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0  INTRODUCTION

Production of tapered roller bearings is a sophisticated 
process influenced by several factors, such as 
worn table traverse mechanisms, inappropriate 
technological parameters, incorrect grinding wheels, 
vibrations due to the spindle mechanism, or dirty 
coolant. Investigation of the effects of the different 
manufacturing faults to the vibration generated is still 
an important and demanding task.

Research on various bearing defects by vibration 
analysis mostly focus on operational defects caused 
by wear and cracks. Patel et al. [1] used envelope 
methods to reveal local faults on the races of deep 
groove ball bearings. Kalman and H filters were 
applied by Khanam et al. [2] to measure bearing 
faults, especially in noisy condition with low signal-
to-noise ratios when it was difficult to identify the 
useful components of the vibration signal. Acoustic 
emission measurement is a powerful method to 

detect cracks inside the bearing material, which are 
the initial reasons of fatigue spallings. Al-Ghamd 
and Mba [3] applied this method combined with the 
traditional vibration analysis to determine the bearing 
outer race defect width directly from the raw signal. 
Elforjani and Mba [4] emphasized the effectiveness 
of acoustic emission methods in the case of slow-
speed bearings. Sawalhi and Randall [5] execute their 
research to determine the fault size of the bearings 
from the vibration signal by analysing the entry and 
exit impulses.

Because of their flexibility and computational 
efficiency, wavelets are perfect tools for fault feature 
extraction, singularity detection for signals, denoising, 
and extraction of the weak signals from the vibration 
signals. These applications were presented by 
Peng and Chu [6]. Discrete wavelet transform with 
Daubechies-4 (db04) mother wavelets to analyse 
the combination of different faults on the races of 
ball bearings were used by Prabhakar et al. [7]. The 
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Highlights
• A new method for diagnosis of manufacturing faults of tapered roller bearings has been developed.
• The geometrical size of the fault has been calculated from the vibration signature.
• Nine different wavelets have been compared as regards to their efficiency for fault diagnosis on the basis of Energy-to-

Shannon-Entropy ratio criteria to reveal the faults.
• A sensitive and accurate test rig has been developed with high-quality data acquisition system to obtain precise measurement 

data.
• Verification using an optical microscope and contact measurement showed a slight deviation from the measured values; the 

method could be applied in industrial applications.
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combination of envelope spectrum and wavelet 
transform for the extraction of defect problems in 
bearings were used by Shi et al. [8].

Nikolaou and Antoniadis [9] applied complex 
shifted Morlet wavelets to analyse vibration signals 
generated by rolling element bearings.

Qiu et al. [10] successfully used a wavelet 
filter-based weak signature detection method and its 
application for diagnosis of rolling element bearings.

Junsheng et al. [11] pointed out the effectiveness 
of impulse response wavelet to the fault diagnosis of 
rolling element bearings.

Symlet wavelets were used efficiently in the 
study of Kumar and Singh [12]. In their study, tapered 
roller bearings were analysed to determine the fault 
size on the outer ring.

Symlet wavelet is an effective tool for noise 
reduction in ECG signals because it can filter out the 
useful components of the complex signal from the 
noisy background [13]. Symlet-5 wavelet represents 
the entry and impact events as the roller hits the 
defects during operation of the bearing. A detailed 
study was presented about the decomposition of the 
vibration signals using discrete wavelet transform 
with Symlet-5 by Kumar et al. [14]. 

Analytical Wavelet Transform-(AWT) based 
acoustic emission techniques for identifying the inner 
race of the radial ball bearing were applied by Kumar 
et al. [15].

Yan and Gao [16] revealed localized structural 
defects and conducted experiments in their studies 
using multi-scale enveloping spectrogram for the 
vibration analysis of bearings.

Patil et al. [17] developed an analytical model and 
simulation to predict the effect of a localized defect on 
the ball bearing vibrations by considering the contact 
between the ball and the races as non-linear springs.

Optimal wavelet filtering and sparse code 
shrinkage were presented by He et al. [18]. To extract 
the impulsive features buried in the vibration signal, a 
hybrid method which combines a Morlet wavelet filter 
and sparse code shrinkage (SCS) was proposed. First, 
the wavelet filter was optimized using differential 
evolution (DE) to eliminate the interferential 
vibrations and obtain the fault characteristic signal. 
Then, to further enhance the impulsive features 
and suppress residual noise, SCS, which was a soft-
thresholding method based on maximum likelihood 
estimation (MLE), was applied to the filtered signal.

Simulations and signal processing techniques to 
track the spall size were used by Sawalhi and Randall 
[19].

Kumar and Singh [20] applied the discrete 
wavelet transform of the vibration signal to determine 
the outer race defect width measurement in tapered 
roller bearings, which was previously prepared using 
an electric discharging machine. 

Khanam et al. [21] estimated the fault size in the 
outer race of ball bearings using the discrete wavelet 
transform of the vibration signal.

Tóth and Tóth [22] and [23] revealed artificial 
faults of the inner rings of deep groove bearings by 
wavelet analysis. A realistic signal model of ball 
bearings with inner race fault was created to design a 
new wavelet to reveal the defect more efficiently from 
the vibration signature.

Beyond vibration analysis, there are other 
diagnosis methods, e.g. oil analysis, which could 
enhance the efficiency of methods [24].

Zhuang Li et al. applied wavelet transform 
with an artificial neural network for the diagnosis of 
gearboxes [25]. 

Machine-learning methods for the optimization 
of parameters such as support vector machines were 
used by Mankovits et al. [26]. 

Khanam et al. [27] presented a theoretical model 
for the force function as a bearing rolling element hits 
a spall-like defect on the inner race. The vibratory 
response was simulated with a fourth-order Runge 
Kutta method and analysed in both time and frequency 
domain. It offers a platform for monitoring the size 
defect.

Borghesani et al. [28] applied cepstrum pre-
whitening for diagnostics of rolling element bearings. 
Due to its moderate computational requirements, 
it was an appropriate tool for an automatic damage 
recognition algorithm. A comparison with the 
traditional pre-whitening techniques revealed that 
cepstrum pre-whitening was a more suitable and 
efficient tool for automatic fault detection.

Figlus and Stanczyk [29] presented a method of 
diagnosing damage to rolling bearings near toothed 
gears of processing lines. Vibration response was 
measured with a laser vibrometer. Discrete wavelet 
transform was successfully applied to detect damage.

Tabaszewski [30] researched the classification 
of defects of rolling bearings by k-NN classifier with 
regard to the proper selection of the observation place. 
Typical parameters, such as root mean square (r.m.s) 
and peak values of the vibration signal and the energy 
of acoustic emission pulses was found to be effective 
for revealing cracks in the outer rings.

Gligorijevic et al. [31] presented an automated 
technique for the early fault detection of rolling 
element bearings by dividing the signal to sub-
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bands by means of wavelet decomposition. A two-
dimensional feature space was used for fault detection 
of the bearing elements by quadratic classifiers with 
high accuracy.

Strączkiewicz et al. [32] applied supervised and 
unsupervised pattern recognition methods for damage 
classification and the clustering of rolling bearings. 
Clustering analysis was effective for determining the 
number of bearing state conditions.

Slavič et al. [33] used force measurement 
instead of the traditional acceleration measurement 
to identify bearing faults. The signal was processed 
using an envelope technique. The research showed 
that frequency domain analysis could successfully be 
applied to identify both amplitude and frequency of 
the force signal. The procedure was also applied to a 
high-series production line.

Abboud et al. [34] characterized bearing fault 
vibrations and explored angle/time cyclo-stationary 
properties. They experimentally validated their results 
on real vibration signals and the possible application 
for bearing fault detection.

Paya et al. [35] analysed drive lines with 
multiple faults that consist of an automotive gearbox, 
disc brake, and bearings. The paper presented an 
investigation to study both bearing and gear faults by 
wavelet transform then classified by multilayer back-
propagation artificial neural networks to classify the 
faults into groups.

Antoni [36] applied a cyclic spectral tool for the 
incipient fault diagnosis of rolling element bearings. 
They demonstrated the optimality of cyclic coherence. 
It was proved that the diagnostic information is 
perfectly preserved in the cyclic frequency domain as 
a symptomatic pattern of spectral lines.

1 FEATURE EXTRACTION FROM THE VIBRATION SIGNAL

1.1  Optimal Wavelet Selection

The wavelet transform is continuous or discrete, and 
it is calculated by the convolution of the signal and 
a wavelet function. A wavelet function is a small 
oscillatory wave, which contains both the analysis and 
the window function. Continuous wavelet transform 
(CWT) generates the two-dimensional maps of 
coefficients that are called scalograms:

 CWT a b
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where a is the scale parameter, b is the translation 
parameter, f (t) is the signal in time domain, ψ is the 

‘mother’ wavelet, and ψ* is the complex conjugate of 
ψ [37].

The benefit of CWT is that by changing the scale 
parameter, the duration and bandwidth of wavelet 
are both changed, providing better time or frequency 
resolution, but its shape remains the same. The scale 
parameter can be continuous or dyadic. The CWT uses 
short windows at high frequencies and long windows 
at low frequencies.

The scalogram, defined as the squared magnitude 
of CWT, always has non-negative, real-valued time-
frequency (scale) distribution. Its resolution in the 
time-frequency plane depends on the scale parameter.
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Consider the family of functions obtained by shifting 
and scaling a “mother wavelet” ψ;
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where a, b ∈ ℝ (a ≠ 0), and the normalization ensures 
that ||ψa, b (t)|| = ||ψ (t)||. The wavelet should satisfy the 
admissibility condition:
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where Ψ is the Fourier transform of ψ, w is the 
frequency. In practice, Ψ will always have sufficient 
decay so that the admissibility condition reduces to 
the requirement that Ψ(0) = 0 (from discrete Fourier 
transform):
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Because the Fourier transform is zero at the origin 
and the spectrum decays at high frequencies, the 
wavelet has bandpass behaviour. The wavelet should 
be normalized so that it has unit energy:
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As a result, ||ψa, b (t)||2 = ||ψ (t)||2 = 1 the continuous 
wavelet transform of a function f ∈ L2 (ℝ) is defined 
as:
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Discrete wavelet transform (DWT) applies filter 
banks for the analysis and synthesis of a signal. Filter 
banks contain wavelet filters and extract the frequency 
content of the signal in the pre-determined subbands. 
The discrete wavelet transform is derived from the 
discretization of continuous wavelet transform by 
adopting the dyadic scale and translation to reduce 
the computational time and can be expressed by the 
following equation [24]:

        DWT j k s t t k dts j

j
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where j and k are integers, 2 
j and 2 

jk represent the 
scale and translation parameter respectively. The 
original signal s(t) passes through a set of low pass 
and high pass filters emerging as low frequency 
(approximations, ai) and high frequency (details, 
di) signals at each decomposition level i. They are 
usually finite impulse response filters whose impulse 
response (or response to any finite length input) is of 
finite duration, because it settles to zero in finite time. 
Therefore, the original signal s(t) can be written as:
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The wavelet function ψ and scaling function φ 
can be defined as follows:
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where dj,k and cj,k are the wavelet and scaling 
coefficients at scale j [38].

Assuming the signal X[t] = (v0, ..., vN – 1), the 
sampling number is N = 2 

j, where j is an integer. For 
Xj[t] at scale j decomposed to the scale j – 1 of DWT 
model can be defined as [39]:
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The frequency band of each wavelet level is 
defined by Parameswariah and Cox [40]:

 f F Nj
s= ⋅2 / ,  (13)

and the maximum frequency is:

 f Fsmax / ,= 2  (14)

where f is the higher frequency limit of the frequency 
band represented by the level j, Fs is the sampling 
frequency and N is the number of data points in the 
input signal. 

1.2  Maximum Energy to Shannon Entropy Ratio Criteria

Fault detection procedures based on time-frequency 
methods usually rely on the visual observation of 
contour plots. It is also known that if the wavelet 
matches well with the shape of the signal at a specific 
scale and location, a large transform value is obtained. 
However, a low transform value is obtained if the 
signal and wavelet do not correlate well. To avoid 
defects of visual observation, a more precise way of 
determining the best-suited wavelet is presented here.

The combination of the energy and Shannon 
entropy content of the wavelet coefficients of the 
signal, denoted by the Energy-to-Shannon-Entropy 
ratio is an appropriate indicator to choose the best 
wavelet for diagnosis, and it can be calculated in the 
following form [41] and [42]:

 ξ ( ) ( ) / ( ).n E n S nentropy=  (15)

The energy content of signal wavelet coefficients 
is given by:

 E n Cn i
i

m
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where m is the number of wavelet coefficients, Cn,i is 
the ith wavelet coefficient of nth scale.

The entropy of signal wavelet coefficients is 
given by:

 S n p pi i
i

m

( ) log ,= −
=
∑ 2

1

 (17)

where (p1, ..., pn) is the energy probability distribution 
of the wavelet coefficients, defined as:

 p C E ni n i= , / ( ).
2

 (18)

1.3  Fault Size Estimation

When there is a defect in the rolling element bearing, 
the rolling element hits the raceway, and a transient 
impulse is produced. Because the impulse with short 
time duration is a transient excitation, the response of 

https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Impulse_response


Strojniški vestnik - Journal of Mechanical Engineering 63(2017)1, 3-14

7Optimal Wavelet Selection for the Size Estimation of Manufacturing Defects of Tapered Roller Bearings with Vibration Measurement using Shannon Entropy Criteria

the bearing system’s natural frequency would arise. 
Modelling the bearing vibration system as an under-
damped second order mass-spring-damper dynamic 
mechanical system, its unit-impulse response function 
can be described as follows:

 h t
m

e t
d

t
d

d( ) sin( ),
( / ( ) )= − −1 1 2

ω
ωξ ξ ω  (19)

where m is the mass of the bearing vibration system, 
ξ is the damping ratio of the mechanical system and 
ωd is the damped natural frequency of the bearing 
structure [43].

To determine the defect size, multiresolution 
analysis (MRA) is applied by filter banks, which is 
a design method of most of the practically relevant 
discrete wavelet transforms.

Usually, two or three harmonics of the 
characteristic defect frequency are necessary for 
bearing fault diagnosis. In order to diagnose the 
modulation effects, the width of each band (Fj) should 
be three times greater than the bearing pass frequency 
of the inner race, and it can be calculated by [44]:

 F Fj s
j≈ +/ .2 1  (20)

This implies that the final level Jf  should satisfy:

 J F
rFf
S

R

≤ −log ,2
3

1  (21)

where FR is the frequency of the shaft, here is 30 Hz 
and FS is the sampling rate that is now 25.6 kHz. 
Practically, Jf  = 3 and Jf  = 4 values are found to be 
large enough for bearing vibration diagnosis [44].

In our investigation, the value of Jf  = 3 is 
proposed. In the case of No. 30205, the tapered roller 
bearing in the experiment BPFO is 206.18 Hz. Down 
to 3rd level, where the transient impulse is analysed 
for defect width measurement, wavelet band is 
1.25  kHz, which is more than 3 times greater than 
BPFO. However, decomposition is down to the 4th 
level because of deeper resolution.

The defect size on the outer race of the bearing 
can be estimated from the knowledge of the duration 
between the entry and exit events extracted from 
the signal after decomposition for the wavelet. 
The duration of the signal is estimated by wavelet 
decomposition using the fundamental train frequency 
(FTF) and average outer race inner diameter of the 
bearing (DOI). The outer race defect width DOD is [12]:

 L t D FTFOD OI= ⋅ ⋅ ⋅π ∆ .  (22)

This method is very useful because the defect 
width of the bearing can be determined only from the 

vibration signature. Bearing defects generate transient 
impulses in the vibration signal when the rollers pass 
through the defects. The fault frequencies can be 
calculated by numerically: bearing pass frequency of 
outer race (BPFO), bearing pass frequency of inner 
race (BPFI), fundamental train frequency (FTF), ball 
spin frequency (BSF). FTF can be calculated using the 
Eq. 22. [5] and [7]:

 FTF f d
D

r= −







2
1 cos ,Φ  (23)

where fr is the rotational frequency of the shaft, Φ is 
the contact angle, d is the inner ring diameter, D is the 
outer ring diameter. Practically, skipping phenomena 
could change this theoretical value.

Analysis of the de-stressing and re-stressing 
points of the entry and exit events from the 
manufacturing defect is necessary for the fault size 
estimation. The peaks in signal with negative and 
positive sign describe the position of the ball in the 
defect.

2  EXPERIMENTAL SETUP

In this study, an experimental test rig (Figs. 1 and 
2.) has been constructed to measure the vibration 
signatures of the tapered roller bearings properly.

The shaft in the test rig is supported by two 
tapered roller bearings. The one under investigation is 
No. 30205. Four tapered roller bearings with different 
manufacturing defect widths on the outer race  
(OR1-4) were investigated in our experiments (Table 
1). The defect on the outer race is a line (rectangular) 
shape-grinding defect (Fig. 3). The shaft is driven 
by an alternating current motor of 0.75 kW (made 
by Cemer), the frequency of 50 Hz, and the nominal 
speed of 2770 rpm, which is reduced to 1800 rpm with 
a variable speed drive device. A rubber V-belt between 
the electric engine and the shaft provides smooth 
running and low vibration which aid in accurate 
and precise measurements. Rubber bumpers are 
installed to reduce vibration of the electric motor to 
the bearing housing to minimize harmful vibrations. 
The arrangement provides the option of different 
speeds controlled by a Schneider ATV32HU22M2 
variable speed drive device. In the experiment, 
the speed of the shaft is measured using an optical 
tachometer with digital display to check the speed 
fluctuations. Additionally, the test rig can also be 
used for acoustic measurements because an anechoic 
chamber is installed around the test bearing house 
with appropriate features to suppress outside noises 

https://en.wikipedia.org/wiki/Discrete_wavelet_transform
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and reduce echo time. Test bearing is spanned by a 
screw mechanism to supply the sufficient axial force 
to the measurements. Constant spanning force during 
the measurements is measured by strain gauges in a 
Wheatstone-bride mode on the basis of the difference 
in voltage measurement.

NI 9234 dynamic signal acquisition is used 
in the experiments with 4 channels to vibration 
measurements from integrated electronic piezoelectric 
(IEPE) and non-IEPE sensors. The NI 9234 
delivers 102 dB of dynamic range. Input channels 
simultaneously digitize signals at rates up to 51.2 kHz 
per channel with built-in anti-aliasing filters [45]. A 
PCB IMI 603C01 vibration transducer is used, which 
is an industrial type platinum stock piezoelectric 
sensor with low noise levels, the sensitivity of 100 
mV/g and frequency range of 0.27 kHz to 10 kHz with 
a top exit 2-pin connector [46]. The accelerometer 
is placed on the previously ground surface of the 
top of the bearing house with a screw mechanism 
perpendicular to the axis of the rotation of the shaft. A 
32-bit AMD Athlon II X2 M300 2.0 GHz processor is 
used for data processing which is carried out in Matlab 
and Labview environments. For visual validation of 
the defect sizes on the bearing rings Garant MM1-200 
video microscope is applied, which is an incremental 
measuring system, with a built-in image processing 
with a 1.3-megapixel colour camera. Furthermore, 
Mahr MMQ 200 with precision roundness measuring 
axis, motorized vertical and horizontal measuring 
axis is used for roundness deviation measurement to 
determine both width and depth of the grinding marks.

Fig. 1.  Test rig for tapered roller bearing measurement 

Fig. 2.  Test rig for tapered roller acoustic chamber

Table 1.  Geometrical parameters of grinding defects of outer rings 
(OR) 

Type Width [mm] Depth [µm]
OR1 defect 0.6311 6.5
OR2 defect 1.2492 33.6
OR3 defect 1.4751 42.3
OR4 defect 1.6236 51.4

Fig. 3.  Outer ring of the tapered roller bearing  
with grinding defect of 1.6236 mm

3  RESULT AND DISCUSSION

3.1  Optimal Wavelet Selection

A total of nine different wavelets is considered 
for the present study. An appropriate base wavelet 
should extract the maximum amount of energy, and 
minimize the Shannon entropy of the corresponding 
wavelet coefficients. Calculated values of the energy 
to Shannon entropy ratios are in Tables 2 to 4. 

E/S values are calculated from the vibration 
signal at the wavelet centre frequency (Fc) of 2.09 
kHz (Table 2).

Table 2.  Calculated values of energy to Shannon entropy ratios of 
wavelet functions, Fc = 2.09 kHz

E/S OR1 OR2 OR3 OR4 Mean
Sym2 59.96 80.20 100.87 109.16 87.55
Sym5 65.58 95.37 117.07 119.92 99.48
Sym8 82.81 113.77 120.16 118.48 108.81
db02 60.91 81.09 101.12 113.46 89.14
db06 71.74 89.02 120.42 117.40 99.65
db10 77.76 104.69 120.34 120.45 105.81
db14 85.02 120.03 121.37 123.78 112.55
Meyer 92.31 160.31 126.20 105.70 121.13
Morlet 113.15 194.15 142.18 138.14 146.90

After calculating the mean values of E/S ratio 
values are presented in Table 2. It is observed that 
Morlet wavelet gives the highest value that indicates 
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to be the most efficient wavelet for both fault detection 
and fault size estimation.

3.2  Fault Size Estimation

Bearing defects generate transient impulses in the 
vibration signal when the rollers pass through the 
defects. 

For fault size estimation, fault frequencies 
are calculated which are BPFO = 206.18  Hz, 
BPFI = 287.15  Hz, FTF = 12.88  Hz, BSF = 89.96  Hz 
in this experiment at 1800 rpm.

 L t D FTF tOD OI= ⋅ ⋅ ⋅ = ⋅π ∆ ∆1713 74. .  (24)

With Eq. (24), the width of the defect can be 
calculated, where DOI is the outer ring diameter on the 
raceways; Δt is the time duration between the contact 
points of the bearing elements. In the raw signal, 
entry and exit points of the groove are not identifiable 
because the signal at these points is weak, but wavelet 
decomposition makes it possible to analyse the entry 
and exit events. The best wavelet previously chosen 
by the Shannon entropy criteria gives the best method 
to determine the fault size from the vibration signature 
because it presents the best correlation with the 
transient impulse.

Fig. 4.  Typical raw time domain signal of bearing with 0.6311 mm 
of ground fault width on the outer race

Fig. 4 presents the spectra of outer race defect of 
0.6311 mm. The highest periodic transient impulse 
related energy content of the burst occurs at 2.09 kHz 
that causes a 5 ms rate of periodicity which is equal 
to 206.18 Hz BPFO frequency (Fig. 5). The spectrum 
was measured in all outer rings with different fault 
sizes, and they showed a similar manner around the 
peak of 2.09 kHz.

Multiresolution analysis (MRA) is made down 
to the 4th level to obtain precise frequency analysis. 
Fig. 6 presents the wavelet decomposition tree down 
to the 4th level. Higher decomposition is not necessary 
because it might not reveal any further information of 

the signal. Regarding the BPFO frequency, analysis 
was made at 3rd detail level (cD3) from 1.25 kHz to 
2.5 kHz.

Fig. 5.  Frequency domain spectrum of bearing with 0.6311 mm  
of ground fault width on the outer race, transient frequency  

of 2.09 kHz

Fig. 6.  Wavelet decomposition graph of the original vibration 
signal by MRA with frequency ranges

Fig. 7.  Tree decomposition graph of the original vibration signal of 
0.6311 mm fault width down to 4th level

Fig. 7 shows the decomposition graph of the 
original vibration signal of 0.6311 mm fault width 
down to 4th level. A is the entry point of the roller into 
the outer race defect, B is the maximum de-stressing, 
C is the exit point of the roller from the defect. In 



Strojniški vestnik - Journal of Mechanical Engineering 63(2017)1, 3-14

10 Deák, K. – Mankovits, T. – Kocsis. I.

the experiment, 20 impulses were measured and the 
average time values of the entry, de-stressing and 
exit point of all four outer rings were determined 
for precise calculation, which yielded 240 time data 
points.

Fig. 8.  Detail graph of the MRA of the original vibration signal 
of 0.6311 mm fault width at detail 3rd level with two transient 

impulses, entry point (A), de-stressing point (B) and exit point (C) 
are highlighted in red 

Fig. 9.  Analysis of the transient impulse presenting the entry and 
exit points of the roller into the grinding defects on the outer ring

Fig. 10.  Scalogram of the Morlet wavelet of the outer ring with 
0.6311 mm fault width

Figs. 8 to 10 show the analysis of the entry point, 
the exit point and the de-stressing point of the roller 
for the purpose of fault size calculation. At point A, 
the roller strikes the groove base with a high impact 
which results in re-stressing and high impulse in the 
signal. After this event, the roller remains in contact 
with the groove base for some time and during this 
period impulses due to the rough surface of the groove 
are observed.

When the roller comes in contact with point B, 
it again generates high amplitude in the signal, and 
beyond this (i.e. after B) progressive decreases in the 
amplitude of the signal are observed due to elastic 
damping of bearing element. The roller may spin or 
slide during the operation of the bearing. Change in 
signal takes place when it slides. Furthermore, varying 
clearance between cage and roller changes the signal 
when the roller enters and exits the groove defect. 

There is variation in data points for each roller 
crossing over the defect. Average data points for 16 
successive bursts are calculated for estimating the 
time taken by roller to pass over the groove defect. 
The average of data points so calculated is converted 
into the time duration to cross over from A to B, 
considering the sampling frequency. Further using Eq. 
(24), the defect width was calculated in the case of all 
outer rings. A scalogram was applied in addition to the 
multiresolution analysis as was presented in Fig. 10. 

4  VERIFICATION OF THE MEASUREMENT BY IMAGE 
PROCESSING

To verify the precision of the previous measurements, 
image processing is applied to reveal the exact 
geometrical size of the ground defect on the outer 
race. A Garant MM1-200 video microscope is used to 
analyse and measure the grinding marks on the rings 
and Mahr MMQ 200 contact equipment is applied for 
roundness deviation measurement of the outer rings to 
determine the depth of the grinding marks on the rings 
as Figs. 11 to 16 present.

Fig. 11.  Contact measurement of the outer race defect 
geometrical size with Mahr MMQ 200 equipment

To find the edges of the grinding marks on the 
outer race made by the Garant MM1-200 video 
microscope, Prewitt and Sobel edge detection 
algorithms are used as image processing technique. In 
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our investigations, the Prewitt algorithm is found to be 
more efficient.

Fig. 12.  Image of the optical measurement of the outer race 
defect width with Garant MM1-200 video microscope 

The maximum difference in result has been 
obtained to be 4.12 % for a defect width of 0.6311 
mm by db02 wavelet. The width calculation and 
the deviation from the visually measured data using 
the worst wavelet for fault detection (db02), the 
traditionally widely used Symlet-5, and the best Morlet 
wavelet are found in Tables 3 to 5. The Morlet wavelet 

provides the most accurate width measurement from 
the vibration signal.

Table 3.  Deviation values of geometrical width of the fault from the 
vibration signal and optically measured values with db02 wavelet

OR1 
defect

OR2 
defect

OR3 
defect

OR4 
defect

Calculated defects width 
[mm]

0.657 1.521 1.277 1.653

Optically measured defect 
width [mm]

0.6311 1.4751 1.2492 1.6236

Deviation between calculated 
and measured data [%]

4.12 3.11 2.24 1.78

Mean deviation [%] 2.81

Table 4. Deviation values of geometrical width of the fault from 
the vibration signal and optically measured values with Symlet-5 
wavelet

OR1 
defect

OR2 
defect

OR3 
defect

OR4 
defect

Calculated defects width 
[mm]

0.646 1.4481 1.269 1.639

Optically measured defect 
width [mm]

0.6311 1.4751 1.2492 1.6236

Deviation between calculated 
and measured data [%]

2.41 1.83 1.56 0.92

Mean deviation [%] 1.68

Fig. 13.  Result of the roundness measurement of the outer race 
defect with Mahr MMQ 200 equipment, OR1 defect 

Fig. 14.  Result of the roundness measurement of the outer race 
defect with Mahr MMQ 200 equipment, OR2 defect 

Fig. 15.  Result of the roundness measurement of the outer race 
defect with Mahr MMQ 200 equipment, OR3 defect 

Fig. 16.  Result of the roundness measurement of the outer race 
defect with Mahr MMQ 200 equipment, OR4 defect
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Table 5.  Deviation values of geometrical width of the fault from the 
vibration signal and optically measured values with Morlet wavelet

OR1 
defect

OR2 
defect

OR3 
defect

OR4 
defect

Calculated defects width 
[mm]

0.644 1.502 1.266 1.637

Optically measured defect 
width [mm]

0.6311 1.4751 1.2492 1.6236

Deviation between calculated 
and measured data [%]

2.06 1.69 1.38 0.84

Mean deviation [%] 1.49

5  CONCLUSIONS

A technique based on wavelet transform using nine 
different real-valued wavelets has been proposed for 
measuring the outer race manufacturing defect widths 
of tapered roller bearings. 

Wavelet coefficients were determined at constant 
scale value of the scalograms of four outer rings 
with grinding manufacturing defects. Then, wavelet 
coefficients at the highest local maxima of the 
scalograms were calculated. Moreover, Butterworth 
filter was applied near the fault generated transient 
impulse with the frequency of 2.09 kHz to suppress 
noise related frequency components and enhance 
the useful information from the vibration signature. 
Nine real-valued wavelets were analysed, and it was 
determined that Morlet wavelet was the best for the 
manufacturing fault detection in all cases on the 
basis of the Shannon Entropy Criteria. Furthermore, 
the width measurement of the outer ring grinding 
fault was executed with all nine wavelets. The best 
wavelet previously chosen by Shannon Entropy 
Criteria creates the opportunity to determine the 
manufacturing defect width in the most accurate 
way because it presents the best correlation with 
the transients. The proposed technique has been 
successfully implemented for measuring defect width 
over a range of 0.6311 mm to 1.6236 mm. The defect 
width has also been verified by an optical microscope 
and contact roundness measurement device using 
image processing techniques. The maximum deviation 
of the two values of defect width obtained using the 
aforementioned two different visual measurement 
validation approaches is 4.12 % for a defect width of 
0.6311 mm. 
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