables the monitoring 
of the cutting process with high reliability; ANFIS 
component can estimate flank wear progress very 
quickly and accurately, once the maximum cutting 
forces are known. A monitoring system using 
a neural network is able to classify the various 
cutting states such as tool breakage, and tool wear. 
In the future different decision making tools, such 
as fuzzy logic should be applied to see which one 
could obtain a smaller error of detection. 
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