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Finite Mixture Estimation Algorithm  
for Arbitrary Function Approximation
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The paper considers a new prospect of the arbitrary continuous function approximation from a limited set of input data with the REBMIX 
algorithm, developed for the finite mixture density estimation. Since the REBMIX estimates the unknown parameters with the unique semi-
parametric method, it is assumed that it could be used also for the estimation of the unknown parameters in the fields that are not directly 
connected to density function estimation.

For the approximation of the arbitrary continuous function with the REBMIX algorithm, the required procedure is developed in the 
paper. The results gained by the proposed procedure and by the radial basis function network for three different datasets are compared by 
calculating the RMSE values between estimated and test output values. The adequacy of the proposed procedure is estimated by using both 
univariate and bivariate datasets. It can be concluded that with the developed procedure, the REBMIX algorithm can be applied successfully 
for the continuous function approximation.
Keywords: REBMIX algorithm, function approximations, finite mixtures, RBF networks, parameter estimation

0 INTRODUCTION

Since the beginning of neural networks research [1], 
the field of neural networks has been established 
as an interdisciplinary subject with deep roots in 
neurosciences, psychology, mathematics, the physical 
sciences and engineering [2] to [7]. Radial Basis 
Function (RBF) networks emerged as a variant of 
artificial neural networks in the late 1980’s. However, 
their roots reach further back to much older pattern 
recognition techniques, such as potential functions, 
clustering, functional approximation, spline 
interpolation and mixture models [8]. Until now the 
RBF networks have been successfully applied to a 
large diversity of applications including interpolation 
[9], classification [10], speech recognition [11], image 
restoration [12], 3-D object modelling [13], motion 
estimation and moving object segmentation [14], 
etc. Their excellent approximation capabilities have 
been studied by both, Park and Sandberg and Poggio 
and Girosi [15] and [16]. Because of their excellent 
approximation properties and simple structure, RBF 
networks have been chosen in the research to compare 
the results of the arbitrary continuous function 
approximation.

REBMIX, which is the acronym for the Rough 
and Enhanced component parameter estimation 
that is followed by the Bayesian classification of 
the remaining observations for the finite MIXture 
estimation, is a numerical procedure that arises from 
an engineering viewpoint on the mixture estimation 
problem. The development of the REBMIX algorithm 
began in the late 1990’s with the work of Nagode and 

Fajdiga [17]. Since then, it has evolved gradually over 
the years [18] to [21] and the latest improvements 
in modelling both univariate and multivariate 
finite mixtures can be found in [22] and [23] and in 
modelling load spectra growth in [24]. Until now it has 
been noted also in other research works concerning 
fatigue analysis [25] to [28], modelling the expected 
service usage [29] and [30], etc.

The paper presents an alternative perspective 
on the arbitrary continuous function approximation. 
Although the REBMIX algorithm has been originally 
developed for the finite mixture estimation problems, 
its unique semi-parametric method for the estimation 
of the unknown parameters indicates that it could also 
be used for the parameters estimations on the fields 
that are not directly connected with the probability 
density function. Unknown number of components 
and their parameters are estimated on the basis of 
the calculated empirical densities from the observed 
dataset. Calculated empirical densities thus represent 
the desired output values for a certain region of the 
input space, just like the arbitrary measured data does. 
The resemblance between the empirical densities and 
the output values of the arbitrary measured signal 
implies that with the proper procedure, REBMIX 
can be used for the approximation of the arbitrary 
continuous function. The next logical step forward is 
thus to extend the REBMIX on the field of arbitrary 
continuous functions approximation so that all of its 
properties, which proved already at the estimation 
of the finite mixture densities, are preserved. The 
adequacy of the extended REBMIX is appraised 
according to the results gained by the RBF network.
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The paper is structured as follows. In Section 
1 the required definitions are cited. In Section 2 
the results of the univariate and bivariate function 
estimations with the proposed procedure and RBF 
network are presented and compared. Finally, in 
Section 3 the conclusions are listed and the adequacy 
of the proposed procedure is discussed.

1 BASIC DEFINITIONS

1.1 Radial Basis Function Network

The radial basis function (RBF) network is based on 
the simple intuitive idea that an arbitrary function y(x) 
can be approximated as the linear superposition of a 
set of localized basis functions ϕj(x) [3]. RBF’s are 
embedded in a three layer neural network shown in 
Fig. 1. The first layer, called the input layer is made 
of source nodes (sensory units) that represent the 
components of the input vector. The second layer, the 
only hidden layer in the network, consists of hidden 
units, which implement radial activated functions and 
perform a nonlinear transformation from the input 
space to the hidden space. The third layer, called the 
output layer is linear and contains units that represent 
a weighted sum of hidden unit outputs. Units in the 
output layer supply the response of the network to 
the activation pattern applied to the input layer and 
represent the components of the output vector [4].

Fig. 1. Three layer neural network

Origins of the RBF networks lie in techniques 
used for the exact interpolation between data points 
in high dimensional spaces. In applications of 

neural networks, a general interest is not an exact 
interpolation since it can lead to particularly poor 
results when the trained network is presented with 
new data. Generally, a smooth approximation [31], 
which can be achieved by using fewer basis functions 
m than data points n and by minimizing a sum-of-
squares error (SSE) function, can lead to much better 
results [2].

When m < n, the RBF neural network corresponds 
to a set of functions given by [2] and [3]:

 y m wk kj j j
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Here wkj represents the weight of the jth basis 
function output which contributes to the kth network 
output yk and φ j j( )x θθ  represents the activation of 
hidden unit j when the network is presented with 
d-dimensional input vector x, see Fig. 1. A bias for the 
output units is included in Eq. (1) as an extra “basis 
function” ϕ0 whose activation is fixed to be ϕ0 = 1. For 
most applications the basis functions are chosen to be 
Gaussian:
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where aj controls the height of the peak, vector μj 
represents the center and the parameter σj represents 
the width of the jth basis function. Note that each 
basis function can have its own width parameter σj 
[2] and [3]. To compare the estimated values with the 
target values, an error function has to be used. The 
most commonly used form of the error function for 
regression problems is the SSE function [2] and [32], 
given by:
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where xq denotes the qth d-dimensional input training 
vector and w the output layer weight vector for current 
basis functions parameters Θ, tk

q  is the kth target 
value in qth c-dimensional target vector tq. Bishop 
[2] suggests assessing the performance of the trained 
network using different error function from that 
used to train them. If the SSE function is used in the 
network training phase, the root-mean-square error 
(RMSE) function should be used in network testing. 
The RMSE function is given by:



Strojniški vestnik - Journal of Mechanical Engineering 58(2012)2, 115-124

117Finite Mixture Estimation Algorithm for Arbitrary Function Approximation 

 E
y m t

t t

RMS
k
q q

k
q

k

c

q

n

k
q

k

c

q

n=
( ) −{ }

−{ }
==

==

∑∑

∑∑

x w* , , *

* *

*

*

ΘΘ
2

11

2

11

,,  (4)

where xq* denotes the qth input test vector and n*  is 
the number of input test vectors, w and Θ denote the 
weight vector and the basis functions parameters of 
the trained network respectively and tk

q * is the kth 
target test value in the qth c-dimensional target test 
vector tq*. In Eq. (4), the t* stands for the average of 
the target test values:
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Training of the RBF networks takes place in 
two successive stages. First, the centers and the basis 
function widths are determined. In the second stage 
the linear output layer weights are determined. For 
the determination of the basis functions parameters 
there exists a variety of procedures [2] to [4] and [33]. 
Since the scope of the paper is not searching for the 
optimal learning procedure of the RBF networks but 
assessing the suitability of the REBMIX algorithm for 
arbitrary function approximation, only simple and fast 
procedures for the determination of basis functions 
centers and width are selected in the paper, which 
in spite of their simplicity assure adequate network 
training.

The first and simplest approach to determine the 
basis functions centers, denoted by C1, is to set them 
on the highest output values in the training dataset 
[3]. This approach usually results in a large number 
of basis functions to achieve satisfactory results. The 
second approach for center determination, denoted 
by C2, is to select them randomly from the training 
dataset [3]. In this very commonly used learning 
technique the estimated function is much smoother 
and usually better approximates the training data with 
a fewer number of basis functions. The disadvantage 
of this approach is the reproduction of network 
training.

The widths of Gaussian basis functions are also 
determined by using two simple approaches. In the 
first approach, denoted by S1, the basis function 
widths are set to be equal to the average Euclidean 
distance between the adjacent basis function centers, 
which ensures that the basis functions overlap to 
some degree and hence give a relatively smooth 
approximation [2] and [3]. In the second approach, 
denoted by S2, the widths are no longer equal for all 

basis functions, but are determined on the basis of the 
average Euclidean distance to the p-nearest centers [2] 
and [3].

The output layer weights are calculated in a way 
to minimize the SSE function with respect to these 
weights. With the insertion of Eq. (1) into Eq. (3) and 
the differentiation of the SEE function it is possible 
to rewrite the equation in matrix notation in the 
following form [2] and [3]:

 ΦTΦWT = ΦTT, (6)

where ( )T qk k
qt=  and ( ) ( )ΦΦ θθqj j

q
j= φ x . The formal 

solution for the weights is given by:

 WT = Φ†T, (7)

where the notation Φ† denotes the pseudo-inverse of 
Φ given by:
 Φ† ≡ (ΦTΦ)-1ΦT. (8)

1.2 REBMIX Algorithm for the Finite Mixture Estimation

Let x1, ..., xn be an observed d-dimensional dataset 
of size n of continuous vector observations xq. Each 
observation is assumed to follow predictive mixture 
density [34]:
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with conditionally independent component densities:
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i
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indexed by vector parameter θj. The objective of the 
analysis is the inference about the unknowns: the number 
m of components, component weights wj  summing to 1 
and component parameters θj.

Since the description of the REBMIX algorithm 
estimation procedure and proof of its convergence is 
extensive and published in [17] to [24], further details 
will not be presented here. For interested readers 
REBMIX software is available at http://CRAN.R-
project.org/package=rebmix.

1.3 Arbitrary Function Approximation with the REBMIX 
Algorithm

There are two major differences when estimating 
the arbitrary function from a set of data points with 
REBMIX algorithm and RBF network.
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The first difference is related to the 
component weights. In the REBMIX algorithm 
the weights are limited with two conditions,  
wj > 0 for (j = 1, ..., m) and wjj

m
=

=∑ 1
1

, while in 
the RBF network approach there are no limitations 
concerning the weights for regression problems. In 
fact, output layer weights can also be negative. This 
property can be very useful for better estimation of the 
function valleys and for observations with negative 
output values. The observations with negative output 
values can be processed with the REBMIX algorithm 
only if they are previously properly treated so that all 
the observed values have positive signs.

The second major difference is related to the 
function estimation. When using the RBF network, 
the arbitrary function can be estimated directly from 
the set of observed data and therefore it usually does 
not integrate to unity. With the REBMIX algorithm, 
the arbitrary function can be approximated indirectly 
from the estimation of the finite mixture density, 
which integrates to unity, f m d( , , )x w xΘΘ∫ =1 . 
Therefore it is necessary to properly transform the 
measured training dataset and postprocess estimated 
finite mixture density f m( , , )x w ΘΘ  in such a way 
that it can be compared to the observed output values.

The procedure for the preparation of the 
observations and postprocessing of estimated function 
f m( , , )x w ΘΘ  is depicted in Fig. 2 relying on the steps 

to follow:
1. All the data are either raised if tk min < 0 or 

lowered for the minimal output value:

 t t t q nk
q

k
q
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 as it turned out that in such cases the REBMIX 
algorithm estimates the finite mixture density 
function much better. To improve the accuracy of 
the estimated function, tk

q '  may be multiplied by 
a factor 10, 100, etc. and rounded to the nearest 
integer. 

2. The volume under the shifted data is calculated 
by:
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 where hi
q  is the length of the hypersquare side 

for the qth data in the ith dimension.
3. The measured training dataset is transformed in 

such a way that REBMIX preprocessing methods 
can be used. With this purpose each d-dimensional 
input data vector xq is copied tk

q '  times so that 

the total number of vector observations used as 

input data for the finite mixture estimation equals 

tk
q

q

n

'
=
∑

1
.

4. Finite mixture estimation with the REBMIX 
algorithm is performed.

5. The postprocessing of the estimated finite 
mixture density function is carried out in such a 
way that the continuous function, representing 
input-output mapping of the original dataset is 
gained. Estimated finite mixture density function 
f m( , , )x w ΘΘ   is multiplied by the volume (12) 

and the transformation function is gained:

 y m f m Vk '( , , ) ( , , ) .x w x wΘΘ ΘΘ=  (13)

 In the case of a univariate dataset, the volume 
reduces to the area under the observed data. 
The estimated function y mk '( , , )x w ΘΘ  can be 
compared to the true one and to the function 
estimated by the RBF network.

Fig. 2. Arbitrary function estimation with REBMIX



Strojniški vestnik - Journal of Mechanical Engineering 58(2012)2, 115-124

119Finite Mixture Estimation Algorithm for Arbitrary Function Approximation 

6. To compare the estimated values to the actual 
measured output ones, it is necessary to 
shift the estimated function y mk '( , , )x w ΘΘ   
y mk '( , , )x w ΘΘ for the minimal output value:

 y m y m tk k k( , , ) ( , , ) .'
minx w x wΘΘ ΘΘ= +  (14)

The correctness of the proposed procedure for 
the function approximation is proved by the following 
examples.

2 EXAMPLES

2.1 Vertical Wheel Forces Dataset

The univariate dataset used in the research derives 
from measurements of vertical wheel forces that 
occur when driving the vehicle on a test track. The 
entire signal, measured with 250 Hz sample rate, 
is shown in Fig. 3. From all measured data only 
a section indicated with a square containing 1070 
successive data is selected for further treatment 
due to the faster estimation process. Approximately 
30% from these data are randomly selected to form 
the test dataset that is used only for the evaluation 
of the estimated functions and is not present in the 
training phase when the number of components, their 
parameters and weights are estimated. The test dataset 
thus consists of n* = 320 data and the remaining  
n = 750 data form the training dataset.

When the RBF network is applied for the 
estimation of the function parameters and weights, 
no special preparation of the training dataset is 
necessary. Nevertheless, all the data used in the 
research are lowered for tk min to reduce the estimation 
error especially on the edges of the observed 
function. For all combinations of the selected 
learning procedures C1-S1, C2-S1, C1-S2 and C2-
S2 and for each m n∈{ }1,..., , the basis functions 
parameters and weights are determined. Each 

yk’ (x | m, w, Θ) is then raised by tk min, the trained 
RBF network yk (x | m, w, Θ) is subjected to the test 
dataset and the RMSE is calculated. The network 
training is stopped if RMSE ≤ RMSE lim, where the 
RMSElim ∈{ }0.5, 0.3, 0.2, 0.1 and min   or m = n.

Fig. 3. Measured vertical wheel forces

The results are shown in Table 1. In most cases 
the best learning combination turns out to be C2-S2. 
It results in the smallest number of basis functions and 
the lowest RMSE, while C1-S1 stands for the worst 
learning combination possible.

On the other hand, when the REBMIX is applied, 
all training data are lowered by tk min and the input 
training data points xq are copied tq' times. Although the 
REBMIX allows the selection of different preprocessing, 
the histogram and Parzen window are only suitable. The 
former is chosen in the article. For the finite mixture 
density, the normal parametric family is chosen. To 
determine optimal number of components m, parameters 
Θ and weights w, finite mixture estimation is carried out 
for s∈{ }10 750,..., .

Thus all possible arrangements of observations 
are captured and the optimal number of bins is obtained 
according to both, the information criterion and the 
positive relative deviation D. Estimations are carried out 
for all combinations of the available information criteria 

Table 1. The results of function estimation for vertical wheel forces dataset with the RBF network; the - indicates that network training is 
stopped before the limiting RMSE value is reached

RMSE
limit

C1-S1 C2-S1 C1-S2 C2-S2
m RMSE m RMSE m p RMSE m p RMSE

0.5 598 0.499 12 0.486 123 106 0.484 12 2 0.350
0.3 636 0.293 14 0.294 524 3 0.282 15 6 0.280
0.2 - - 19 0.182 608 2 0.183 19 2 0.131
0.1 - - 25 0.083 - - - 22 3 0.082
min 732 0.217 112 0.029 691 3 0.117 217 4 0.019

equal m 13 2.088 13 0.666 13 10 0.732 13 2 0.347
similar RMSE 686 0.240 16 0.220 598 2 0.218 16 4 0.224
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and six different D values. The estimated finite mixtures 
are postprocessed according to Eqs. (13) and (14) and the 
corresponding RMSE values are calculated. The calculated 
RMSE values are than used in the continuation for the 
performance comparison of the proposed procedure with 
the RBF network.

The results are shown in Table 2. The optimal 
number of components increases with the decrease of 
D and stops to increase if D < 0.0005. If D < 0.001, 
the optimal number of components increases rapidly 
while there is only a small decrease of RMSE. The 
mixture of 13 components is thus supposed to be the 
optimal one.

Table 2. The results of function estimation for vertical wheel forces 
dataset with the REBMIX

D m s information 
criterion RMSE

0.025 5 61 MDL5 0.522
0.01 7 75 AIC 0.428

0.005 12 125 AIC 0.329
0.001 13 151 MDL2 0.240

0.0005 28 116 AIC 0.211
0.0001 28 116 AIC 0.211

It can be noted that the RBF network requires 16 
basis functions for similar RMSE as the REBMIX (see 
the last row in Table 1). The corresponding functions 
are shown in Fig. 4. Both, the RBF network and 
REBMIX represent the middle section well, while 
larger deviations appear at the edges.

2.1 Two-Dimensional Gaussian Dataset

The bivariate dataset, derived from a mixture of four 
Gaussian functions Bors and Pitas [33], is studied 
next. From a mixture of four two-dimensional 
(2D) Gaussian functions with the following vector 
parameters: 
θ1 = [a1 = 5, μ11 = 5, μ21 = 15, σ11 = 2, σ21 = 2],
θ2 = [a2 = 5, μ12 = 5, μ22 = 15, σ12 = 5, σ22 = 2],
θ3 = [a3 = 5, μ13 = 5, μ23 = 6, σ13 = 3, σ23 = 5] and
θ4 = [a4 = 5, μ14 = 5, μ24 = 6, σ14 = 4, σ24 = 2]
the 441 data yq are generated for x1 0 20∈{ },...,   and 
x2 0 20∈{ },...,  among which n* = 132  randomly 
selected data form the test dataset and the residual 
n = 309 data form the training dataset. In addition to 
the noise free bivariate dataset, the random Gaussian 
noise with μ = 0 and σ = 0.6 is added to yq to simulate 
the noisy dataset, which is usually observed in the 
measurements.

When the RBF network is applied, no preparation 
of the training dataset is carried out as tk min = 0 . 
For network training each m n∈{ }1,...,  and all 
combinations of the selected learning procedures C1-
S1, C2-S1, C1-S2 and C2-S2 are used. Each trained 
RBF network yk (x | m, w, Θ) is subjected to the test 
dataset and the RMSE is calculated. The network 
training is stopped if RMSE ≤ RMSE lim , where  
RMSElim ∈{ }0.5, 0.3, 0.2, 0.1 and min  or m = n.

The results are shown in Tables 3 and 4 for noise 
free and noisy dataset, respectively. The smallest 
number of basis functions and the lowest RMSE are 
gained when the learning combinations C2-S1 and 
C2-S2 are applied. The worst learning combination 
turned out to be the C1-S1.

Fig. 4. Comparison between measured univariate signal and both estimated functions with similar RMSE value
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When the REBMIX is applied, all input training 
data vectors xq are only copied tq' times as tk min = 0. The 
histogram preprocessing and the normal parametric 
family are used. To determine optimal number of 
components m, parameters Θ and weights w, finite 
mixture estimation is carried out for s∈{ }1 30,...,  in 
both dimensions so that all possible arrangements of 
observations are captured. The estimations are carried 
out for all combinations of the available information 
criteria and six different D values. The estimated finite 
mixtures are postprocessed according to (13) and 
(14), where yk (x | m, w, Θ) = yk' (x | m, w, Θ) and the 
corresponding RMSE values are calculated.

The results are shown in Tables 5 and 6. For the 
noise free dataset the optimal number of components 
is the same for all D values, whereas for the noisy 
dataset the optimal number of components increases 
by one when D ≤ 0.01.

Table 5. The results of function estimation for the noise free 
bivariate dataset with the REBMIX

D m s information 
criterion RMSE

0.025 5 22 AIC 0.277
0.01 5 22 AIC 0.277

0.005 5 22 AIC 0.277
0.001 5 22 AIC 0.277

0.0005 5 22 AIC 0.277
0.0001 5 22 AIC 0.277

With the increase of the number of components 
the RMSE value also increases. This means that 
the estimated function with a larger number of 
components overfits the data and consequently results 
in a worse estimate. The mixture of 5 components is 
thus supposed to be the optimal one. Unlike for the 
univariate dataset, where optimal s n , for the 
presented bivariate datasets the optimal s > n in both 
dimensions. This indicates that some of the histogram 
bins stay empty after the observations are arranged.

Fig. 5. Comparison between simulated noise free bivariate function 
and both estimated functions with similar RMSE value

Table 3. The results of function estimation for the noise free bivariate dataset with the RBF network

RMSE 
limit

C1-S1 C2-S1 C1-S2 C2-S2
m RMSE m RMSE m p RMSE m p RMSE

0.5 31 0.487 8 0.383 7 1 0.451 8 1 0.484
0.3 65 0.296 14 0.288 16 4 0.295 13 2 0.265
0.2 76 0.194 16 0.197 19 4 0.183 19 9 0.196
0.1 118 0.100 20 0.077 35 6 0.089 23 3 0.071
min 260 1.26E-02 301 1.25E-02 120 20 5.22E-04 120 13 5.17E-04

equal m 5 0.792 5 0.615 5 4 0.738 5 2 0.534
similar RMSE 68 0.273 14 0.288 17 4 0.273 13 2 0.265

Table 4. The results of function estimation for the noisy bivariate dataset with the RBF network

RMSE
limit

C1-S1 C2-S1 C1-S2 C2-S2
m RMSE m RMSE m p RMSE m p RMSE

0.5 42 0.481 11 0.485 9 7 0.430 7 2 0.500
0.3 65 0.298 16 0.144 17 4 0.253 14 4 0.288
0.2 77 0.197 16 0.144 24 6 0.175 19 6 0.159
0.1 127 0.095 22 0.090 31 6 0.097 26 5 0.084
min 209 6.79E-02 50 3.41E-02 97 28 2.67E-02 55 4 2.54E-02

equal m 5 0.810 5 0.590 5 4 0.760 5 1 0.585
similar RMSE 66 0.265 19 0.261 17 4 0.253 17 4 0.255
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Fig. 6. Comparison between simulated noisy bivariate function and 
both estimated functions with similar RMSE value

The RBF network requires 13 basis functions in 
the case of noise free dataset and 17 basis functions 
in the case of noisy dataset for similar RMSE as the 
REBMIX (see the last row in Tables 3 and 4). The 
corresponding functions are shown in Figs. 5 and 6.

Table 6. The results of function estimation for the noisy bivariate 
dataset with the REBMIX

D m s information 
criterion RMSE

0.025 5 22 AIC 0.260
0.01 6 22 AIC 0.316

0.005 6 22 AIC 0.316
0.001 6 22 AIC3 0.316

0.0005 6 22 AIC3 0.316
0.0001 6 22 AIC3 0.316

In the case of the noise free dataset the function 
estimated by the REBMIX overestimates all four 
components on their peak values and slightly 
underestimates the simulated function in the valleys. If 
the analogy with the univariate function estimation is 
taken, it is expected that the REBMIX would estimate 
the underlying function even better if it was composed 
of a greater number of intermediate components. 
On the other hand, the function estimated by the 
RBF network underestimates the first component 
considerably and the second and fourth component 
slightly but estimates the valley between the second 
and the third component well. Similar results are 
also obtained in the case of the noisy dataset where 
the function estimated by the REBMIX again 
overestimates the peak values of all four components 
and slightly underestimates the valleys between them 

(see Fig. 6). The function estimated by RBF network 
represents the first three components very well and 
underestimates the fourth one.

3 CONCLUSION AND FUTURE WORK

In the article continuous functions are estimated 
with the REBMIX algorithm for the first time. Both 
univariate and bivariate datasets are used to evaluate 
its adequacy. The estimated functions are compared 
to the functions estimated by the elementary RBF 
network.

For the applied univariate and bivariate datasets 
it can be concluded that the functions estimated by the 
REBMIX using the proposed procedure approximate 
the actual functions well. Hence the assumption is 
derived that the REBMIX can be applied for the 
estimation of the univariate and bivariate continuous 
functions if the training dataset is transformed 
properly and the estimated finite mixture densities 
are postprocessed properly. Although the procedure 
requires the transformation of the training data 
and postprocessing of the estimated function, the 
estimation times are still very short since all the 
properties of the REBMIX are preserved.

The future development of the REBMIX will 
be focused on its connection to the RBF networks. 
Possibly, the REBMIX can be used to determine 
the centers of basis functions μj and widths σj in the 
first stage of the RBF network learning process. The 
determination of the final layer weights should remain 
unchanged. In this way the postprocessing of the 
estimated finite mixture density can be omitted since 
the estimated function would already approximate 
the actual observed function. The entire estimation 
process can also be simplified if the transformation of 
the training data was comprehended in the REBMIX 
preprocessing.

To assess the benefits of the connection between 
the REBMIX and the RBF neural network, further 
investigations are to be carried out. Future work 
will thus be focused on additional testing using also 
other parametric families and the Parzen window 
preprocessing. The tests will also have to be carried 
out for the function estimations from multivariate 
datasets and a larger number of data. Expectedly, by 
connecting these procedures the REBMIX will be 
used to solve other problems covered by the neural 
networks as well, such as classification problems, 
inverse problems, etc.
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