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Theoretical and Experimental Study of Fatigue Strength  
of Plain Woven Glass/Epoxy Composite
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In this paper an energy-based model for predicting fatigue life and evaluation of progressive damage in composite materials is proposed. The 
damage model is based on the concepts of continuum damage mechanics. The applicability of the proposed energy model was studied in 
fatigue experiments on 10-layer composite laminates made of glass fabric impregnated with epoxy-phenolic resin. Experimental results were 
processed by the method of least squares to determine the unknown parameters of the model. Theoretical fatigue strength curves are in good 
agreement with experimental data.
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0 INTRODUCTION 

With the increasing use of composite materials comes 
an increasing need to understand their fatigue behavior. 
They exhibit very complex failure mechanisms under 
fatigue loading because of anisotropic characteristics 
in their strength and stiffness. Cyclic loading causes 
extensive damage throughout the composite volume, 
leading to failure from general degradation of the 
material instead of a predominant single crack. A 
predominant single crack is the most common failure 
mechanism in static loading of isotropic, brittle 
materials such as metals. There are four basic failure 
mechanisms in composite materials as a result of 
fatigue: matrix cracking, delamination, fiber breakage 
and interfacial debonding [1]. The different failure 
modes combined with the inherent anisotropies, 
complex stress fields, and overall non-linear behavior 
of composites severely limit our ability to understand 
the true nature of fatigue. 

Different fatigue models have been established 
during the last decades, which are based on the well-
known S-N curves. They usually require extensive 
experimental work and do not take into account the 
actual damage mechanisms, such as matrix cracking 
and fiber breakage. These models make up the first 
class of the so-called ‘fatigue life models’ [2]. The 
second class comprises the phenomenological models 
for residual stiffness and strength. The reliability of a 
composite component can change over time because 
of the strength and stiffness loss the material exhibit. 
These models propose an evolution law which can 
describe the gradual deterioration of the stiffness 
or strength of the composite specimens in terms of 
macroscopically observable properties. The third class 
of models introduces one or more properly chosen 
damage variables which describe the deterioration of 
the composite component. These models are based on 

a physically sound modeling of the underlying damage 
mechanisms, which lead to the macroscopically 
observable degradation of the mechanical properties. 
They can predict the damage growth in composite 
component, such as the number of transverse matrix 
cracks per unit length and the size of the delamination 
area. One of the important outcomes of all established 
fatigue models is the prediction of fatigue life and 
each of these three categories uses its own criterion 
for determination of fatigue life [2].  

In this paper a model for predicting fatigue life 
and evaluation of progressive damage is proposed. 
The unknkown parameters of this model were 
estimated using experimental results of fatigue tests 
on glass fiber/epoxy composite mark STEF-1. 

1 EFFECTIVE STRESS CONCEPT

In contrast to fracture mechanics which considers 
the process of an equilibrium condition or initiation 
and growth of microcracks as a discontinuous 
phenomenon, continuum damage mechanics uses a 
continuous internal variable, which is related to the 
density of these microdefects. The damage variable, 
based on the effective stress concept, represents 
average material degradation, which reflects the 
various types of damage at the micro-scale level like 
nucleation and growth of voids, cavities, micro-cracks, 
and other microscopic defects. In the literature various 
forms of damage have been proposed in recent years, 
for example, scalars, vectors, second and forth order 
tensors. The complexity and variety of mechanisms 
of accumulation of fatigue damage and degradation 
of strength properties of the composite component 
make reasonable use of an internal scalar variable for 
the quantitative description of damage. For the case 
of isotropic damage, the damage variable is scalar and 
associated with a decrease in the effective area of any 
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cross-section in the vicinity of this point of the body 
and is defined using the concept of effective stress in 
the following manner [3]:

 D A A
A

=
−  , (1)

where A  is the effective resisting area corresponding 
to the damaged area A. The effective area A~  is 
obtained from A by removing the surface intersections 
of the micro-cracks and cavities and correcting for 
the micro-stress concentrations in the vicinity of 
discontinuities and for the interactions between closed 
defects. By definition, theoretical value of D should 
be within 0 ≤ D ≤ 1. In the multiaxial case of isotropic 
damage, all the stress components act on the same 
effective area, so the effective stress tensor is:

 σ
σ

ij
ij

D
=

−1
.  (2)

In the case of anisotropic damage, the damage 
variable has been shown to be tensorial in nature. The 
case of anisotropic damage is much more complicated 
to ensure a good representation of the physics as well 
as compatibility with thermodynamics. In a general 
state of deformation and damage, the effective stress 
tensor σ  is related to the stress tensor σ by the 
following linear equation:

 σ σij ijkl klM= ⋅ ,  (3)

but this lead to a nonsymmetric tensor and a 
complicated theory. As only the symmetric part 
accounts for the constitutive equations of elasticity, a 
symmetrical form for σ ij can be obtained through the 
transformation [4]:

 σ σ δ δ σ ij ik kj kj il il lj( D D= − + −





− −1
2

1 1) ( ) ,  (4)

where δij is the Kronecker delta and Dij is a second 
order damage tensor. Firs must use the second 
principle of thermodynamics to derive the proposed 
energy model mut be used, because accumulation of 
damage is a dissipative process that is governed by 
the laws of thermodynamics. The second principle 
of thermodynamics, also referred to as the Clausius-
Duhem inequality, can be written as [5]:

 σ ε ρ ψij ij i
isT q
T
T

 

− + − ≥( ) ,, 0  (5)

where q  is the heat flux vector associated with the 
temperature gradient for the non isothermal processes, 
ψ  Helmholtz free energy and s  entropy density. The 
Helmholtz free energy is a function of all the 

state variables. If it is assumed that no plastic 
deformation occurs in ccan write its rate can be written 
as:
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ψ
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ε
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e
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together with the definition of the associated variables, 
Eq. (5) becomes: 
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On the other hand, the analytical expression for 
the Helmholtz free energy together with the principle 
of strain equivalence and the concept of effective 
stress for isothermal processes can be written as [4]:

 ψ
ρ

ε ε= −( )1
2

1a Dijkl ij
e
kl
e ,  (8)

where aijkl is the elastic stiffness tensor. The state 
laws are derived from the state potential so the law 
of elasticity coupled with damage will have the form:

 σ ρ
ψ
ε

εij
ij
e ijkl kl

ea D=
∂
∂

= −( )1 .  (9)

The thermodynamics of irreversible processes 
defines its associated variable Y, (a positive quadratic 
function) called the “energy density release rate” for 
scala damage D, that can be defined as [5]:

 Y
D

aijkl ij
e
kl
e= −

∂
∂

=ρ
ψ

ε ε
1
2

,  (10)

this means that to always satisfy inequality of positive 
dissipation Eq. (7), the damage rate D  must be a non-
negative function, so: 

 Y D⋅ ≥ 0.  (11)

2 DEFINING RELATIONS FOR THE DEVELOPMENT  
OF DAMAGE IN COMPOSITE

The direct measurement of damage as the surface 
density of microdefects (cracks, pores or inclusions) 
is difficult to perform and is used only in laboratories 
well equiped for micrography. It is easier to take 
advantage of the coupling between damage and 
elasticity to evaluate the damage by inverse methods 
[6]. Throughout the composite’s life, growth of 
damage can be monitored nondestructively by 
measuring one of the properties of the material: the 
moduli, for instance, or the electrical conductivity, or 
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light scattering, or the x-ray absorption, or ultrasonic 
attenuation, or the damping coefficient, or by acoustic 
emission detection [7]. In general, the damage 
variable D is described as a function of cyclic stress 
range Δσ, number of loading cycles N, stress ratio R, 
environmental conditions such as temperature T, and 
material properties such as stiffness E, as given below:

 D D N E R Tijkl= ( )∆σ, , , , ,... .  (12)

In the make the further assumption is made 
that the damage accumulation rate depends on the 
maximum value of specific elastic strain energy We 
per cycle, the load ratio R and on the current level of 
scalar isotropic damage D, then:

 dD
dN

f R D We= ( ), , .  (13)

If it is assumed that a power relation exists 
between the maximum value of specific elastic strain 
energy per cycle and damage growth rate, kinetic 
equation for the damage parameter can be written in 
the form [8]: 

 dD
dN

m k R We
n= ⋅ ( ) ⋅ ( )max ,  (14)

where We  is the elastic strain energy per unit volume 
of the body which is computed from the individual 
stress components and elastic strains, k(R) function 
which depends on the stress ratio, m, n constants 
which define the rate of damage accumulation. 
According to the principle of strain equivalence, with 
the definition of the effective stress expressecan write 
Eq. (14) can be written in the form:

 dD
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m k R ij ij

n

= ⋅ ( ) ⋅ 
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where Cijkl is the tensor of elastic constants of 
undamaged composite. It is also possible to replace 
stresses by strains:
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The fatigue life-time, meaning the number of 
cycles to increase damage parameter from D1 to D2 is 
found by integrating Eq. (13) to give N:

 N dD
f R D WeD

D
=

( )∫
, ,

.
1

2
 (18)

In the case of uniaxial loading, the dependence of 
scalar damage parameter on the number of cycles will 
have the following form calculated by means of this 
model:
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where E is the modulus of elasticity of the 
corresponding direction. Because of considerable 
nonlinearity dependence of the damage parameter on 
the number of cycles, at the stage preceding failure, 
the growth rate increases and tends to infinity, material 
becomes unstable and ruptures. Therefore, integration 
of Eq. (13) over the interval 0 to 1 gives the number 
of cycles to rupture corresponding to the critical value 
of the damage:

 σ =
⋅

+( ) ⋅ ⋅ ( )
⋅











2
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1
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n m k R N

,  (20)

where Nf is the number of cycles to failure and E is the 
modulus of elasticity of the corresponding direction. 
For investigating the validity of this presented energy 
model assumptions series of fatigue experiments were 
performed on plain woven glass/epoxy composite 
laminates.

3 EXPERIMENTAL PROCEDURES

3.1 Description of Material and Experimental Determination 
of the Elastic Moduli 

The material used in this study is a plain woven glass/
epoxy composite. The plain woven glass fabric was 
stacked in 10 layers impregnated with epoxy-phenolic 
resin. Material manufactured in sheets with the 
dimensions of 890×1020 mm and nominal thickness 
of 2 mm. It is macroscopically orthotropic, having 
two orthogonal axes of symmetry of mechanical 
properties, coinciding with the directions of warp and 
weft threads (Fig. 1).

For fatigue experiments 30 identical specimens 
were cut in the warp and 30 specimens in weft 
directions of the fabric. Specimens had rectangular 
cross-section 2×15 mm with length of 175 mm. A 
resonance frequency technique was first applied 
to determine the Young’s modulus of specimens. 
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The test method is nondestructive in nature and can 
be used for specimens prepared for other tests. One 
end of the composite test specimen was fixed to an 
electrodynamic shaker (vibration exciter) and the 
frequency was slowly increased. At a particular 
instance of time, the input frequency becomes equal 
to the first natural frequency of the system and the 
amplitude level increases significantly. This is the 
resonance peak and can be clearly distinguished in the 
response curve.

Fig. 1. Structure of material (plain-woven fabric,  
1-warp; 2-weft threads)

Fig. 2. The fixing scheme of test specimen on the shaker 
platform: 1-test specimen; 2-vibration platform

For a uniform clamped-free beam the differential 
equation of motion can be written as [9]:

 EI Y x t
x

F Y x t
t

∂
∂

+
∂
∂

=
4

4

2

2 0( , ) ( , ) ,ρ  (21)

where E is Young's modulus of the corresponding 
direction, I the moment of interia, F the cross-section 
area, ρ density. Using boundary conditions and general 
solution of Eq. (21) we can determine the first natural 
resonance frequency of the composite beam:

 T
f

FL
EI

= =
1 2

3 515

4π ρ
.

,  (22)

where L = 147 mm is the working length of specimen 
in vibration tests. A series of vibration tets were 
performed on 30 specimens that were cut in warp 
direction and the mean value of their first natural 
resonance frequencies was determined:

 f
fi

i
1

1

30

30
26= =

=
∑ Hz.  (23)

Once resonance frequency is determined we can 
define Young's modulus in the warp direction using 
Eq. (22):

 E
f FL

Iz
11

2
1
2 4

2
94

3 515
5 62 10= = ⋅

π ρ

( . )
. Pa.  (24)

The same tests were carried out on specimens that 
were cut in weft direction and the mean value of their 
first natural frequencies was determined:

 f
fi

i
2

1

30

30
23 5= =

=
∑ . Hz.  (25)

The value of Young's modulus of corresponding 
specimens can be defined as:

 E
f Fl

Iz
22

2
2
2 4

2
94

3 515
4 59 10= = ⋅

π ρ

( . )
. Pa.  (26)

Other physical and mechanical properties like 
Poisson's ratio and density of this composite material 
were taken from literature [10]. They are given in 
Table 1.

Table 1. Physical and mechanical properties of the composite 
laminates

Density, [kg/m3] 1860

Young’s 
modulus, [MPa]

Warp direction 5620
Weft direction 4590

Poisson’s ratio
Warp direction 0.22
Weft direction 0.18

3.2 Fatigue Tests

Tests were performed on a special machine 
type DP-5/3 which is used to determine the bending 
fatigue resistance of sheet fibrous woven specimens. 
Machine imposes an alternating bending angle on the 
upper clamp (point B). At the down end the specimen 
is clamped (point A). Machine allows simultaneous 
testing of three specimens at the same angle of 
bending with or without the preliminary tension of 
specimens with removable weights. Testing machine 
DP5/3 is shown in Fig. 3. 
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Fig. 3. Machine type DP-5/3 used for fatigue tests

The value of the imposed bending angle is a 
controllable parameter over a wide range of 20 to 
180°. Working length of specimens in fatigue tests 
was L = 92 mm (Fig. 4).

Fig. 4. Schematic drawing of the bending fatigue setup

The desired frequency of fully-reversed bending 
can be installed on 100 or 300 bending cycles in 
a minute. Two sets of fatigue experiments were 
carried out with no preliminary tension. In the first 
set, experiments were performed to examine the 
fatigue bending resistance of 30 specimens that were 
cut in the warp direction with different values of 
the imposed bending angle of 60, 50, 45, 40, 35 and 
30°. A total of five specimens were tested at each 
bending angle. In the second set, the same tests were 
carried out on 30 specimens that were cut in the weft 
direction. Specimens were all tested at the same 
frequency of 100 fully-reversed bending cycles in a 
minute. Tests were continued until a complete failure 

in room temperature. After the automatic shutdown of 
the machine due to the destruction of specimens the 
number of cycles at failure established by the counters 
was recorded.

The constitutive equations for evaluation of 
stresses and bending moments are based on the 
classical beam theory. A composite test specimen 
cannot experience any deflection at points A and B. 
A derivative of the deflection function is zero at the 
point A. Because the other end is free to rotate about 
the Z axis, a derivative of deflection function is equal 
to θ at point B. The point of maximal deflection C 
occurs between points A and B. This deflection is a 
function of x and bending angle θ:

 Y Y x= ( ),θ . (27)

In the linear formulation we can determine the 
value of the deflections, using differential equation:

 EI d Y
dx

4

4 0= ,  (28)

where E is the Young’s modulus of the corresponding 
direction. Eq. (28) has a solution of the form:

 Y x c c x c x c x( ) = + + +1 2 3
2

4
3 ,  (29)

where c1, c2, c3 and c4 constants that can be defined 
from boundary conditions. The boundary conditions 
at points A and B are:

 Y = 0,   dY/dx = 0,   x = 0, (30)

 Y = 0,   dY/dx = θ,   x = L. (31)

Once deflections are determined, we can define 
the values of bending moment and normal stress:

 σ x y E d Y
dx

y E
l l

x= − ⋅ = − ⋅ − +





2

2 2
2 6θ θ .  (32)

In the tests when deflection is greater than the 
thickness of specimen a non-linear analysis and 
formulation is required to determine the deflection 
[11]:

 EI d Y
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EF dY
dx

d Y
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4

4

2 2

2
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2
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= .  (33)

A finite element analysis (FEA) was carried out 
using Ansys 11 software to assess the validity of the 
calculated values of stresses. The element used for 
the analysis was 8-node structural Shell93 which has 
six degrees of freedom at each node. This element is 
particularly well suited to model curved orthotropic 
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shells in case of large deflections [12]. A boundary 
condition of fixing all displacements and rotations 
on the upper line (point A), fixing all displacements 
with a given rotation about the Z axis Rot z = θ on the 
lower line (point B) was applied (Fig. 5).

   
Fig. 5. Shell element for modeling the composite specimen

It should be noted that the difference between the 
stress values obtained from Eqs. (32) and (33) and 
values calculated by Ansys software do not exceed 
5%.

4 PROCESSING THE RESULTS OF FATIGUE EXPERIMENTS

For practical application of the proposed model it 
is necessary to identify the unknown functional 
dependency parameters Eq. (14) on the basis of 
experimental results. Therefore, the results of fatigue 
tests were processed by the method of least squares 
to determine constants m and n in such way that the 
sum of the squared errors over all the observations is 
minimized. i.e., the quantity Q we are interested in 
minimizing is:
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Function F has the form of a power law Eq. (20), 
if it is assumed that the function of cycle parameter 
has the constant value of k(R) = 1 under stationary 
loading conditions, then function Q will take the form:
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By taking logarithms of both sides of the Eq. (35) 
and introducing new variable t = ln N there is a new 
function Q':
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Taking the derivative of Q' with respect to a 
and b, setting them to zero gives the following set of 
equations:

   
∂ ′( )

∂
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∂ ′( )
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=
Q a b E E
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, , ,

,
, , ,

.11 22 11 220 0  (38)

Solving these equations gives the following least 
square estimates of m and n as:

 m = 1.034 ·10–27  [Pa], n = 3.521 . (39)

These values are substituted into Eq. (20) to 
obtain two theoretical S-N curves for fatigue study of 
specimens cut in different directions:
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The theoretical S-N curve and fatigue test results 
in warp direction obtained at different stress levels are 
plotted in Fig. 6, as the number of cycles to failure, Nf, 
against the applied stress, σ.

In the same way for test specimens that were cut 
in weft direction in Fig. 7 shown theoretical S-N curve 
and fatigue tests results.
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Fig. 6. Theoretical fatigue curve and experimental results from 
tests in warp direction

Fig. 7. Theoretical fatigue curve and experimental results from 
tests in weft direction

Fig. 8. Evolution of damage parameter in specimens cut; 1-in warp 
2- in weft directions.

After identifying the damage model parameters, 
it can be applied to predict quantitatively the damage 
evolution of structural elements. It is possible to draw 
the graphs of the evolution of scalar damage variable 

as a function of number of fatigue cycles for two types 
of specimens cut in different directions using Eq. (19), 
as it is shown in Fig. 8.

Note that graphs were constructed at the 
same given value of stress amplitude, for example  
σ = 1.5·108 Pa and k(R) = 1. It is possible to observe 
that the damage parameter consistently increases until 
the end of the test when it increases very fast until 
rupture. 

5 CONCLUSIONS

In the present work an energy-based model for 
predicting fatigue life and quantitative evaluation 
of progressive damage using Lemaitre’s concept of 
equivalent stress hypothesis was proposed. The model 
allows the prediction of fatigue durability by taking 
into account the principal directions of the stress 
tensor relative to the planes of elastic symmetry of 
material. The unknkown parameters of this model 
defining the fatigue damage accumulation rate, were 
identified using experimental results from fatigue 
tests of glass fiber/epoxy composite specimens that 
were cut in both the warp and weft directions. Then, 
the model has been applied to study the evolution of 
damage in specimens cut in different directions under 
fatigue tests. It has been shown that the theoretical 
fatigue strength curves obtained by means of this 
model were in good agreement with experimental 
data.
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